Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (10): 2022-2028    DOI: 10.3866/PKU.WHXB201705174
ARTICLE     
First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)
Shao-Zheng ZHANG1,Jia LIU2,Yan XIE2,Yin-Ji LU2,Lin LI1,Liang LÜ2,Jian-Hui YANG1,*(),Shi-Hao WEI3
1 College of Teacher Education, Quzhou University, Quzhou 324000, Zhejiang Province, P. R. China
2 College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, Zhejiang Province, P. R. China
3 Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang Province, P. R. China
Download: HTML     PDF(1568KB) Export: BibTeX | EndNote (RIS)      

Abstract  

MXene is a new group of electrocatalysts for two-dimensional hydrogen evolution reaction (HER). Its surfaces are often covered by hydrophilic O and OH mixed groups. To find the effect of the O and OH mixed groups on HER, we studied the HER activity for M2XO2-2x(OH)2x (M=Ti, V; X=C, N) by first-principle calculations. Results indicate that HER activity is closely related to OH-occupied coverage (x). For Ti2CO2-2x(OH)2x, excellent HER activity could be maintained when the OH-occupied coverage was not larger than 1/3. For Ti2NO2-2x(OH)2x, V2CO2-2x(OH)2x, and V2NO2-2x(OH)2x, high HER activity was obtained when OH-occupied coverage reached 4/9, 1/3, and 5/9, respectively. Next, we analyzed the charge-transfer density and found that the charges on the oxygen groups were strongly affected by the OH-occupied coverage. Finally, we revealed the variation of HER activity that oxidizability of O groups is weakened with increasing OH-occupied coverage. In this paper, we propose a new method to obtain the optimal HER activity for M2XO2-2x(OH)2x by adjusting the OH-occupied coverage of the surfaces, which is useful in industrial hydrogen production.



Key wordsTwo-dimensional material      MXene      First-principle method      Hydrogen evolution reaction      Adsorption     
Received: 07 April 2017      Published: 17 May 2017
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(51502154);the National Natural Science Foundation of China(21271116);the National Natural Science Foundation of China(21476127);the National Natural Science Foundation of China(u1607119);the Young Academic Leading Training Plan, Quzhou University, China(XNZQN201517)
Corresponding Authors: Jian-Hui YANG     E-mail: jianhuiyoung@gmail.com
Cite this article:

Shao-Zheng ZHANG,Jia LIU,Yan XIE,Yin-Ji LU,Lin LI,Liang LÜ,Jian-Hui YANG,Shi-Hao WEI. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N). Acta Phys. -Chim. Sin., 2017, 33(10): 2022-2028.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705174     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I10/2022

MXene 10 Lattice constant/nm
O OH
Ti2C 3.031 (Model-3) 3.069 (Model-3)
Ti2N 3.000 (Model-3) 3.068 (Model-3)
V2C 2.894 (Model-3) 3.004 (Model-3)
V2N 2.906 (Model-3) 3.051 (Model-3)
Table 1 Most stable adsorption configurations and corresponding lattice constants for M2XT2 (T = O, OH).
Fig 1 Structural configuration for M2XT2 (T = O, OH) and M2XO2-2x(OH)2x. (a) top view of (3 × 3) M2X; (b) side views of four possible structural configuration for (1 × 1) M2XT2 (T = O, OH); (c) top views of M2XO2-2x(OH)2x (1/9 ≤ x ≤ 8/9). A primary cell is given by red lines and three possible groups adsorption sites are labeled by a, b and c in (a). Adsorption sites for H atom on oxygen groups are labeled by A, B and C are label in (c). color online.
Fig 2 Adsorption free energy of hydrogen atom on the surface of M2XO2-2x(OH)2x.
Fig 3 Charge transferring density of oxygen layers for V2NO2-2x(OH)2x. OH occupied coverages are (a) 1/9, (b) 1/3, (c) 5/9 and 2/3, respectively. Oxygen atoms in O or OH groups are indicated by red balls. color online.
Fig 4 Average charge of oxygen groups on the surface of M2XO2-2x(OH)2x.
Fig 5 Projected density of states (PDOS) of O groups for V2NO2-2x(OH)2x. OH occupied coverages are (a) 0, (b) 1/3 and (c) 2/3, respectively. color online.
1 Shafiee S. ; Topal E. Energy Policy 2009, 37, 181.
2 Chu S. ; Majumdar A. Nature 2012, 488, 294.
3 Turner J. A. Science 2004, 305, 972.
4 Jin Z. H. ; Liu B. F. ; Liang J. H. ; Wang N. ; Zhang Q. X. ; Liu C. C. ; Zhao Y. ; Zhang X. D. Acta Phys. Sin. 2016, 65, 118801.
4 晋中华; 刘伯飞; 梁俊辉; 王宁; 张奇星; 刘彩池; 赵颖; 张晓丹. 物理学报, 2016, 65, 118801.
5 Yang J. ; Zhang Q. ; Chen L. ; Wang G. ; Chen X. Adv. Sci. 2016, 3, 1500314.
6 Hinnemann B. ; Moses P. G. ; Bonde J. ; J?rgensen K. P. ; Nielsen J.H. ; Horch S. ; Chorkendorff I. ; N?rskov J. K. J.Am. Chem. Soc. 2005, 127, 5308.
7 Walter M. G. ; Warren E. L. ; McKone J. R. ; Boettcher S. W. ; Mi Q. ; Santori E. A. ; Lewis N. S. Chem. Rev. 2010, 110, 6446.
8 Liu T. ; Ma X. ; Liu D. ; Hao S. ; Du G. ; Ma Y. ; Asiri A. M. ; Sun X. ; Chen L. ACS Catal. 2017, 7, 98.
9 Tang C. ; Gan L. ; Zhang R. ; Lu W. ; Jiang X. ; Asiri A. M. ; Sun X. ; Wang J. ; Chen L. Nano Lett. 2016, 16, 6617.
10 Chung D. Y. ; Park S. K. ; Chung Y. H. ; Yu S. H. ; Lim D.H. ; Jung N. ; Ham H. C. ; Park H. Y. ; Piao Y. ; Yoo S. J. ; Sung Y. E. Nanoscale 2014, 6, 2131.
11 Wu Z. ; Fang B. ; Wang Z. ; Wang C. ; Liu Z. ; Liu F. ; Wang W. ; Alfantazi A. ; Wang D. ; Wilkinson D. P. ACS Catal. 2013, 3, 2101.
12 Chen X. ; Gu Y. ; Tao G. ; Pei Y. ; Wang G. ; Cui N. J.Mater. Chem. A 2015, 3, 18898.
13 Tang H. ; Dou K. ; Kaun C. C. ; Kuang Q. ; Yang S. J.Mater. Chem. A 2014, 2, 360.
14 Barsoum M. W. Prog. Solid Solid State Chem. 2000, 28, 201.
15 Naguib M. ; Kurtoglu M. ; Presser V. ; Lu J. ; Niu J. ; Heon M. ; Hultman L. ; Gogotsi Y. ; Barsoum M. W. Adv. Mater. 2011, 23, 4248.
16 Naguib M. ; Come J. ; Dyatkin B. ; Presser V. ; Taberna P.-L. ; Simon P. ; Barsoum M. W. ; Gogotsi Y. Electrochem. Commun. 2012, 16, 61.
17 Yang J. H. ; Chen Y. X. ; Wu L. H. ; Wei S. H. Acta Phys. Sin. 2014, 63, 237301.
17 杨建辉; 陈言星; 吴丽慧; 韦世豪. 物理学报, 2014, 63, 237301.
18 Hu J. Q. ; Xie M. ; Chen J. L. ; Liu M. M. ; Chen Y. T. ; Wang S. ; Wang S. B. ; Li A. K. Acta Phys. Sin. 2017, 66, 57102.
18 胡洁琼; 谢明; 陈家林; 刘满门; 陈永泰; 王松; 王塞北; 李爱坤. 物理学报, 2017, 66, 57102.
19 Er D. ; Li J. ; Naguib M. ; Gogotsi Y. ; Shenoy V. B. ACS Appl. Mater. Inter. 2014, 6, 11173.
20 Lukatskaya M. R. ; Mashtalir O. ; Ren C. E. ; Dall'Agnese Y. ; Rozier P. ; Taberna P. L. ; Naguib M. ; Simon P. ; Barsoum M.W. ; Gogotsi Y. Science 2013, 341, 1502.
21 Xie Y. ; Naguib M. ; Mochalin V. N. ; Barsoum M. W. ; Gogotsi Y. ; Yu X. ; Nam K. W. ; Yang X. Q. ; Kolesnikov A.I. ; Kent P. R. C. J.Am. Chem. Soc. 2014, 136, 6385.
22 Tang Q. ; Zhou Z. ; Shen P. J.Am. Chem. Soc. 2012, 134, 16909.
23 Peng Q. ; Guo J. ; Zhang Q. ; Xiang J. ; Liu B. ; Zhou A. ; Liu R. ; Tian Y. J.Am. Chem. Soc. 2014, 136, 4113.
24 Guo J. ; Peng Q. ; Fu H. ; Zou G. ; Zhang Q. J.Phys. Chem. C 2015, 119, 20923.
25 Guo X. ; Zhang X. ; Zhao S. ; Huang Q. ; Xue J. Phys. Chem. Chem. Phys. 2016, 18, 228.
26 Guo J. ; Fu H. ; Zou G. ; Zhang Q. ; Zhang Z. ; Peng Q. J.Alloy. Compd. 2016, 684, 504.
27 Hu Q. ; Sun D. ; Wu Q. ; Wang H. ; Wang L. ; Liu B. ; Zhou A. ; He J. J.Phys. Chem. A 2013, 117, 14253.
28 Chen J. ; Chen K. ; Tong D. ; Huang Y. ; Zhang J. ; Xue J. ; Huang Q. ; Chen T. Chem. Commun. 2015, 51, 314.
29 Yu X. F. ; Li Y. C. ; Cheng J. B. ; Liu Z. B. ; Li Q. Z. ; Li W.Z. ; Yang X. ; Xiao B. ACS Appl. Mater. Inter. 2015, 7, 13707.
30 Yang J. ; Luo X. ; Zhang S. ; Chen L. Phys. Chem. Chem. Phys. 2016, 18, 12914.
31 Yang J. ; Zhou X. ; Luo X. ; Zhang S. ; Chen L. Appl. Phys. Lett. 2016, 109, 203109.
32 Wang R. N. ; Zheng X. H. ; Song L. L. ; Zeng Z. J.Chem. Phys. 2011, 135, 044703.
33 Wang R. N. ; Zheng X. H. ; Dai Z. X. ; Hao H. ; Song L. L. ; Zeng Z. Phys. Lett. A 2011, 375, 657.
34 Wang R. N. ; Zheng X. H. ; Lan J. ; Shi X. Q. ; Zeng Z. RSC Adv. 2014, 4, 9172.
35 Zhang H. W. ; Duan G. T. ; Liu G. Q. ; Li Y. ; Xu X. X. ; Dai Z. F. ; Wang J. J. ; Cai W. P. Nanoscale 2013, 5, 2460.
36 Berdiyorov G. R. Euro Phys. Lett. 2015, 111, 67002.
37 Lai S. ; Jeon J. ; Jang S. K. ; Xu J. ; Choi Y. J. ; Park J. H. ; Hwang E. ; Lee S. Nanoscale 2015, 7, 19390.
38 Hope M. A. ; Forse A. C. ; Griffith K. J. ; Lukatskaya M. R. ; Ghidiu M. ; Gogotsi Y. ; Grey C. P. Phys. Chem. Chem. Phys. 2016, 18, 5099.
39 Yang J. H. ; Zhang S. Z. ; Ji J. L. ; Wei S. H. Acta Phys. -Chim. Sin. 2015, 31, 369.
39 杨建辉; 张绍政; 计嘉琳; 韦世豪. 物理化学学报, 2015, 31, 369.
40 Seh Z. W. ; Fredrickson K. D. ; Anasori B. ; Kibsgaard J. ; Strickler A. L. ; Lukatskaya M. R. ; Gogotsi Y. ; Jaramillo T.F. ; Vojvodic A. ACS Energy Lett. 2016, 1, 589.
41 Ling C. ; Shi L. ; Ouyang Y. ; Chen Q. ; Wang J. Adv. Sci. 2016, 3, 1600180.
42 Khazaei M. ; Arai M. ; Sasaki T. ; Chung C. Y. ; Venkataramanan N. S. ; Estili M. ; Sakka Y. ; Kawazoe Y. Adv. Funct. Mater. 2013, 23, 2185.
43 Kresse G. ; Furthmüller J. Phys. Rev. B 1996, 54, 11169.
44 Kresse G. ; Furthmüller J. Comp. Mater. Sci. 1996, 6, 15.
45 Bl?chl P. E. Phys. Rev. B 1994, 50, 17953.
46 Kresse G. ; Joubert D. Phys. Rev. B 1999, 59, 1758.
47 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
48 Monkhorst H. J. ; Pack J. D. Phys. Rev. B 1976, 13, 5188.
49 Parsons R. Trans. Faraday Soc. 1958, 54, 1053.
50 Greeley J ; Stephens I. E. L. ; Bondarenko A. S. ; Johansson T.P. ; Hansen H. A. ; Jaramillo T. F. ; Rossmeisl J ; Chorkendorff I ; N?rskov J. K. Nat. Chem. 2009, 1, 552.
51 Greeley J. ; Jaramillo T. F. ; Bonde J. ; Chorkendorff I. ; Norskov J. K. Nat. Mater. 2006, 5, 909.
[1] Xi CHEN,Shengli ZHANG. Modulation of Molecular Sensing Properties of Graphdiyne Based on 3d Impurities[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1061-1073.
[2] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[3] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[4] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[5] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[6] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[7] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[8] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[9] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[10] Chong-Yi LING,Jin-Lan WANG. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 869-885.
[11] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[12] Meng-Qi ZENG,Tao ZHANG,Li-Fang TAN,Lei FU. Liquid Metal Catalyst: Philosopher's Stone of Two-Dimensional Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 464-475.
[13] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[14] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.
[15] Tao-Na ZHANG,Xue-Wen XU,Liang DONG,Zhao-Yi TAN,Chun-Li LIU. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2013-2021.