Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (10): 1989-1997    DOI: 10.3866/PKU.WHXB201705175
UV Absorption and Resonance Raman Spectra of 2,4-Dithiouracil
JIN Ying-Chun, ZHENG Xu-Ming
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
Download:   PDF(2107KB) Export: BibTeX | EndNote (RIS)      


2,4-Dithiouracil is potentially an important photosensitizer for use in photodynamic therapy. Its photophysics when populated in the lowest excited state has been studied extensively. However, its higher light absorbing excited states and the corresponding reaction dynamics have not been investigated sufficiently. Herein, the resonance Raman spectroscopy and density functional theory were adopted to clarify the electronic transitions associated with the UV absorptions in the far-UV region and the short-time structural dynamics corresponding to the higher light absorbing excited states. The UV absorption spectrum in acetonitrile was deconvoluted into four bands:the moderate intense absorption band at 358 nm (f=0.0336) (A band), the intense broad absorption bands at 338 nm (f=0.1491), 301 nm (f=0.1795), and 278 nm (f=0.3532) (B, C, and D bands) respectively, on the basis of the relationship between the resonance Raman intensities and the oscillator strength f. The result was consistent with the predictions made using the time-dependent density functional theory calculations and the resonance Raman intensity patterns. Thus, the four bands resulted from the deconvolution are assigned as the S0S2, S0S6, S0S7 and S0S8 transitions, respectively. The resonance Raman spectra of the corresponding B, C, and D bands are assigned and the qualitative short-time structural dynamics are obtained. The major character in the short-time structural dynamics of 2,4-dithiouracil in the S8 excited state is that a non-adiabatic process via S8(ππ*)/S(*) curve-crossing, accompanied with ultrafast structural distortion, takes place in or near the Franck-Condon region, while the major character in the short-time structural dynamics in the S7 and S6 excited state appears in the multidimensional reaction coordinates, which are mostly along the C5C6/C2S8/C4S10/N2C3 bond lengths + C4N3H9/N1C2N3/C2N1C6/C6N1H7/C5C6H12 bond angles for the S7 excited state and the C5C6/N3C2/C4S10/C2S8 bond lengths + C6N1H7/C5C6H12/C5C6N1/C5C6H12/C2N1C6/N1C2N3/C4N3H9/N1C2N3 bond angles for the S6 excited state.

Key words2,4-Dithiouracil      Excited state structural dynamics      UV absorption spectrum      Resonance Raman spectrum      Density functional calculation     
Received: 11 April 2017      Published: 17 May 2017

The project was supported by the National Natural Science Foundation of China (21473163) and National Key Basic Research Program of China (973) (2013CB834607).

Corresponding Authors: ZHENG Xu-Ming     E-mail:
Cite this article:

JIN Ying-Chun, ZHENG Xu-Ming. UV Absorption and Resonance Raman Spectra of 2,4-Dithiouracil. Acta Phys. -Chim. Sin., 2017, 33(10): 1989-1997.

URL:     OR

(1) Crespo-Hernández, C. E.; Cohen, B.; Hare, P. M.; Kohler, B. Chem. Rev. 2004, 104 (4), 1977. doi: 10.1021/cr0206770
(2) Crespo-Hernández, C. E.; Cohen, B.; B. Kohler. Nature. 2005, 436(7054), 1141. doi:10.1038/nature03933
(3) Middleton, C. T.; De La Harpe, K.; Su, C.; Law, Y. K.; Crespo-Hernández, C. E.; B. Kohler. Ann. Rev. Phys. Chem. 2009, 60, 217. doi: 10.1146/annurev.physchem.59.032607.093719
(4) Buchvarov, I.; Wang, Q.; Raytchev, M.; Trifonov, A.; Fiebig, T. Proc. Nat. Acad. Sci. 2007, 104 (12), 4794. doi: 10.1073/pnas.0606757104
(5) Markovitsi, D.; Onidas, D.; Gustavsson, T.; Talbot, F.; Lazzarotto, E. J. Am. Chem. Soc. 2005, 127 (49), 17130. doi: 10.1021/ja054955z
(6) Kuramochi, H.; Kobayashi, T.; Suzuki, T.; Ichimura, T. J. Phys. Chem. A 2010, 114 (26), 8782-8789. doi: 10.1021/jp102067t
(7) Pollum, M.; Crespo-Hernández, C. E.; J. Phys. Chem. 2014, 140, 07110. doi: 10.1063/1.4866447
(8) Pollum, M.; Jockusch, S.; Crespo-Hernández, C. E. J. Am. Chem. Soc. 2014, 136 (52), 17930. doi: 10.1021/ja510611j
(9) Taras-Go?lińska, K.; Burdziński, G.; Wenska, G. J. Photochem. Photobiol. A 2014, 275, 89. doi: 10.1016/j.jphotochem.2013.11.003
(10) Harada, Y.; Suzuki, T.; Ichimura, T.; Xu, Y. J. Phys. Chem. B 2007, 111 (19), 5518. doi: 10.1021/jp0678094
(11) Harada, Y.; Okabe, C.; Kobayashi, T.; Suzuki, T.; Ichimura, T.; Nishi, N.; Xu, Y. Z. J. Phys. Chem. Lett. 2009, 1 (2), 480. doi: 10.1021/jz900276x
(12) Reichardt, C.; Crespo-Hernández, C. E. J. Phys. Chem. Lett. 2010, 1(15), 2239. doi:10.1021/jz100729w
(13) Reichardt, C.; Crespo-Hernández, C. E. Chem. Commun. 2010, 46(32), 5963. doi: 10.1039/C0CC01181A
(14) Zhang, Y.; Zhu, X.; Smith, J.; Haygood, M.; Gao, R. J. Phys. Chem. B 2011, 115 (8), 1889. doi:10.1021/jp109590t
(15) Reichardt, C.; Guo, C.; Crespo-Hernández, C. E; J. Phys. Chem. B 2011, 115 (12), 3263-3270. doi: 10.1021/jp112018u
(16) Martínez-Fernández, L.; González, L.; Corral, I. Chem. Commun. 2012, 48 (15), 2134. doi: 10.1039/C2CC15775F
(17) Cui, G.; Fang, W. J. Chem. Phys. 2013, 138 (4), 044315. doi: 10.1063/1.4776261
(18) Pollum, M, ;Martínez-Fernández, L.; Crespo-Hernández, C. E. Photoinduced Phenomena in Nucleic Acid I; Springer: NY, US, 1970; p 33. doi: 10.1007/128_2014_554
(19) Gobbo, J. P.; Borin, A. C.; Serrano-Andrés, L. J. Phys. Chem. B. 2011, 115 (19), 6243. doi: 10.1021/jp200297z
(20) Kobayashi, T.; Kuramochi, H.; Harada, Y.; Suzuki, T.; Ichimura T. J. Phys. Chem. A 2009, 113 (44), 12088. doi: 10.1021/jp905433s
(21) Kobayashi, T.; Harada, Y.; Suzuki, T.; Ichimura, T. J. Phys. Chem. A.2008, 112 (51), 13308. doi: 10.1021/jp803096j
(22) Jiang, J.; Zhang, T. S.; Xue, J. D.; Zheng, X. M. J. Chem. Phys. 2015, 143 (17), 11B605_1. doi: 10.1063/1.4935047
(23) Xie, B. B.; Wang, Q.; Guo, W. W.; Cui, G. L. Phys. Chem. Chem. Phys. 2017, 19 (11), 7689. doi: 10.1039/C7CP00478H
(24) Li, M. J.; Liu, M. X.; Zheng, X. J. Acta Phys.-Chim. Sin. 2013, 29(5), 903. [李明娟, 刘明霞, 郑旭明. 物理化学学报, 2013, 29 (5), 903.] doi:10.3866/PKU.WHXB201302272
(25) Frisch, M. J.; Treucks, G. W.; Schlegel, H. B.; et al. Gauss 09[M];Gaussian Inc.: Wallingford, CT, 2009.
(26) Jamróz, M. H. Spectrochim. Acta A 2013, 114, 220. doi: 10.1016/j.saa.2013.05.096
(27) Dennington, R.; Keith, T.; Millam, J. GaussView, version 5.Semichem Inc.: Shawnee Mission, KS, 2009.
(28) Galica, G. E.; Johnson, B. R.; Kinsey, J. L.; Hale, M. O. J. Phys. Chem. 1991, 95, 7994. doi:10.1021/j100174a003
(29) Phillips, D. L.; Myers, A. B. J. Chem. Phys. 1991, 95, 226. doi: 10.1063/1.461479
(30) Biswas, N.; Umapathy, S. J. Phys. 1997, 48 (4), 937. doi: 10.1007/BF02845597
(31) Tang, J.; Albrecht, A. C. J. Chem. Phys. 1968, 49 (3), 1144. doi: 10.1063/1.1670202
(32) Tang, J, Albrecht, A. C. Raman Spectrosc. 1970, 33.doi: 10.1007/978-1-4684-3027-1_2
(33) Li, M. J.; Liu, M. X.; Zhao, Y. Y.; Pei, K. M.; Wang, H. G. J. Phys Chem. B 2013, 117 (39), 11660. doi: 10.1021/jp403798d
(34) Fang, W. X.; Zheng, X. M.; Wang, H. G.; Zhao, Y. Y.; Guang, X.G.; Phillips, D. L.; Chen, X. B.; Fang, W. H. J. Phys. Chem. 2008, 133, 134507. doi: 10.1021/jp510396y
(35) Yang, Y.; Pan, S.; Xue, J. D.; Zheng, X. D.; Phillips, D. L.; Fang, W.H. J. Raman Spectrosc. 2014, 45 (1), 105. doi: 10.1002/jrs.4420
(36) Liu, M X.; Xie, B. B.; Li, M. J.; Zhao, Y. Y.; Pei, K. M.; Wang, H. G.; Zheng, X. M. J. Raman Spectrosc. 2013, 44 (3), 440. doi: 10.1002/jrs.4213

[1] LI Dan, XUE Jia-Dan, ZHENG Xu-Ming. Excited State Structural Dynamics of A-Band of 4-Nitroimidazole[J]. Acta Phys. -Chim. Sin., 2014, 30(12): 2216-2223.
[2] CAO Guo-Jin, ZHENG Wei-Jun. Structures, Stabilities and Physicochemical Properties of Nucleobase Tautomers[J]. Acta Phys. -Chim. Sin., 2013, 29(10): 2135-2147.
[3] LI Ming-Juan, LIU Ming-Xia, ZHENG Xu-Ming. A-Band Structural Dynamics of 1-Methylthymine[J]. Acta Phys. -Chim. Sin., 2013, 29(05): 903-910.
[4] GAO Si-Min, WANG Hong-Yan, LIN Yue-Xia, LI Ru-Hu. Surface-Enhanced Raman Spectra of Aflatoxin B1 Adsorbed on Silver Clusters[J]. Acta Phys. -Chim. Sin., 2012, 28(09): 2044-2050.
[5] XU Zong-Ping, ZHAO Yan-Ying, WANG Hui-Gang, ZHENG Xu-Ming. Resonance Raman Spectroscopy and Density Functional Theory Investigations on the Excited State Structural Dynamics of N-Methylpyrrole-2-carboxaldehyde and Its Solvent Effect[J]. Acta Phys. -Chim. Sin., 2012, 28(01): 65-72.
[6] LIU Chong, DU Rui, ZHAO Yan-Ying, WANG Hui-Gang, ZHENG Xu-Ming. Resonance Raman Spectroscopy of the Excited State Structural Dynamics of 6-N,N-Dimethyladenine[J]. Acta Phys. -Chim. Sin., 2011, 27(01): 17-24.
[7] JIANG De-En. Understanding and Predicting Thiolated Gold Nanoclusters from First Principles[J]. Acta Phys. -Chim. Sin., 2010, 26(04): 999-1016.
[8] CHEN Jingguang G, QI Sui-Tao, HUMBERT Michael P, MENNING Carl A, ZHU Yue-Xiang. Rational Design of Low-Temperature Hydrogenation Catalysts: Theoretical Predictions and Experimental Verification[J]. Acta Phys. -Chim. Sin., 2010, 26(04): 869-876.
[9] WENG Ke-Feng, WANG Hui-Gang, ZHU Xin-Ming, ZHENG Xu-Ming. Resonance Raman Spectra of Uracil and 5-Chlorouracil Dynamic Structures during 1S01S2 Transition[J]. Acta Phys. -Chim. Sin., 2009, 25(09): 1799-1805.
[10] Mo Yi;Li Le-Min. Study on High Accurate Quantum Chemical Calculations Carried Out in a Local Region of a System[J]. Acta Phys. -Chim. Sin., 2002, 18(08): 716-720.
[11] Zeng Xi-Rui;Zhang Yong;You Xiao-Zeng. Substituent Effect of the Peroxyoxalate Chemiluminescence[J]. Acta Phys. -Chim. Sin., 2001, 17(04): 361-363.
[12] Ai Hong-Qi;Bu Yu-Xiang. Study on the Electron Transfer of N-3+N3 System by the Goldenrule[J]. Acta Phys. -Chim. Sin., 2001, 17(03): 210-215.