Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (10): 1989-1997    DOI: 10.3866/PKU.WHXB201705175
REVIEW     
UV Absorption and Resonance Raman Spectra of 2, 4-Dithiouracil
Ying-Chun JIN,Xu-Ming ZHENG*()
Download: HTML     PDF(2107KB) Export: BibTeX | EndNote (RIS)      

Abstract  

2, 4-Dithiouracil is potentially an important photosensitizer for use in photodynamic therapy. Its photophysics when populated in the lowest excited state has been studied extensively. However, its higher light absorbing excited states and the corresponding reaction dynamics have not been investigated sufficiently. Herein, the resonance Raman spectroscopy and density functional theory were adopted to clarify the electronic transitions associated with the UV absorptions in the far-UV region and the short-time structural dynamics corresponding to the higher light absorbing excited states. The UV absorption spectrum in acetonitrile was deconvoluted into four bands:the moderate intense absorption band at 358 nm (f=0.0336) (A band), the intense broad absorption bands at 338 nm (f=0.1491), 301 nm (f=0.1795), and 278 nm (f=0.3532) (B, C, and D bands) respectively, on the basis of the relationship between the resonance Raman intensities and the oscillator strength f. The result was consistent with the predictions made using the time-dependent density functional theory calculations and the resonance Raman intensity patterns. Thus, the four bands resulted from the deconvolution are assigned as the S0S2, S0S6, S0S7 and S0S8 transitions, respectively. The resonance Raman spectra of the corresponding B, C, and D bands are assigned and the qualitative short-time structural dynamics are obtained. The major character in the short-time structural dynamics of 2, 4-dithiouracil in the S8 excited state is that a non-adiabatic process via S8(ππ*)/S(*) curve-crossing, accompanied with ultrafast structural distortion, takes place in or near the Franck-Condon region, while the major character in the short-time structural dynamics in the S7 and S6 excited state appears in the multidimensional reaction coordinates, which are mostly along the C5C6/C2S8/C4S10/N2C3 bond lengths + C4N3H9/N1C2N3/C2N1C6/C6N1H7/C5C6H12 bond angles for the S7 excited state and the C5C6/N3C2/C4S10/C2S8 bond lengths + C6N1H7/C5C6H12/C5C6N1/C5C6H12/C2N1C6/N1C2N3/C4N3H9/N1C2N3 bond angles for the S6 excited state.



Key words2, 4-Dithiouracil      Excited state structural dynamics      UV absorption spectrum      Resonance Raman spectrum      Density functional calculation     
Received: 11 April 2017      Published: 17 May 2017
MSC2000:  O641  
  O643  
Fund:  the National Natural Science Foundation of China(21473163);National Key Basic Research Program of China (973)(2013CB834607)
Corresponding Authors: Xu-Ming ZHENG     E-mail: zxm@zstu.edu.cn
Cite this article:

Ying-Chun JIN,Xu-Ming ZHENG. UV Absorption and Resonance Raman Spectra of 2, 4-Dithiouracil. Acta Phys. -Chim. Sin., 2017, 33(10): 1989-1997.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705175     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I10/1989

Fig 1 (a) UV absorption spectra of 24DTU in acetonitrile, methanol and water; (b) Schematic diagram of the geometry structure of 24DTU.
State(Cs) Orbital Transition Transition Energy(△E)/nm (eV)f
Calc. Expt.a Calc. Expt.a
S1(A") nHπL*(0.68) + nH-2πL*(-0.16) 415(2.98)0.0000
S2(A') πH-1πL*(0.61) + πH-3πL*(-0.32) + πH-1πL+1*(0.10) 343(3.61) (358) 0.0541 0.0336
S3(A") πH-2πL*(0.54)+nHπL+1*(0.33)+πH-2πL+1*(0.25) + nHπL*(0.16) 340(3.64) 0.0001
S4(A") nHπL+1 * (0.42) + πH-2πL+1*(-0.41) + πH-2πL*(0.37)333(3.72) 0.0005
S5(A") πH-2πL+1* (0.54) + nHπL+1*(-0.44) 307(4.03) 0.0005
S6(A') πH-3πL*(0.51) + πH-3πL+1*(0.40) +πH-1πL+1*(0.18)+ πH-1πL*(0.18) 305(4.05) (338) 0.1789 0.1491
S7(A') πH-1πL+1*(0.42)+πH-3πL+1*(0.35) + πH-3πL*(-0.32)+ πH-1πL*(-0.28) 282(4.54) (301) 0.3181 0.1795
S8(A') πH-3πL+1*(0.57) + πH-1πL+1* (-0.37) 265(4.66) (278) 0.4187 0.3532
H-5nπH-4πH-3πH-2πH-1nHπL*πL+1*
Table 1 Electronic transition energies (△E), transition orbitals and Oscillator strengths (f) for 24DTU computed by B3LYP-TD/6-311++G(3df, 3pd) and polarization continum model (PCM).
Fig 2 Deconvoluted curves (dotted line) of the UV absorption spectrum of 24DTU in acetonitrile.
Fig 3 Comparison of FT-IR, FT-Raman and B3LYP/6-31+G(d) computed Raman spectra of 24DTU.
Mode Computed/cm-1 Exp/cm-1 descriptions Assignment (PED/%)
a b FT-RamanFT-IR R.R.c
A'ν13633(89.04)3623N1H7 stretchνN1H7 (100)
ν23585(32.96)3576N3H9 strechνN3H9(100)
ν33267(93.21)3258C5H11 stretchνC5H11(96)
ν43230(129.55)3221C6H12 stretchνC6H12(96)
ν51658(134.44)16511604(m)16101618C5C6 stretch +
C5C6H12 in plane bend
νC5C6(63) +
δC5C6H12(10)
ν61573(3.90)15661549(w)15731546C4N3H9/C4N3H9in plane bend+
N1C2 strech
δC8N1H7(35) + δC4N3H9(24) +
νN1C2(10)
ν71497(32.77)14901491(w)14871478C5C6H12/C6C3H11/C4N3H9 in plane bend+
N1C6 strech
δC4N3H9(26) + δC5C6H12(18) +
δC6N3H11(15) + νN1C6(11)
ν81397(20.28)13911425(w)14121376C6N1H7/C4N3H9/C5C6H12 in
plane bend
δC6N1H7(15) + δC6N3H9(23) +
δC5C6H12(15)
ν91368(24.17)13621367(m)1359N1C2/N3C2 stretchνN1C2(35) + νN3C2(17)
ν101265(66.13)12591253(vs)1252N3C4/N3C2 stretch +
C6C3H11 in plane bend
νN3C4(33) + δC6C5H11(18) + νN3C2(11)
ν111241(29.72)12351228(vw)12321225N3C2/C4S10/C2S8 stretch +
C5C6H12/C6N1H7 in plane bend
νN3C2(18) + νC4S10(18) + νC2S8(15) + δC5C6H12(11) + δC6N1H7(10)
ν121217(18.23)12111188(s)12111205C5C6H12/C6C3H11 in plane bend +
N3C4 /N1C6 stretch
δC5C6H12(26) + δC6N3H11(14) +
νN3C4(13) + νN1C6(13)
ν131128(18.35)11221118(w)11341122N1C2N3/C4N3H9 in plane bend +
C4S10/C2S8 stretch
δN1C2N3(20) + νC4S10(15) +
δC4N3H9(13) + νC2S8(15)
ν141086(15.33)10801077(w)10741069C6C3H11 in plane bend +
N1C6/C5C6 stretch
δC6N3H11(28) + νN1C6(25) +

νC5C6(10)
ν15986(2.92)980983(w)984982C5C6N1/C5C6H12/C2N1C6/N1C2N3 in
plane bend + N1C6 stretch
δC5C6N1(35) + δC5C6H12(14) + δC2N1C6(13) +
δN1C2N3(11) + νN1C6(10)
ν16878(1.25)872860C2N1C6 in plane bend +
C2S8/C4S10 stretch
δC2N1C6(25) + νC2S8(21) +
νC4S10(19)
ν17693(24.32)688683(s)680684C2N1C6/N1C2N3/C2N3C4 in plane bend +
N1C2 stretch
δC2N1C6(27) + νN1C2(20) +
δN1C2N3(10) + δC2N3C4(13)
ν18463(10.63)458460(w)467493C2S8 stretch +
N1C2N3 in plane bend
νC2S8(34) + δN1C2N3(29)
ν19445(20.36)440443(m)447463C2N3C4in plane bend +
C4S10/N3C2 stretch
δC2N3C4(35) + νC4S10(28) +
νN3C2(16)
ν20388(2.21)383387(w)N3C2S8/C5C4H10 in plane bendδN3C2S8(45) + δC5C4H10(45)
ν21215(7.84)210229(w)C5C4H10/N3C2S8 in plane bendδC5C4H10(39) + δN3C2S8(37)
A"ν22963(3.55)957964(vw)C4C5C6H12/N1C6C5H11/C2N1C6C5 TorsionτC4C5C6H12(55) + τN1C6C5H11(26) +
τC2N1C6C5(14)
ν23799(0.15)793N1C6C5H11/C4C5C6H12 TorsionτN1C6C5H11(61)+τC4C5C6H12(29)
ν24740(0.81)734C5C4N3H9 Ring deformationτC5C4N3H9(92)
ν25680(0.65)675N3C4C5S10 Out of plane bend +
C5C6N1H7/C2N1C6C5/N1C2N3C4 Torsion
γC4C5N3S10(27) + τC5C6N1H7(18)+
τC2N1C6C5(13) + τN1C2N3C4(13)
ν26621(1.60)616C5C2N3S8 Out of plane bend + C5C6N1H7 TorsionγC5C2N3S8(51) + τC5C6N1H7(41)
ν27592(3.65)587611(vw)C5C6N1H7 Torsion +
N3C4C5S10/N5C2N3S8 Out of plane bend
τC5C6N1H7(37) + γN3C4C5S10(28) +
γC5C2N3S8(21)
ν28390(0.62)385386C2N1C6C5/C4C5C6H12 Torsion +
N3C4C5S10 Out of plane bend
τC2N1C6C5(46) + γN3C4C5S10(22) +
τC4C5C6H12(13)
ν29148(0.06)143C6N1C2N3/ C2N1C6C5/N1C2N3C4 TorsionτC6N1C2N3(55) + τC2N1C6C5(21)+
τN1C2N3C4(15)
ν30127(0.01)122N1C2N3C4/C6N1C2N3 Torsion +
N3C4C5S10 Out of plane bend
τN1C2N3C4(65) + τC6N1C2N3(14) +
γC4C5N3S10(10)
Table 2 Vibrational frequencies and assignments of 24DTU calculated by using B3LYP/6-31+G(d) and PCM model and observed by experimental FT-IR and FT-Raman spectra.
Fig 4 Resonance Raman spectra of 24DTU in acetonitrile (a), methanol (b) and water (c) solvents.
Fig 5 266.0 nm (top), 319.9 nm (middle) and 341.5 nm (bottom) resonance Raman spectra of 24DTU in acetonitrile.
1 Crespo-Hernández C. E. ; Cohen B. ; Hare P. M. ; Kohler B. Chem. Rev 2004, 104 (4), 1977.
2 Crespo-Hernández C. E. ; Cohen B. ; Kohler B. Nature 2005, 436 (7054), 1141.
3 Middleton C. T. ; De La Harpe K. ; Su C. ; Law Y. K. ; Crespo-Hernández C. E. B ; Kohler B. Ann. Rev. Phys. Chem 2009, 60, 217.
4 Buchvarov I. ; Wang Q. ; Raytchev M. ; Trifonov A. ; Fiebig T Proc. Nat. Acad. Sci 2007, 104 (12), 4794.
5 Markovitsi D. ; Onidas D. ; Gustavsson T. ; Talbot F. ; Lazzarotto E. J.Am. Chem. Soc. 2005, 127 (49), 17130.
6 Kuramochi H. ; Kobayashi T. ; Suzuki T. ; Ichimura T. J.Phys. Chem. A 2010, 114 (26), 8782- 8789.
7 Pollum M. ; Crespo-Hernández C. E. J.Phys. Chem. 2014, 140, 07110.
8 Pollum M. ; Jockusch S. ; Crespo-Hernández C. E. J.Am. Chem. Soc. 2014, 136 (52), 17930.
9 Taras-Go?lińska K. ; Burdziński G. ; Wenska G. J.Photochem. Photobiol. A 2014, 275, 89.
10 Harada Y. ; Suzuki T. ; Ichimura T. ; Xu Y. J.Phys. Chem. B 2007, 111 (19), 5518.
11 Harada Y. ; Okabe C. ; Kobayashi T. ; Suzuki T. ; Ichimura T. ; Nishi N. ; Xu Y. Z. J.Phys. Chem. Lett. 2009, 1 (2), 480.
12 Reichardt C. ; Crespo-Hernández C. E. J.Phys. Chem. Lett. 2010, 1 (15), 2239.
13 Reichardt C. ; Crespo-Hernández C. E Chem. Commun 2010, 46 (32), 5963.
14 Zhang Y. ; Zhu X. ; Smith J. ; Haygood M. ; Gao R. J.Phys. Chem. B 2011, 115 (8), 1889.
15 Reichardt C. ; Guo C. ; Crespo-Hernández C. E J.Phys. Chem. B 2011, 115 (12), 3263- 3270.
16 Martínez-Fernández L. ; González L. ; Corral I. Chem. Commun. 2012, 48 (15), 2134.
17 Cui G. ; Fang W. J.Chem. Phys. 2013, 138 (4), 044315.
18 Pollum, M,; Martínez-Fernández, L.; Crespo-Hernández, C. E. Photoinduced Phenomena in Nucleic Acid I; Springer: NY, US, 1970; p 33. doi: 10.1007/128_2014_554
19 Gobbo J. P. ; Borin A. C. ; Serrano-Andrés L. J. Phys. Chem. B 2011, 115 (19), 6243.
20 Kobayashi T. ; Kuramochi H. ; Harada Y. ; Suzuki T. Ichimura T. J.Phys. Chem. A 2009, 113 (44), 12088.
21 Kobayashi T. ; Harada Y. ; Suzuki T. ; Ichimura T. J. Phys. Chem. A 2008, 112 (51), 13308.
22 Jiang J. ; Zhang T. S. ; Xue J. D. ; Zheng X. M. J.Chem. Phys. 2015, 143 (17), 11B605_1.
23 Xie B. B. ; Wang Q. ; Guo W. W. ; Cui G. L. Phys. Chem. Chem. Phys. 2017, 19 (11), 7689.
24 Li M. J. ; Liu M. X. ; Zheng X. J. Acta Phys.-Chim. Sin. 2013, 29 (5), 903.
24 李明娟; 刘明霞; 郑旭明. 物理化学学报, 2013, 29 (5), 903.
25 Frisch M. J. ; Treucks G. W. ; Schlegel H.B. ; et al Gauss 09 Gaussian Inc.: Wallingford, CT, 2009.
26 Jamróz M. H. Spectrochim. Acta A 2013, 114, 220.
27 Dennington, R.; Keith, T.; Millam, J. GaussView, version 5.Semichem Inc.: Shawnee Mission, KS, 2009.
28 Galica G. E. ; Johnson B. R. ; Kinsey J. L. ; Hale M. O. J.Phys. Chem. 1991, 95, 7994.
29 Phillips D. L. ; Myers A. B. J.Chem. Phys. 1991, 95, 226.
30 Biswas N. ; Umapathy S. J.Phys. 1997, 48 (4), 937.
31 Tang J. ; Albrecht A. C. J.Chem. Phys. 1968, 49 (3), 1144.
32 Tang J ; Albrecht A. C. Raman Spectrosc 1970, 33
33 Li M. J. ; Liu M. X. ; Zhao Y. Y. ; Pei K. M. ; Wang H. G. J.Phys Chem. B 2013, 117 (39), 11660.
34 Fang W. X. ; Zheng X. M. ; Wang H. G. ; Zhao Y. Y. ; Guang X.G. ; Phillips D. L. ; Chen X. B. ; Fang W. H. J.Phys. Chem. 2008, 133, 134507.
35 Yang Y. ; Pan S. ; Xue J. D. ; Zheng X. D. ; Phillips D. L. ; Fang W.H. J.Raman Spectrosc. 2014, 45 (1), 105.
36 Liu M X. ; Xie B. B. ; Li M. J. ; Zhao Y. Y. ; Pei K. M. ; Wang H. G. ; Zheng X. M. J.Raman Spectrosc. 2013, 44 (3), 440.
[1] LI Dan, XUE Jia-Dan, ZHENG Xu-Ming. Excited State Structural Dynamics of A-Band of 4-Nitroimidazole[J]. Acta Phys. -Chim. Sin., 2014, 30(12): 2216-2223.
[2] CAO Guo-Jin, ZHENG Wei-Jun. Structures, Stabilities and Physicochemical Properties of Nucleobase Tautomers[J]. Acta Phys. -Chim. Sin., 2013, 29(10): 2135-2147.
[3] LI Ming-Juan, LIU Ming-Xia, ZHENG Xu-Ming. A-Band Structural Dynamics of 1-Methylthymine[J]. Acta Phys. -Chim. Sin., 2013, 29(05): 903-910.
[4] GAO Si-Min, WANG Hong-Yan, LIN Yue-Xia, LI Ru-Hu. Surface-Enhanced Raman Spectra of Aflatoxin B1 Adsorbed on Silver Clusters[J]. Acta Phys. -Chim. Sin., 2012, 28(09): 2044-2050.
[5] XU Zong-Ping, ZHAO Yan-Ying, WANG Hui-Gang, ZHENG Xu-Ming. Resonance Raman Spectroscopy and Density Functional Theory Investigations on the Excited State Structural Dynamics of N-Methylpyrrole-2-carboxaldehyde and Its Solvent Effect[J]. Acta Phys. -Chim. Sin., 2012, 28(01): 65-72.
[6] LIU Chong, DU Rui, ZHAO Yan-Ying, WANG Hui-Gang, ZHENG Xu-Ming. Resonance Raman Spectroscopy of the Excited State Structural Dynamics of 6-N,N-Dimethyladenine[J]. Acta Phys. -Chim. Sin., 2011, 27(01): 17-24.
[7] CHEN Jingguang G, QI Sui-Tao, HUMBERT Michael P, MENNING Carl A, ZHU Yue-Xiang. Rational Design of Low-Temperature Hydrogenation Catalysts: Theoretical Predictions and Experimental Verification[J]. Acta Phys. -Chim. Sin., 2010, 26(04): 869-876.
[8] JIANG De-En. Understanding and Predicting Thiolated Gold Nanoclusters from First Principles[J]. Acta Phys. -Chim. Sin., 2010, 26(04): 999-1016.
[9] WENG Ke-Feng, WANG Hui-Gang, ZHU Xin-Ming, ZHENG Xu-Ming. Resonance Raman Spectra of Uracil and 5-Chlorouracil Dynamic Structures during 1S01S2 Transition[J]. Acta Phys. -Chim. Sin., 2009, 25(09): 1799-1805.
[10] Mo Yi;Li Le-Min. Study on High Accurate Quantum Chemical Calculations Carried Out in a Local Region of a System[J]. Acta Phys. -Chim. Sin., 2002, 18(08): 716-720.
[11] Zeng Xi-Rui;Zhang Yong;You Xiao-Zeng. Substituent Effect of the Peroxyoxalate Chemiluminescence[J]. Acta Phys. -Chim. Sin., 2001, 17(04): 361-363.
[12] Ai Hong-Qi;Bu Yu-Xiang. Study on the Electron Transfer of N-3+N3 System by the Goldenrule[J]. Acta Phys. -Chim. Sin., 2001, 17(03): 210-215.