Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (10): 1944-1959    DOI: 10.3866/PKU.WHXB201705177
REVIEW     
Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors
Cui-Ping YU1,Yan WANG1,*(),Jie-Wu CUI1,Jia-Qin LIU2,3,Yu-Cheng WU1,2,*()
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
2 Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, P. R. China
3 Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P. R. China
Download: HTML     PDF(3608KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Anodized TiO2 nanotube arrays are one of the key electrode materials for supercapacitors, because of their easy synthesis, controllable morphology, and environmentally friendly characteristics. In this paper, the multi-modification of TiO2 nanotube arrays is presented. These modifications include the introduction of oxygen vacancies, and the modification of the arrays by metals, nonmetals, metal oxides and conductive polymers; these modifications provide scope to increase the electrochemical performance of the TiO2 nanotube arrays. Recent advances of anodized TiO2 nanotube arrays in supercapacitors are systematically summarized, providing guidance for the practical application of these arrays.



Key wordsAnodization      TiO2 nanotube arrays      Multi-modification      Supercapacitor      Electrochemical performance     
Received: 03 April 2017      Published: 17 May 2017
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(51302060);the National Natural Science Foundation of China(51402081);the National Natural Science Foundation of China(51402078);Specialized Research Fund for the Doctoral Program of Higher Education, China(20130111120019);Natural Science Foundation of Anhui Province, China(1708085ME100);Fundamental Research Funds for the Central Universities, China(JZ2017HGTB0203);Fundamental Research Funds for the Central Universities, China(JZ2016HGTB0719)
Corresponding Authors: Yan WANG,Yu-Cheng WU     E-mail: stone@hfut.edu.cn;ycwu@hfut.edu.cn
Cite this article:

Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705177     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I10/1944

Fig 1 Schematic diagram of the formation of TiO2 nanotube array 8.
Fig 2 (a) Morphology and (b) electrochemical properties of hydrogenated TiO2 nanotube arrays 11.
Fig 3 (a) Morphologies and (b) electrochemical properties of electrochemical hydrogenated TiO2 nanotube arrays 14.
Fig 4 (a) Schematic diagram for the fabrication process and (b) electrochemical properties of blue and black TiO2 nanotube arrays 16.
Fig 5 (a) Morphology and (b) electrochemical property of hydrogenated TiO2 nanotube arrays with hydrogen plasma treatment 21.
Fig 6 (a–b) Mott-Schottky plots of pristine TNAs and rTNAs electrodes collected at a frequency of 10 kHz, (c) morphologies and (d) electrochemical properties of reduced TiO2 nanotube arrays 22.
Fig 7 (a) Morphologies of spaced TiO2 nanotubes arrays decorated with different layers of TiO2 nanoparticles (2, 4, 6 and 8 times) and their (b) electrochemical properties at different nitriding temperature 31.
Fig 8 (a) Morphology and (b) electrochemical properties of RGO decorated TiO2 nanotube arrays 36.
Fig 9 (a) Morphologies and (b) electrochemical properties of modified TiO2 nanotube arrays 42.
Fig 10 (a) Molecular model of MnOx deposited reduced TiO2 nanotube arrays electrode and (b) electrochemical properties 20.
Fig 11 (a) Schematic illustration of synthesis process and (b) morphologies of MnO2 deposited TiO2 nanotube arrays 54.
Fig 12 (a) Morphologies and (b) electrochemical properties of Co3O4 decorated TiO2 nanotube arrays 42.
Fig 13 (a) Morphologies and (b) electrochemical properties of Ni-Co oxides nanowires decorated on TiO2 nanotube arrays 59.
Fig 14 TEM image and EDX elemental mapping of NiCo2O4/modified TiO2 nanotube arrays 61. The insets present the corresponding EDX elemental distribution.
Fig 15 (a) Schematic representation and (b) electrochemical properties of BiFeO3 nanoparticles decorated TiO2 nanotube arrays 62.
Fig 16 (a) Morphology of nanotube arrays obtained from Ti18V, (b) electrochemical properties 65.
Fig 17 Morphologies of nanotube arrays prepared from Ti-Mn alloys (a) TiO2, (b) TiO2-Mn (3%), (c) TiO2-Mn (7%), (d) TiO2-Mn (10%) 67.
Fig 18 (a) Schematic illustration of NixCo2x(OH)6x/TiN nanotube arrays preparation, (b) electrochemical properties 71.
Fig 19 (a) Morphology of the CoS depositd on TiO2 nanotube arrays, (b) electrochemical properties at different electrolytes 77.
Fig 20 (a) (b) Electrochemical property and (c) application of Co0.12Ni1.88S2@Co8S9 nanoparticles decorated TiO2 nanotube arrays.
Fig 21 (a) Fabrication process of MoNx/TiN nanotube arrays, (b) electrochemical properties81.
Fig 22 (a) Morphology and (b) electrochemical property of PTh-NFs in TiO2 nanotube arrays 82.
1 Wu L. ; Hao L. ; Pang B. ; Wang G. ; Zhang Y. ; Li X. J. Mater. Chem. A 2017, 5, 4629.
2 Mai L. Q. ; Yang F. ; Zhao Y. L. ; Xu X. ; Xu L. ; Luo Y. Z. Nat. Commun. 2011, 2, 381.
3 Li B. ; Dai F. ; Xiao Q. ; Yang L. ; Shen J. ; Zhang C. ; Cai M. Energy Environ. Sci. 2016, 9, 102.
4 Zhu J. ; Childress A. S. ; Karakaya M. ; Dandeliya S. ; Srivastava A. ; Lin Y. ; Rao A. M. ; Podila R. Adv. Mater. 2016, 28, 7185.
5 Wang, Y. Controllable Synthesis of TiO2 Nanotube Arrays and TheirGas Sensing Properties. Ph. D. Dissertation, Hefei University ofTechnology, Hefei, 2012.
5 王岩. TiO2纳米管阵列的可控制备及气敏性能研究[D.合肥:合肥工业大学, 2012. ]
6 Yuan, B. Controllable Preparation and Modification of TiO2 Nanotube Arrays. M. S. Dissertation, Hefei University ofTechnology, Hefei, 2013.
6 袁宝. TiO2纳米管阵列可控制备及其改性研究[D.合肥:合肥工业大学, 2013. ]
7 Bian, H. D. Homogenerous Ag Nanoparticles Decorated TiO2 Nanotube Arrays and Their Photoelectrochemical Properties. M. S.Dissertation, Hefei University of Technology, Hefei, 2013.
7 卞海东. Ag纳米颗粒负载TiO2纳米管阵列及其光电性能[D.合肥:合肥工业大学, 2013. ]
8 Mor G. K. ; Varghese O. K. ; Paulose M. ; Shankar K. ; Grimes C. A. Sol. Energy Mater. Sol. Cells 2006, 90, 2011.
9 Veal B. W. ; Kim S. K. ; Zapol P. ; Iddir H. ; Baldo P. M. ; Eastman J. A. Nat. Commun. 2016, 7, 11892.
10 Kelly L. L. ; Racke D. A. ; Schulz P. ; Li H. ; Winget P. ; Kim H. ; Ndione P. ; Sigdel A. K. ; Bredas J. L. ; Berry J. J. ; Graham S. ; Monti O. L. A. J. Phys.: Condens. Matter 2016, 28, 094007.
11 Lu X. ; Wang G. ; Zhai T. ; Yu M. ; Gan J. ; Tong Y. ; Li Y. Nano Lett. 2012, 12, 1690.
12 Zhu S. ; Zhang P. ; Chang L. ; Zhong Y. ; Wang K. ; Shao H. ; Wang J. ; Zhang J. ; Cao C. N. Phys. Chem. Chem. Phys. 2016, 18, 8529.
13 Li Z. ; Ding Y. ; Kang W. ; Li C. ; Lin D. ; Wang X. ; Chen Z. ; Wu M. ; Pan D. Electrochim. Acta 2014, 161, 40.
14 Wu H. ; Li D. ; Zhu; X. ; Yang C. ; Liu D. ; Chen X. ; Song Y. ; Lu L. Electrochim. Acta 2014, 116, 129.
15 Zhou H. ; Zhang Y. J. Phys. Chem. C 2014, 118, 5626.
16 Kim C. ; Kim S. ; Hong S. P. ; Lee J. ; Yoon J. Phys. Chem. Chem. Phys. 2016, 18, 14370.
17 Li Z. Q. ; Hu R. ; Guo J. ; Ru L, Y ; Wang H. H. Mater. Sci. Tech. 2012, 20, 80.
17 李泽全; 胡蓉; 郭晶; 茹黎月; 王海华. 材料科学与工艺, 2012, 20, 80.
18 Salari M. ; Konstantinov K. ; Liu H. K. J. Mater. Chem. 2011, 21, 5128.
19 Salari M. ; Aboutalebi S. H. ; Chidembo A. T. ; Konstantinov K. ; Liu H. K. J. Alloy. Compd. 2014, 586, 197.
20 Pei Z. ; Zhu M. ; Huang Y. ; Huang Y. ; Xue Q. ; Geng H. ; Zhi C. Nano Energy 2016, 20, 254.
21 Wu H. ; Xu C. ; Xu J. ; Lu L. ; Fan Z. ; Chen X. ; Song Y. ; Li D. Nanotechnology 2013, 24, 455401.
22 Zhang J. ; Wang Y. ; Wu J. ; Shu X. ; Yu C. ; Cui J. ; Qin Y. ; Zhang Y. ; Ajayan P. M. ; Wu Y. Chem. Eng. J. 2017, 313, 1071.
23 Liu F. L. ; Xiao P. ; Zhou M. ; Hu Y.Q. ; He H. C. ; Zhang Y. H. Chin. J. Inorg. Chem. 2012, 28, 861.
23 刘非拉; 肖鹏; 周明; 胡业琴; 何辉超; 张云怀. 无机化学学报, 2012, 28, 861.
24 Mohamed A. E. R. ; Rohani S. Energy Environ. Sci. 2011, 4, 1065.
25 Sun L. ; Li J. ; Wang C. L. ; Li S. F. ; Chen H. B. ; Lin C. J. Sol. Energy Mater. Sol. Cells 2009, 93, 1875.
26 Zhong W. ; Sang S. ; Liu Y. ; Wu Q. ; Liu K. ; Liu H. J. Power Sources 2015, 294, 216.
27 Gao B. ; Huang C. ; Li Q. ; Wu K. ; Zhang X. ; Huo K. Materials China 2016, 35, 552.
27 高标; 黄超; 李庆伟; 吴凯; 张旭明; 霍开富. 中国材料进展, 2016, 35, 552.
28 Dong S. ; Chen X. ; Gu L. ; Zhou X. ; Li L. ; Liu Z. ; Han P. ; Xu H. ; Yao J. ; Wang H. ; Zhang X. ; Shang C. ; Cui G. ; Chen L. Energy Environ. Sci. 2011, 4, 3502.
29 Xie Y. ; Fang X. Electrochim. Acta 2014, 120, 273.
30 Ozkan S. ; Nguyen N. T. ; Hwang I. ; Mazare A. ; Schmuki P. Small 2017, 1603821
31 Nguyen N. T. ; Ozkan S. ; Hwang I. ; Zhou X. ; Schmuki P. J. Mater. Chem. A 2017, 5, 1895.
32 Jana M. ; Saha S. ; Samanta P. ; Murmu N. C. ; Kim N. H. ; Kuila T. ; Lee J. H. J. Mater. Chem. A 2016, 4, 2188.
33 Zhao W. ; Wang S. ; Wang C. ; Wu S. ; Xu W. ; Zou M. ; Ouyang A. ; Cao A. ; Li Y. Nanoscale 2016, 8, 626.
34 Zhu C. ; Liu T. ; Qian F. ; Han T. Y. J. ; Duoss E. B. ; Kuntz J. D. ; Spadaccini C. M. ; Worsley M. A. ; Li Y. Nano Lett. 2016, 16, 3448.
35 Gao Z. ; Cui Z. ; Zhu S. ; Liang Y. ; Li Z. ; Yang X. J. Power Sources 2015, 283, 397.
36 Gobal F. ; Faraji M. Ionics 2015, 21, 525.
37 Gao Biao. ; Li X. ; Ma Y. ; Cao Y. ; Hu Z. ; Zhang X. ; Fu J. ; Huo K. ; Chu P. K. Thin Solid Films 2015, 584, 61.
38 Di J. ; Fu X. ; Zheng H. ; Jia Y. J. Nanopart. Res. 2015, 17
39 Zheng L. ; Wang C. ; Dong Y. ; Bian H. ; Hung T. F. ; Lu J. ; Li Y. Appl. Surf. Sci. 2016, 362, 399.
40 Song Y. Y. ; Li Y. H. ; Guo J. ; Gao Z. D. ; Li Y. J. Mater. Chem. A 2015, 3, 23754.
41 Gao Z. D. ; Zhu X. ; Li Y. H. ; Zhou X. ; Song Y. Y. ; Schmuki P. Chem. Commun. 2015, 51, 7614.
42 Yu C. ; Wang Y. ; Zheng H. ; Zhang J. ; Yang W. ; Shu X. ; Qin Y. ; Cui J. ; Zhang Y. ; Wu Y.J. Solid State Electrochem. 2017, 21, 1069.
43 Xie Y. ; Zhou L. ; Huang C. ; Huang H. ; Lu J. Electrochim. Acta 2008, 53, 3643.
44 Zhou H. ; Zhang Y. J. Power Sources 2014, 272, 866.
45 Huang Y. G. ; Zhang X. H. ; Chen X. B. ; Wang H. Q. ; Chen J. R. ; Zhong X. X. ; Li Q. Y. Int. J. Hydrogen Energy 2015, 40, 14331.
46 Liu X. Y. ; Gao Y. Q. ; Yang G. W. Nanoscale 2016, 8, 4227.
47 Liu M. ; Wang X. ; Zhu D. ; Li L. ; Duan H. ; Xu Z. ; Wang Z. ; Gan L. Chem. Eng. J. 2017, 308, 240.
48 Qin Y. ; Zhang J. ; Wang Y. ; Shu X. ; Yu C. ; Cui J. ; Zheng H. ; Zhang Y. ; Wu Y. RSC Adv. 2016, 6, 47669.
49 Zhou X. ; Chen Q. ; Wang A. ; Xu J. ; Wu S. ; Shen J. ACS Appl. Mater. Interfaces 2016, 8, 3776.
50 Gao Z. ; Yang W. ; Wang J. ; Song N. ; Li X. Nano Energy 2015, 13, 306.
51 Yu D. ; Wu B. ; Ge L. ; Wu L. ; Wang H. ; Xu T. J. Mater. Chem. A 2016, 4, 10878.
52 Singh A. K. ; Sarkar D. ; Karmakar K. ; Mandal K. ; Khan G. G. ACS Appl. Mater. Interfaces 2016, 8, 20786.
53 Zhou H. ; Zou X. ; Zhang Y. Electrochim. Acta 2016, 192, 259.
54 Wang Z. ; Wang Y. ; Shu X. ; Yu C. ; Zhang J. ; Cui J. ; Qin Y. ; Zheng H. ; Zhang Y. ; Wu Y. RSC Adv. 2016, 6, 63642.
55 Zhang J. ; Wang Y. ; Qin Y. ; Yu C. ; Cui L. ; Shu X. ; Cui J. ; Zheng H. ; Zhang Y. ; Wu Y. J. Solid State Chem. 2017, 246, 269.
56 Xu J. ; Liu J. Q. ; Li J. W. ; Wang Y. ; Lü J. ; Wu Y. C. Acta Phys. -Chim. Sin. 2016, 32, 2545.
56 徐娟; 刘家琴; 李靖巍; 王岩; 吕珺; 吴玉程. 物理化学学报, 2016, 32, 2545.
57 Guan D. ; Gao X. ; Li J. ; Yuan C. Appl. Surf. Sci. 2014, 300, 165.
58 Cui L. H. ; Wang Y. ; Shu X. ; Zhang J. F. ; Yu C. P. ; Cui J. W. ; Zheng H. M. ; Zhang Y. ; Wu Y. C. RSC Adv. 2016, 6, 12185.
59 Yang F. ; Yao J. ; Liu F. ; He H. ; Zhou M. ; Xiao P. ; Zhang Y. J. Mater. Chem. A 2013, 1, 594.
60 Wu H. B. ; Pang H. ; Lou X. W. Energy Environ. Sci. 2013, 6, 3619.
61 Yu C. ; Wang Y. ; Zhang J. ; Shu X. ; Cui J. ; Qin Y. ; Zheng H. ; Liu J. ; Zhang Y. ; Wu Y. New J. Chem. 2016, 40, 6881.
62 Sarkar A. ; Singh A. K. ; Sarkar D. ; Khan G. G. ; Kalyan K. ACS Sustainable Chem. Eng. 2015, 3, 2254.
63 Ghicov A. ; Aldabergenova S. ; Tsuchyia H. ; Schmuki P. Angew. Chem. Int. Ed. 2006, 45, 6993.
64 Kim J. H. ; Zhu K. ; Yan Y. ; Perkins C. L. ; Frank A. J. Nano Lett. 2010, 10, 4099.
65 Yang Y. ; Kim D. ; Yang M. ; Schmuki P. Chem. Commun. 2011, 47, 7746.
66 Ning X. ; Wang X. ; Yu X. ; Zhao J. ; Wang M. ; Li H. ; Yang Y. Sci. Rep. 2016, 6, 22634.
67 Ning X. ; Wang X. ; Yu X. ; Li J. ; Zhao J. J. Alloy. Compd. 2016, 658, 177.
68 Nguyen T. ; Boudard M. ; Carmezim M. J. ; Montemor M. F. Sci. Rep. 2017, 7, 39980.
69 Ye L. ; Zhao L. ; Zhang H. ; Zan P. ; Gen S. ; Shi W. ; Han B. ; Sun H. ; Yang X. ; Xu T. J. Mater. Chem. A 2017, 5, 1603.
70 Xiong G. ; He P. ; Wang D. ; Zhang Q. ; Chen T. ; Fisher T. S. Adv. Funct. Mater. 2016, 26, 5460.
71 Shang C. ; Dong S. ; Wang S. ; Xiao D. ; Han P. ; Wang X. ; Gu L. ; Cui G. ACS Nano 2013, 7, 5430.
72 Lu F. ; Zhou M. ; Li W. ; Weng Q. ; Li C. ; Xue Y. ; Jiang X. ; Zeng X. ; Bando Y. ; Golberg D. Nano Energy 2016, 26, 313.
73 Yang J. ; Yu C. ; Fan X. ; Liang S. ; Li S. ; Huang H. ; Ling Z. ; Hao C. ; Qiu J. Energy Environ. Sci. 2016, 9, 1299.
74 Kong W. ; Lu C. ; Zhang W. ; Pu J. ; Wang Z. J. Mater. Chem. A 2015, 3, 12452.
75 Hou L. ; Shi Y. ; Zhu S. ; Rehan M. ; Pang G. ; Zhang X. ; Yuan C. J. Mater. Chem. A 2017, 5, 133.
76 Yang X. ; Sun H. ; Zan P. ; Zhao L. ; Lian J. J. Mater. Chem. A 2016, 4, 18857.
77 Ray R. S. ; Sarma B. ; Jurovitzki A. L. ; Misra M. Chem. Eng. J. 2015, 260, 671.
78 Zhu C. ; Yang P. ; Chao D. ; Wang X. ; Zhang X. ; Chen S. ; Tay B.K. ; Huang H. ; Zhang H. ; Mai W. ; Fan H. J. Adv. Mater. 2015, 27, 4566.
79 Balogun M. S. ; Zeng Y. ; Qiu W. ; Luo Y. ; Onasanya A. ; Olaniyi T. K. ; Tong Y. J. Mater. Chem. A 2016, 4, 9844.
80 Wang S. ; Sun C. ; Shao Y. ; Wu Y. ; Zhang L. ; Hao X. Small 2017, 13, 1603330.
81 Xie Y. ; Tian F. Mater. Sci. Eng. B 2017, 215, 64.
82 Ambade R. B. ; Ambade S. B. ; Shrestha N. K. ; Salunkhe R. R. ; Lee W. ; Bagde S. S. ; Kim J. H. ; Stadler F. J. ; Yamauchi Y. ; Lee S. -H. J. Mater. Chem. A 2017, 5, 172.
83 Huang H. ; Gan M. ; Ma L. ; Yu L. ; Hu H. ; Yang F. ; Li Y. ; Ge C. J. Alloy. Compd. 2015, 630, 214.
84 Xie Y. ; Wang D. J. Alloy. Compd. 2016, 665, 323.
85 Peng X. ; Huo K. ; Fu J. ; Zhang X. ; Gao B. ; Chu P. K. Chem. Commun. 2013, 49, 10172.
86 Xie K. ; Li J. ; Lai Y. ; Zhang Z. ; Liu. Y. ; Zhang G. ; Huang H. Nanoscale 2011, 3, 2202.
87 Xie S. ; Gan M. ; Ma L. ; Li Z. ; Yan J. ; Yin H. ; Shen X. ; Xu F. ; Zheng J. ; Zhang J. ; Hu J. Electrochim. Acta 2014, 120, 408.
88 Ambade R. B. ; Ambade S. B. ; Shrestha N. K. ; Nah Y. C. ; Han S.H. ; Lee W. ; Lee S. H. Chem. Commun. 2013, 49, 2308.
[1] Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047.
[2] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[3] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[4] . Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 329-343.
[5] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[6] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2510-2516.
[7] Dao-Yan LI,Ji-Chen ZHANG,Zhi-Yong WANG,Xian-Bo JIN. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2245-2252.
[8] Ya-Yu HUANG,Qiu-Yan FANG,Jian-Zhang ZHOU,Dong-Ping ZHAN,Kang SHI,Zhong-Qun TIAN. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2042-2051.
[9] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[10] Xue-Qin LI,Lin CHANG,Shen-Long ZHAO,Chang-Long HAO,Chen-Guang LU,Yi-Hua ZHU,Zhi-Yong TANG. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 130-148.
[11] Yong LU,Qing ZHAO,Jing LIANG,Zhan-Liang TAO,Jun CHEN. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1593-1603.
[12] Li-Li CAI,Yue-Hua WEN,Jie CHENG,Gao-Ping CAO,Yu-Sheng YANG. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 969-974.
[13] Xiao ZHOU,Min-Qiang SUN,Geng-Chao WANG. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 975-982.
[14] Jian-Wen KOU,Zhao WANG,Li-Ying BAO,Yue-Feng SU,Yu HU,Lai CHEN,Shao-Yu XU,Fen CHEN,Ren-Jie CHEN,Feng-Chun SUN,Feng WU. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 717-722.
[15] Yong-Fang WANG,Song-Lin ZUO. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 481-492.