Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (10): 2082-2091    DOI: 10.3866/PKU.WHXB201705176
ARTICLE     
Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance
Yang CHEN1,3,Xiao-Yan YANG2,3,*(),Peng ZHANG3,Dao-Sheng LIU1,*(),Jian-Zhou GUI1,3,Hai-Long PENG3,Dan LIU1,3,*()
1 Division of Chemistry, Chemical Engineering and Environment, Liaoning Shihua University, Fushun 113001, Liaoning Porvince, P. R. China
2 School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan Porvince, P. R. China
3 State Key Laboratory of Separation Membranes & Membrane Processes, School of Environmental & Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, P. R. China
Download: HTML     PDF(2947KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In the present work, we successfully synthesized ZnO nanorods under hydrothermal conditions, which have been utilized as the matrix to fabricate various noble metal (Pt, Pd, and Ru)-supported ZnO photocatalysts by subsequent reduction with ethylene glycol. In terms of systematic characterization, it was found that the Pt particles in the Pt/ZnO composite have small size with narrow size distribution, while the Pd particles in the Pd/ZnO composite have a larger size distribution due to aggregation. On the other hand, no Ru particles were practically observed in the Ru/ZnO composite. In the photodegradation of a methylene blue solution under UV light irradiation, both Pt/ZnO and Pd/ZnO exhibited significantly enhanced photocatalytic activity compared with the ZnO nanorods, whereas no noticeable increase of catalytic activity could be observed in the case of Ru/ZnO. Furthermore, the photocatalytic activity of the Pt/ZnO catalyst was higher than that of Pd/ZnO, due to its small-sized and uniform Pt particles. Therefore, noble metal particles with small size and high dispersion contribute to the enhancement of the photocatalytic performance of ZnO materials. After detailed investigation of various Pt/ZnO composites with different Pt loadings, it was demonstrated that the optimal Pt loading required to maximally improve the photocatalytic performance of ZnO nanorods corresponds to 3.2%.



Key wordsZinc oxide      Photocatalysis      Supported Noble Metal      Photodegradation      Methylene blue     
Received: 10 March 2017      Published: 17 May 2017
MSC2000:  O643  
  TQ034  
Fund:  the National Natural Science Foundation of China(21576211);Key Scientific and Technological Project of the Education Department of Henan Province, China(16A150019)
Corresponding Authors: Xiao-Yan YANG,Dao-Sheng LIU,Dan LIU     E-mail: yxysmallyxy@aliyun.com.;dsliu05@126.com;danliu_939@hotmail.com
Cite this article:

Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705176     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I10/2082

Fig 1 XRD patterns of the ZnO NR and M/ZnO samples.
Fig 2 (a) SEM, (b) high-magnification SEM and (c) HRTEM images of the ZnO NR. Inset in (a) is the diameter distribution of the ZnO NR.
Fig 3 (a-c) SEM images of the Pt/ZnO, Pd/ZnO and Ru/ZnO; (d) SEM image of the ZnO NR treated by EG; (e, f) TEM images of the Pt/ZnO and Pd/ZnO. Insets in (c), (d), (e) are the HRTEM image of Ru/ZnO, and the corresponding diameter distributions of Pt and Pd nanoparticles, respectively.
Fig 4 EDX spectrum of the (a) Pt/ZnO, (b) Pd/ZnO and (c) Ru/ZnO.
Fig 5 XPS spectrum of the (a) Pt/ZnO, (b) Pd/ZnO and (c) Ru/ZnO; (d)high-resolution XPS spectrum of Pt 4f of the Pt/ZnO and (e) high-resolution XPS spectrum of Pd 3d of the Pd/ZnO.
Fig 6 UV-Vis DRS of the ZnO NR and M/ZnO. Inset shows the corresponding digital images.
Fig 7 PL spectra of the ZnO NR and M/ZnO.
Fig 8 (a-d) Time dependent UV-Vis absorbance of the MB solution over ZnO NR、Pt/ZnO、Pd/ZnO and Ru/ZnO under UV irradiation. MB concentration is 10 mg?L-1, catalyst mass is 0.02 g; (e) Photocatalytic activity of different M/ZnO samples for the MB degradation under the UV light irradiation; (f) Photoreaction constants of different M/ZnO samples.
Fig 9 (a) Photocatalytic activity of Pt/ZnO samples with different Pt loading for the MB degradation under the UV light irradiation. MB concentration is 10 mg?L-1, catalyst mass is 0.02 g; (b) the reaction constants of Pt/ZnO samples with different Pt loading.
Fig 10 (a) HETEM image of the Pt/ZnO with 6% loading; (b) Diameter distribution of Pt nanoparticles
Fig 11 Photocatalytic activity of the Pt/ZnO for MB degradation under the irradiation of UV light in eight cycles.
Fig 12 Schematic diagram of the possible photocatalytic mechanism of the M/ ZnO for MB degradation under UV light irradiation.
1 Xie M.-Y. ; Su K.-Y. ; Peng X.-Y. ; Wu R.-J. ; Chavali M. ; Chang W.-C. J. Taiwan Inst. Chem. Eng. 2017, 70, 161.
2 Xiao J. ; Frauenheim T J. Phys. Chem. C 2013, 117, 1804.
3 Belaissa Y. ; Nibou D. ; Assadi A.-A. ; Bellal B. ; Trari M. M. J. Taiwan Inst. Chem. Eng. 2016, 68, 254.
4 Zhang P. ; Yang X. ; Zhao Z. ; Li B. ; Gui J. ; Liu D. ; Qiu J. Carbon 2017, 116, 59.
5 Pan L. ; Muhammad T. ; Ma L. ; Huang Z.-F. ; Wang S. ; Wang L. ; Zou J.-J. ; Zhang X. Appl. Catal. B-Environ 2016, 189, 181.
6 Dong X.-B. ; Yang P. ; Liu Y.-S. ; Jia C.-C. ; Wang D. ; Wang J.-P. ; Chen L. ; Che Q.-D. Ceram. Int. 2016, 42, 518.
7 Shi R. ; Yang P. ; Song X. ; Wang J. ; Che Q. ; Zhang A. Appl. Surf. Sci. 2016, 366, 506.
8 Abed C. ; Bouzidi C. ; Elhouichet H. ; Gelloz B. ; Ferid M. Appl. Surf. Sci. 2015, 349, 855.
9 Zhu H.-Y. ; Jiang R. ; Fu Y.-Q. ; Li R.-R. ; Yao J. ; Jiang S.-T. Appl. Surf. Sci. 2016, 369, 1.
10 Ahmed G. ; Hanif M. ; Zhao L.-Z. ; Hussain M. ; Khan J. ; Liu Z.-W. J. Mol. Catal. A: Chem. 2016, 425, 310.
11 Kavitha M.-K. ; Pillai S.-C. ; Gopinath P. ; John H. Chem. Eng. J. 2015, 3, 1194.
12 Wang L. ; Liu S. ; Wang Z. ; Zhou Y. ; Qin Y. ; Wang Z.-L. ACS Nano 2016, 10, 2636.
13 Stojadinovi? S. ; Vasili? R. ; Radi? N. ; Tadi? N. ; Stefanov P. ; Grbi? B. Appl. Surf. Sci. 2016, 377, 37.
14 Yang X. ; Roling L.-T. ; Vara M. ; Elnabawy A.-O. ; Zhao M. ; Hood Z.-D. ; Bao S.-X. ; Mavrikakis M. ; Xia Y.-A. Nano Lett. 2016, 16, 6644.
15 Wang W. ; Wang D. ; Liu X. ; Peng Q. ; Li Y. Chem. Commun. 2013, 49, 2903.
16 Nosheen F. ; Zhang Z.-C. ; Zhuang J. ; Wang X. Nanoscale 2013, 5, 3660.
17 Hussain M. ; Sun H. ; Karim S. ; Nisar A. ; Khan M. ; ul Haq A. ; Iqbal M. ; Ahmad M. J. Nanopart. Res. 2016, 18
18 Zeng H.-B. ; Liu P.-S. ; Cai W.-P. ; Yang S.-K. ; Xu X.-X. J. Phys. Chem. C 2008, 112, 19620.
19 Xie Y.-L. ; Xiao N. ; Yu C. ; Qiu J.-S. Catal. Commun. 2012, 28, 69.
20 Zhang P. ; Li B. ; Zhao Z. ; Yu C. ; Hu C. ; Wu S. ; Qiu J. ACS Appl. Mater Interfaces 2014, 6, 8560.
21 Arcanjo M.-R.-A. ; Silva I.-J. ; Rodriguez-Castellon E. ; Infantes-Molina A. ; Vieira R.-S. Catal. Today 2017, 279, 317.
22 Qian K. ; Luo L.-F. ; Jiang Z.-Q. ; Huang W.-X. Catal. Today 2017, 280, 253.
23 Chen D.-M. ; Wang Z.-H. ; Ren T.-Z. ; Ding H. ; Yao W.-Q. ; Zong R.-L. ; Zhu Y.-F. J. Phys. Chem. C 2014, 118, 15300.
24 Liu G.-M. ; Li X.-Z. ; Zhao J.-C. ; Horikoshi S. ; Hidaka H. J. Mol. Catal. A: Chem. 2000, 153, 221.
25 Tang J. ; Zhou B. ; Zhang S.-L. ; Wang Z. ; Xiong L. ; Li P. Sci. China Chem 2015, 58, 858.
26 Bai X.-J. ; Sun C.-P. ; Liu D. ; Luo X.-H. ; Li D. ; Wang J. ; Wang N.-X. ; Chang X.-J. ; Zong R.-L. ; Zhu Y.-F. Appl. Catal. B-Environ. 2017, 204, 11.
[1] Zhijuan HUANG,Zhinong YU,Yan LI,Jizheng WANG. ZnO Ultraviolet Photodetector Modified with Graphdiyne[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1088-1094.
[2] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[3] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[4] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[5] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[6] Yun-Long ZHANG,Yu-Zhi ZHANG,Li-Xin SONG,Yun-Feng GUO,Ling-Nan WU,Tao ZHANG. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2284-2292.
[7] Hao ZHANG,Xin-Gang LI,Jin-Meng CAI,Ya-Ting WANG,Mo-Qing WU,Tong DING,Ming MENG,Ye TIAN. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[8] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[9] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[10] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[11] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2069-2076.
[12] Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2077-2083.
[13] Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1758-1764.
[14] Kai-Jian ZHU,Wen-Qing YAO,Yong-Fa ZHU. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1519-1526.
[15] Yan-Juan WANG,Jia-Yao SUN,Rui-Jiang FENG,Jian ZHANG. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 728-736.