Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (10): 2072-2081    DOI: 10.3866/PKU.WHXB201705127
Article     
Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors
ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye
School of Chemical Engineering & Technology, Tianjin University, Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Engineering, Tianjin 30072, China
Download:   PDF(2653KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Herein, the synthesis of a series of titanium based nanocrystals using tetrabutyl titanate (TBT) as the titanium source and hydrofluoric acid (HF) as the fluorine source under solvothermal conditions has been described. The effect of the amount of HF on the structural evolution of the nanocrystals was studied. The catalytic performance of the as-prepared samples was measured by photocatalytic hydrogen evolution, photocatalytic RhB degradation, and chronoamperometric tests. The obtained results showed that anatase TiO2 nanoparticles with exposed {101} facets were synthesized in the absence of HF. After the addition of a small amount of HF, the F- ion adsorbed on the surface of the nanocrystal and decreased the surface energy of the {001} facets. Thus, sheet-shaped TiO2 was formed with exposed {001} facets. Furthermore, the as-prepared sample showed an enhanced photocatalytic performance because of the increased charge separation efficiency, which was dependent on the surface heterostructure generated between the {101} and {001} facets. On further increasing the amount of HF, F- ions started to enter the lattice and formed a new crystal phase. The as-prepared sheet-stacked sample was comprised of TiO2 and TiOF2 phases in both surface and bulk regions, which showed the decreased photocatalytic activity. With the addition of more HF, the F- ion moved completely into the crystal lattice and the large particle structure of (NH4)0.3TiO1.1F2.1 was formed. Although the as-prepared (NH4)0.3TiO1.1F2.1 displayed a low photocatalytic activity because of an improper band gap structure, it could be used as a precursor for the synthesis of N, F doped titanium based semiconductors.



Key wordsHydrofluoric acid      Titanium based semiconductor      Structure evolution      Photocatalysis      Photoelectrochemical performance     
Received: 25 April 2017      Published: 12 May 2017
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21476159), Natural Science Foundation of Tianjin, China (15JCZDJC37400, 15JCYBJC23000).

Corresponding Authors: LI Xin-Gang     E-mail: xingang_li@tju.edu.cn
Cite this article:

ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705127     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I10/2072

(1) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645
(2) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/B800489G
(3) Cai, J.; Zhu, Y.; Liu, D.; Meng, M.; Hu, Z.; Jiang, Z. ACS Catal. 2015, 5, 1708. doi: 10.1021/acscatal.5b00055
(4) Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746. doi: 10.1126/science.1200448
(5) Ruzimuradov, O.; Hojamberdiev, M.; Fasel, C.; Riedel, R. J. Alloy. Compd. 2017, 699, 144. doi: 10.1016/j.jallcom.2016.12.355
(6) Wang, Y. J.; Sun, J. Y.; Feng, R. J; Zhang, J. Acta Phys. -Chim. Sin. 2016, 32, 728. [王彦娟, 孙佳瑶, 封瑞江, 张健. 物理化学学报, 2016, 32, 728.] doi: 10.3866/PKU.WHXB201511303
(7) Roy, N.; Sohn, Y.; Pradhan, D. ACS Nano 2013, 7, 2532. doi: 10.1021/nn305877v
(8) Pan, J.; Liu, G.; Lu, G. Q.; Cheng, H. M. Angew. Chem., Int. Ed. 2011, 50, 2133. doi: 10.1002/anie.201006057
(9) Mu, L.; Zhao, Y.; Li, A.; Wang, S.; Wang, Z.; Yang, J.; Wang, Y.; Liu, T.; Chen, R.; Zhu, J.; Fan, F.; Li, R.; Li, C. Energy Environ. Sci. 2016, 9, 2463. doi: 10.1039/C6EE00526H
(10) Zhao, Z. Y.; Tian, F. Acta Phys. -Chim. Sin. 2016, 32, 2511. [赵宗彦, 田凡. 物理化学学报 2016, 32, 2511.]doi: 10.3866/PKU.WHXB201607131
(11) Joo, J. B.; Zhang, Q.; Lee, I.; Dahl, M.; Zaera, F.; Yin, Y. Adv. Funct. Mater. 2012, 22, 166. doi: 10.1002/adfm.201101927
(12) Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K.; Wang, L.; Fu, H.; Zhao, D. J. Am. Chem. Soc. 2014, 136, 9280. doi: 10.1021/ja504802q
(13) Yu, K.; Zhang, C.; Chang, Y.; Feng, Y.; Yang, Z.; Yang, T.; Lou, L.L.; Liu, S. Appl. Catal. B 2017, 200, 514. doi: 10.1016/j.apcatb.2016.07.049
(14) Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Nanoscale 2014, 6, 1946. doi: 10.1039/C3NR04655A
(15) Yu, Y.; Wu, H. H.; Zhu, B. L.; Wang, S. R.; Huang, W. P.; Wu, S. H.; Zhang, S. M. Catal. Lett. 2008, 121, 165. doi: 10.1007/s10562-007-9316-1
(16) Kang, H. W.; Park, S. B. Int. J. Hydrogen Energy 2016, 41, 13970. doi: 10.1016/j.ijhydene.2016.06.213
(17) Yu, J. C.; Yu, J. G.; Ho, W.; Jiang, Z.; Zhang, L. Chem. Mater. 2002, 14, 3808. doi: 10.1021/cm020027c
(18) Nishimura, T.; Ikeda, A.; Namba, H.; Morishita, T.; Kido, Y. Surf. Sci. 1999, 421, 273. doi: 10.1016/S0039-6028(98)00840-1
(19) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638. doi: 10.1038/nature06964
(20) Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. J. Am. Chem. Soc. 2009, 131, 3152. doi: 10.1021/ja8092373
(21) Yu, J. G.; Low, J. X.; Xiao, W.; Zhou, P.; Jaroniec, M. J. Am. Chem. Soc. 2014, 136, 8839. doi: 10.1021/ja5044787
(22) Wang, W.; Zhu, D.; Luo, J.; Zhu, J.; Liu, X. J. Nanopart. Res. 2016, 18, 152. doi: 10.1007/s11051-016-3433-y
(23) Guo, M.; Lu, J. Q.; Wu, Y. N.; Wang, Y. J.; Luo, M. F. Langmuir 2011, 27, 3872. doi: 10.1021/la200292f
(24) Li, C.; Li, M. J. J. Raman Spectrosc. 2002, 33, 301. doi: 10.1002/jrs.863
(25) Zhang, J.; Li, M. J.; Feng, Z. C.; Chen, J.; Li, C. J. Phys. Chem. B 2006, 110, 927. doi: 10.1021/jp0552473
(26) Wang, Y. T.; Cai, J. M.; Wu, M. Q.; Zhang, H.; Meng, M.; Tian, Y.; Ding, T.; Gong, J. L.; Jiang, Z.; Li, X. G. ACS Appl. Mater. Interfaces 2016, 8, 23006. doi: 10.1021/acsami.6b05777
(27) Wen, C. Z.; Hu, Q. H.; Guo, Y. N.; Gong, X. Q.; Qiao, S. Z.; Yang, H. G. Chem. Commun. 2011, 47, 6138. doi: 10.1039/C1CC10851D
(28) Tian, F.; Zhang, Y. P.; Zhang, J.; Pan, C. X. J. Phys. Chem. C 2012, 116, 7515. doi: 10.1021/jp301256h
(29) Cai, J.; Wang, Y.; Zhu, Y.; Wu, M.; Zhang, H.; Li, X.; Jiang, Z.; Meng, M. ACS Appl. Mater. Interfaces 2015, 7, 24987. doi: 10.1021/acsami.5b07318
(30) Hu, W. Y.; Zhou, W.; Zhang, K. F.; Zhang, X. C.; Wang, L.; Jiang, B. J.; Tian, G. H.; Zhao, D. Y.; Fu, H. G. J. Mater. Chem. A 2016, 4, 7495. doi: 10.1039/c6ta01928e
(31) Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 3026. doi: 10.1021/nl201766h
(32) Yin, W. J.; Bai, L. J.; Zhu, Y. Z.; Zhong, S. X.; Zhao, L. H.; Li, Z. Q.; Bai, S. ACS Appl. Mater. Interfaces 2016, 8, 23133. doi: 10.1021/acsami.6b07754
(33) Zhao, X.; Wei, G.; Liu, J.; Wang, Z.; An, C.; Zhang, J. Mater. Res. Bull. 2016, 80, 337. doi: 10.1016/j.materresbull.2016.04.018
(34) Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Chem. Soc. Rev. 2014, 43, 5234. doi: 10.1039/c4cs00126e
(35) Hojamberdiev, M.; Zhu, G.; Sujaridworakun, P.; Jinawath, S.; Liu, P.; Zhou, J. P. Powder Technol. 2012, 218, 140. doi: 10.1016/j.powtec.2011.12.004

[1] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[2] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[3] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[4] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[5] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.
[6] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[7] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[8] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2069-2076.
[9] Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2077-2083.
[10] Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1758-1764.
[11] Kai-Jian ZHU,Wen-Qing YAO,Yong-Fa ZHU. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1519-1526.
[12] Yan-Juan WANG,Jia-Yao SUN,Rui-Jiang FENG,Jian ZHANG. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 728-736.
[13] Li-Fang HU,Jie HE,Yuan LIU,Yun-Lei ZHAO,Kai CHEN. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 737-744.
[14] Jian-Dong ZHUANG,Qin-Fen TIAN,Ping LIU. Bi2Sn2o7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 551-557.
[15] Rong-An HE,Shao-Wen CAO,Jia-Guo YU. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(12): 2841-2870.