Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(10)>> 2035-2041     doi: 10.3866/PKU.WHXB201705182         中文摘要
Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite
ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang
College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
Full text: PDF (1784KB) HTML Export: BibTeX | EndNote (RIS)

Flaky polyaniline-reduced graphene oxide (PANI-rGO) composites have larger specific capacitance due to the improved redox charge of PANI in the composites, fabricated by simultaneous reduction of PANI-GO. The structural and morphological analyses were carried out using scanning electron microscopy, UV-Vis spectroscopy, and thermogravimetry. The results showed that the composites are flaky in shape. PANI is uniformly coated on GO, and PANI-rGO has specific capacitance as high as 1069 F·g-1 (1.71 F·cm-2) at a current density of 20 A·g-1, 5 times higher than PANI-GO; this is caused by the large surface and conductivity of the rGO in the composite.



Keywords: Polyaniline-reduced graphene oxide   Polyaniline-graphene oxide   Specific capacitance   Operating voltage  
Received: 2017-02-09 Accepted: 2017-05-10 Publication Date (Web): 2017-05-18
Corresponding Authors: ZHAO Xiao-Yu Email: xyz@tust.edu.cn

Fund: The project was supported by the National Natural Science Foundation of China (21503146).

Cite this article: ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. -Chim. Sin., 2017,33 (10): 2035-2041.    doi: 10.3866/PKU.WHXB201705182

(1) Geim, A. K.; Novoselov, K. S. Nature Mater. 2007, 6, 183. doi: 10.1038/Nmat1849
(2) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896
(3) Ghosh, D.; Giri, S.; Dhibar, S.; Das, C. K. Electrochim. Acta 2014, 147, 557. doi: 10.1016/j.electacta.2014.09.130
(4) Mishra, A. K.; Ramaprabhu, S. J. Phys. Chem. C 2011, 115, 14006. doi: 10.1021/jp201673e
(5) Yan, J.; Wei, T.; Shao, B.; Fan, Z. J.; Qian, W. Z.; Zhang, M. L.; Wei, F. Carbon 2010, 48, 487. doi: 10.1016/j.carbon.2009.09.066
(6) Hao, Q.; Xia, X.; Lei, W.; Wang, W.; Qiu, J. Carbon 2015, 81, 552. doi: 10.1016/j.carbon.2014.09.090
(7) Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Nanoscale 2010, 2, 2164. doi: 10.1039/c0nr00224k
(8) Conway, B. E.; Pell, W. G. J. Solid State Electrochem. 2003, 7, 637. doi: 10.1007/s10008-003-0395-7
(9) Rauda, I. E.; Augustyn, V.; Dunn, B.; Tolbert, S. H. Acc. Chem.Res. 2013, 46, 1113. doi: 10.1021/ar300167h
(10) Wang, Z. L.; He, X. J.; Ye, S. H.; Tong, Y. X.; Li, G. R. ACSAppl. Mater. Interfaces 2014, 6, 642. doi: 10.1021/am404751k
(11) Lu, X. F.; Chen, X. Y.; Zhou, W.; Tong, Y. X.; Li, G. R. ACSAppl. Mater. Interfaces 2015, 7, 14843. doi: 10.1021/acsami.5b03126
(12) Simon, P.; Gogotsi, Y.; Dunn, B. Science 2014, 343, 1210. doi: 10.1126/science.1249625
(13) Augustyn, V.; Simon, P.; Dunn, B. Energy Environ. Sci. 2014, 7, 1597. doi: 10.1039/C3EE44164D
(14) Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. ACS Nano 2010, 4, 1963. doi: 10.1021/nn1000035
(15) Tan, Y. T.; Ran, F.; Kong, L. B.; Liu, J.; Kang, L. Synth. Met. 2012, 162, 114. doi: 10.1016/j.synthmet.2011.11.020
(16) Wang, H. Z.; Gao, C. X.; Zhang, P.; Yao, S. W.; Zhang, W. G. Acta Phys. -Chim. Sin. 2013, 29, 117. [王宏智, 高翠侠, 张鹏, 姚素薇, 张卫国. 物理化学学报, 2013, 29, 117.] doi: 10.3866/PKU.WHXB201210234
(17) Wang, L. L.; Xing, R. G.; Zhang, B. W.; Hou, Y. ActaPhys. -Chim. Sin. 2014, 30, 1659. [汪丽丽, 邢瑞光, 张邦文, 侯渊. 物理化学学报, 2014, 30, 1659.] doi: 10.3 866/PKU.WHXB201406162
(18) Orata, D.; Buttry, D. A. J. Am. Chem. Soc. 1987, 109, 3574. doi: 10.1021/ja00246a013
(19) Kumar, N. A.; Choi, H. J.; Shin, Y. R.; Chang, D. W.; Dai, L.; Baek, J. B. ACS Nano 2012, 6, 1715. doi: 10.1021/nn204688c
(20) Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. Chem. Mater. 2010, 22, 1392. doi: 10.1021/cm902876u
(21) Lindfors, T.; Latonen, R. M. Carbon 2014, 69, 122. doi: 10.1016/j.carbon.2013.11.074
(22) Co?kun, E.; Zaragoza-Contreras, E. A.; Salavagione, H. J. Carbon 2012, 50, 2235. doi: 10.1016/j.carbon.2012.01.041
(23) Shulga, Y. M.; Baskakov, S. A.; Abalyaeva, V. V.; Efimov, O.N.; Shulga, N. Y.; Michtchenko, A.; Lartundo-Rojas, L.; Moreno, L. A.; Cabanas-Moreno, J. G.; Vasilets, V. N. J. PowerSources 2013, 224, 195. doi: 10.1016/j.jpowsour.2012.09.105
(24) Zhang, W. L.; Park, B. J.; Choi, H. J. Chem. Commun. 2010, 46, 5596. doi: 10.1039/c0cc00557f
(25) Luo, Z. H.; Zhu, L. H.; Zhang, H. Y.; Tang, H. Q. Mater. Chem.Phys. 2013, 139, 572. doi: 10.1016/j.matchemphys.2013.01.059
(26) Zhang, Q.; Li, Y.; Feng, Y.; Feng, W. Electrochim. Acta 2013, 90, 95. doi: 10.1016/j.electacta.2012.11.035
(27) Xu, G.; Wang, N.; Wei, J.; Lv, L.; Zhang, J.; Chen, Z.; Xu, Q. Ind. Eng. Chem. Res. 2012, 51, 14390. doi: 10.1021/ie301734f
(28) Xu, D.; Xu, Q.; Wang, K.; Chen, J.; Chen, Z. ACS Appl. Mater.Interfaces 2013, 6, 200. doi: 10.1021/am404799a
(29) Meng, Y.; Wang, K.; Zhang, Y.; Wei, Z. Adv. Mater. 2013, 25, 6985. doi: 10.1002/adma.201303529
(30) Xu, J.; Wang, K.; Zu, S. Z.; Han, B. H.; Wei, Z. ACS Nano 2010, 4, 5019. doi: 10.1021/nn1006539
(31) Huang, W. S.; MacDiarmid, A. G. Polymer 1993, 34, 1833. doi: 10.1016/0032-3861(93)90424-9
(32) Blinova, N. V.; Sapurina, I.; Klimovi?, J.; Stejskal, J. Polym.Degrad. Stabil. 2005, 88, 428. doi: 10.1016/j.polymdegradstab.2004.11.014
(33) Stejskal, J.; Kratochvíl, P.; Helmstedt, M. Langmuir 1996, 12, 3389. doi: 10.1021/la9506483
(34) Ghosh, P.; Siddhanta, S. K.; Chakrabarti, A. Eur. Polym. J. 1999, 35, 699. doi: 10.1016/S0014-3057(98)00157-8
(35) Sulimenko, T.; Stejskal, J.; Krivka, I.; Prokes, J. Eur. Polym. J. 2001, 37, 219. doi: 10.1016/S0014-3057(00)00104-X
(36) Somani, P. R. Mater. Chem. Phys. 2003, 77, 81. doi: 10.1016/S0254-0584(01)00579-X
(37) Abu, Y. M.; Aoki, K. Electrochim. Acta 2005, 50, 3634. doi: 10.1016/j.electacta.2005.01.004
(38) Chen, J.; Zeng, X.; Aoki, K. J.; Nishiumi, T. InternationalJournal of Chemistry 2015, 7, 1. doi: 10.5539/ijc.v7n21-11
(39) Vallés, C.; Jiménez, P.; Muñoz, E.; Benito, A. M.; Maser, W. K. J. Phys. Chem. C 2011, 115, 10468. doi: 10.1021/jp201791h
(40) Choi, E. Y.; Han, T. H.; Hong, J. H.; Kim, J. E.; Lee, S. H.; Kim, H. W.; Kim, S. O. J. Mater. Chem. 2010, 20, 1907. doi: 10.1039/b919074k
(41) Paredes, J. I.; Villar-Rodil, S.; Solis-Fernandez, P.; Martinez-Alonso, A.; Tascon, J. M. Langmuir 2009, 25, 5957. doi: 10.1021/la804216z
(42) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558. doi: 10.1016/j.carbon.2007.02.034
(43) McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; Aksay, I. A. Chem. Mater. 2007, 19, 4396. doi: 10.1021/cm0630800
(44) Zhang, H.; Yu, H. M.; Xu, C. H.; Zhang, M. H.; Pan, X. H.; Gao, Y. F. Acta Phys -Chim. Sin. 2016, 32, 1634. [张恒, 于惠梅, 徐朝和, 张明辉, 潘秀红, 高彦峰. 物理化学学报, 2016, 32, 1634.] doi: 10.3866/PKU.WHXB201605111
(45) Stejskal, J.; Kratochvíl, P.; Radhakrishnan, N. Synth. Met. 1993, 61, 225. doi: 10.1016/0379-6779(93)91266-5
(46) Stejskal, J.; Sapurina, I.; Trchová, M. Prog. Polym. Sci. 2010, 35, 1420. doi: 10.1016/j.progpolymsci.2010.07.006
(47) Wang, P. C.; Huang, Z.; MacDiarmid, A. G. Synth. Met. 1999, 101, 852. doi: 10.1016/S0379-6779(98)01329-0
(48) Mazur, M.; Predeep, P. Polymer 2005, 46, 1724. doi: 10.1016/j.polymer.2005.01.013
(49) Tong, Z.; Yang, Y.; Wang, J.; Zhao, J.; Su, B. L.; Li, Y. J. Mater. Chem. A 2014, 2, 4642. doi: 10.1039/c3ta14671e
(50) Li, H. L.; Wang, J. X.; Chu, Q. X.; Wang, Z.; Zhang, F. B.; Wang, S. C. J. Power Sources 2009, 190, 578. doi: 10.1016/j.jpowsour.2009.01.052
(51) Zhu, C.; Guo, S.; Fang, Y.; Dong, S. ACS Nano 2010, 4, 2429. doi: 10.1021/nn1002387
(52) Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. ACS Nano 2009, 3, 2653. doi: 10.1021/nn900227d
(53) Yang, X. H.; Xie, Q. J.; Yao, S. Z. Synth. Met. 2004, 143, 119. doi: 10.1016/j.synthmet.2003.10.027
(54) O'Neil, G. D.; Weber, A. W.; Buiculescu, R.; Chaniotakis, N.A.; Kounaves, S. P. Langmuir 2014, 30, 9599. doi: 10.1021/la502053m
(55) Yang, W. Z.; Widenkvist, E.; Jansson, U.; Grennberg, H. NewJ. Chem. 2011, 35, 780. doi: 10.1039/c0nj00968g
(56) O’Neill, A.; Khan, U.; Nirmalraj, P. N.; Boland, J.; Coleman, J.N. J. Phys. Chem. C 2011, 115, 5422. doi: 10.1021/jp110942e
(57) Gogotsi, Y.; Simon, P. Science 2011, 334, 917. doi: 10.1126/science.1213003
(58) Fan, W.; Zhang, C.; Tjiu, W. W.; Pramoda, K. P.; He, C.; Liu, T. ACS Appl. Mater. Interfaces 2013, 5, 3382. doi: 10.1021/am4003827
(59) Aoki, K.; Cao, J. A.; Hoshino, Y. Electrochim. Acta 1993, 38, 1711. doi: 10.1016/0013-4686(93)85066-8
(60) Aoki, K.; Kawase, M. J. Electroanal. Chem. 1994, 377, 125. doi: 10.1016/0022-0728(94)03446-X

1. CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui.Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials[J]. Acta Phys. -Chim. Sin., 2015,31(6): 1105-1112
2. WANG Jian-De, PENG Tong-Jiang, SUN Hong-Juan, HOU Yun-Dan.Effect of the Hydrothermal Reaction Temperature on Three-Dimensional Reduced Graphene Oxide's Appearance, Structure and Super Capacitor Performance[J]. Acta Phys. -Chim. Sin., 2014,30(11): 2077-2084
3. SHEN Bao-Shou, FENG Wang-Jun, LANG Jun-Wei, WANG Ru-Tao, TAI Zhi-Xin, YAN Xing-Bin.Nitric Acid Modification of Graphene Nanosheets Prepared by Arc- Discharge Method and Their Enhanced Electrochemical Properties[J]. Acta Phys. -Chim. Sin., 2012,28(07): 1726-1732
4. LI Zhao, XU Ju-Liang, LI Xu-Yan, GUO Li-Fang, LI Jin, JIANG Yi-Ming.Preparation of Manganese Dioxide for Electrodes of Supercapacitors Based on Duplex Stainless Steel[J]. Acta Phys. -Chim. Sin., 2011,27(06): 1424-1430
5. KONG De-Shuai, WANG Jian-Ming, PI Ou-Yang, SHAO Hai-Bo, ZHANG Jian-Qing.Electrochemical Fabrication and Pseudocapacitive Performance of a Porous Nanostructured Nickel-Based Complex Film Electrode[J]. Acta Phys. -Chim. Sin., 2011,27(04): 764-768
6. ZHANG Lei-Yong, HE Shui-Jian, CHEN Shui-Liang, GUO Qiao-Hui, HOU Hao-Qing.Preparation and Electrochemical Properties of Polyaniline/Carbon Nanofiber Composite Materials[J]. Acta Phys. -Chim. Sin., 2010,26(12): 3181-3186
7. WANG Tao, HE Jian-Ping, ZHANG Chuan-Xiang, ZHOU Jian-Hua, GUO Yun-Xia, CHEN Xiu, DI Zhi-Yong, SUN Dun, WANG Dao-Jun.Preparation and Electrochemical Properties of Ordered Mesoporous C/NiO Composites[J]. Acta Phys. -Chim. Sin., 2008,24(12): 2314-2320
8. LIU Ya-Fei; HU Zhong-Hua; XU Kun; ZHENG Xiang-Wei; GAO Qiang.Surface Modification and Performance of Activated Carbon Electrode Material[J]. Acta Phys. -Chim. Sin., 2008,24(07): 1143-1148
9. Chen Hong;Chen Jin-Song;Zhou Hai-Hui;Jiao Shu-Qiang;Chen Jin-Hua;Kuang Ya-Fei.The Application of Nano-fibrous Polyaniline in Electrochemical Capacitor[J]. Acta Phys. -Chim. Sin., 2004,20(06): 593-597
10. Liu Xian-Ming;Zhang Yi-He;Zhang Xiao-Gang;Fu Shao-Yun.The Supercapacitive Properties of Ni-Ru Oxide Composites[J]. Acta Phys. -Chim. Sin., 2004,20(04): 417-420
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top