Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (10): 2035-2041    DOI: 10.3866/PKU.WHXB201705182
ARTICLE     
Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite
Xiang-Dong ZENG,Xiao-Yu ZHAO*(),Hui-Ge WEI,Yan-Fei WANG,Na TANG,Zuo-Liang SHA
Download: HTML     PDF(1784KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Flaky polyaniline-reduced graphene oxide (PANI-rGO) composites have larger specific capacitance due to the improved redox charge of PANI in the composites, fabricated by simultaneous reduction of PANI-GO. The structural and morphological analyses were carried out using scanning electron microscopy, UV-Vis spectroscopy, and thermogravimetry. The results showed that the composites are flaky in shape. PANI is uniformly coated on GO, and PANI-rGO has specific capacitance as high as 1069 F·g-1 (1.71 F·cm-2) at a current density of 20 A·g-1, 5 times higher than PANI-GO; this is caused by the large surface and conductivity of the rGO in the composite.



Key wordsPolyaniline-reduced graphene oxide      Polyaniline-graphene oxide      Specific capacitance      Operating voltage     
Received: 09 February 2017      Published: 18 May 2017
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(21503146)
Corresponding Authors: Xiao-Yu ZHAO     E-mail: xyz@tust.edu.cn
Cite this article:

Xiang-Dong ZENG,Xiao-Yu ZHAO,Hui-Ge WEI,Yan-Fei WANG,Na TANG,Zuo-Liang SHA. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite. Acta Phys. -Chim. Sin., 2017, 33(10): 2035-2041.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705182     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I10/2035

 
 
 
 
 
 
 
 
 
1 Geim A. K. ; Novoselov K. S. Nature Mater. 2007, 6, 183.
2 Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
3 Ghosh D. ; Giri S. ; Dhibar S. ; Das C. K. Electrochim. Acta 2014, 147, 557.
4 Mishra A. K. ; Ramaprabhu S. J.Phys. Chem. C 2011, 115, 14006.
5 Yan J. ; Wei T. ; Shao B. ; Fan Z. J. ; Qian W. Z. ; Zhang M. L. ; Wei F. Carbon 2010, 48, 487.
6 Hao Q. ; Xia X. ; Lei W. ; Wang W. ; Qiu J. Carbon 2015, 81, 552.
7 Wang H. ; Hao Q. ; Yang X. ; Lu L. ; Wang X. Nanoscale 2010, 2, 2164.
8 Conway B. E. ; Pell W. G. J.Solid State Electrochem. 2003, 7, 637.
9 Rauda I. E. ; Augustyn V. ; Dunn B. ; Tolbert S. H. Acc. Chem.Res. 2013, 46, 1113.
10 Wang Z. L. ; He X. J. ; Ye S. H. ; Tong Y. X. ; Li G. R. ACSAppl. Mater. Interfaces 2014, 6, 642.
11 Lu X. F. ; Chen X. Y. ; Zhou W. ; Tong Y. X. ; Li G. R. ACSAppl. Mater. Interfaces 2015, 7, 14843.
12 Simon P. ; Gogotsi Y. ; Dunn B. Science 2014, 343, 1210.
13 Augustyn V. ; Simon P. ; Dunn B. Energy Environ. Sci. 2014, 7, 1597.
14 Wu Q. ; Xu Y. ; Yao Z. ; Liu A. ; Shi G. ACS Nano 2010, 4, 1963.
15 Tan Y. T. ; Ran F. ; Kong L. B. ; Liu J. ; Kang L. Synth. Met. 2012, 162, 114.
16 Wang H. Z. ; Gao C. X. ; Zhang P. ; Yao S. W. ; Zhang W. G. Acta Phys. -Chim. Sin. 2013, 29, 117.
16 王宏智; 高翠侠; 张鹏; 姚素薇; 张卫国. 物理化学学报, 2013, 29, 117.
17 Wang L. L. ; Xing R. G. ; Zhang B. W. ; Hou Y. ActaPhys. -Chim. Sin. 2014, 30, 1659.
17 汪丽丽; 邢瑞光; 张邦文; 侯渊. 物理化学学报, 2014, 30, 1659.
18 Orata D. ; Buttry D. A. J.Am. Chem. Soc. 1987, 109, 3574.
19 Kumar N. A. ; Choi H. J. ; Shin Y. R. ; Chang D. W. ; Dai L. ; Baek J. B. ACS Nano 2012, 6, 1715.
20 Zhang K. ; Zhang L. L. ; Zhao X. S. ; Wu J. Chem. Mater. 2010, 22, 1392.
21 Lindfors T. ; Latonen R. M. Carbon 2014, 69, 122.
22 Co?kun E. ; Zaragoza-Contreras E. A. ; Salavagione H. J. Carbon 2012, 50, 2235.
23 Shulga Y. M. ; Baskakov S. A. ; Abalyaeva V. V. ; Efimov O.N. ; Shulga N. Y. ; Michtchenko A. ; Lartundo-Rojas L. ; Moreno L. A. ; Cabanas-Moreno J. G. ; Vasilets V. N. J.PowerSources 2013, 224, 195.
24 Zhang W. L. ; Park B. J. ; Choi H. J. Chem. Commun. 2010, 46, 5596.
25 Luo Z. H. ; Zhu L. H. ; Zhang H. Y. ; Tang H. Q. Mater. Chem.Phys. 2013, 139, 572.
26 Zhang Q. ; Li Y. ; Feng Y. ; Feng W. Electrochim. Acta 2013, 90, 95.
27 Xu G. ; Wang N. ; Wei J. ; Lv L. ; Zhang J. ; Chen Z. ; Xu Q. Ind. Eng. Chem. Res. 2012, 51, 14390.
28 Xu D. ; Xu Q. ; Wang K. ; Chen J. ; Chen Z. ACS Appl. Mater.Interfaces 2013, 6, 200.
29 Meng Y. ; Wang K. ; Zhang Y. ; Wei Z. Adv. Mater. 2013, 25, 6985.
30 Xu J. ; Wang K. ; Zu S. Z. ; Han B. H. ; Wei Z. ACS Nano 2010, 4, 5019.
31 Huang W. S. ; MacDiarmid A. G. Polymer 1993, 34, 1833.
32 Blinova N. V. ; Sapurina I. ; Klimovi? J. ; Stejskal J. Polym.Degrad. Stabil. 2005, 88, 428.
33 Stejskal J. ; Kratochvíl P. ; Helmstedt M. Langmuir 1996, 12, 3389.
34 Ghosh P. ; Siddhanta S. K. ; Chakrabarti A. Eur. Polym. J. 1999, 35, 699.
35 Sulimenko T. ; Stejskal J. ; Krivka I. ; Prokes J. Eur. Polym. J. 2001, 37, 219.
36 Somani P. R. Mater. Chem. Phys. 2003, 77, 81.
37 Abu Y. M. ; Aoki K. Electrochim. Acta 2005, 50, 3634.
38 Chen J. ; Zeng X. ; Aoki K. J. ; Nishiumi T. InternationalJournal of Chemistry 2015, 7, 1.
39 Vallés C. ; Jiménez P. ; Mu?oz E. ; Benito A. M. ; Maser W. K. J.Phys. Chem. C 2011, 115, 10468.
40 Choi E. Y. ; Han T. H. ; Hong J. H. ; Kim J. E. ; Lee S. H. ; Kim H. W. ; Kim S. O. J.Mater. Chem. 2010, 20, 1907.
41 Paredes J. I. ; Villar-Rodil S. ; Solis-Fernandez P. ; Martinez-Alonso A. ; Tascon J. M. Langmuir 2009, 25, 5957.
42 Stankovich S. ; Dikin D. A. ; Piner R. D. ; Kohlhaas K. A. ; Kleinhammes A. ; Jia Y. ; Wu Y. ; Nguyen S. T. ; Ruoff R. S. Carbon 2007, 45, 1558.
43 McAllister M. J. ; Li J. L. ; Adamson D. H. ; Schniepp H. C. ; Abdala A. A. ; Liu J. ; Herrera-Alonso M. ; Milius D. L. ; Car R. ; Prud'homme R. K. ; Aksay I. A. Chem. Mater. 2007, 19, 4396.
44 Zhang H. ; Yu H. M. ; Xu C. H. ; Zhang M. H. ; Pan X. H. ; Gao Y. F. Acta Phys -Chim. Sin. 2016, 32, 1634.
44 张恒; 于惠梅; 徐朝和; 张明辉; 潘秀红; 高彦峰. 物理化学学报, 2016, 32, 1634.
45 Stejskal J. ; Kratochvíl P. ; Radhakrishnan N. Synth. Met. 1993, 61, 225.
46 Stejskal J. ; Sapurina I. ; Trchová M. Prog. Polym. Sci. 2010, 35, 1420.
47 Wang P. C. ; Huang Z. ; MacDiarmid A. G. Synth. Met. 1999, 101, 852.
48 Mazur M. ; Predeep P. Polymer 2005, 46, 1724.
49 Tong Z. ; Yang Y. ; Wang J. ; Zhao J. ; Su B. L. ; Li Y. J.Mater. Chem. A 2014, 2, 4642.
50 Li H. L. ; Wang J. X. ; Chu Q. X. ; Wang Z. ; Zhang F. B. ; Wang S. C. J.Power Sources 2009, 190, 578.
51 Zhu C. ; Guo S. ; Fang Y. ; Dong S. ACS Nano 2010, 4, 2429.
52 Guo H. L. ; Wang X. F. ; Qian Q. Y. ; Wang F. B. ; Xia X. H. ACS Nano 2009, 3, 2653.
53 Yang X. H. ; Xie Q. J. ; Yao S. Z. Synth. Met. 2004, 143, 119.
54 O'Neil G. D. ; Weber A. W. ; Buiculescu R. ; Chaniotakis N.A. ; Kounaves S. P. Langmuir 2014, 30, 9599.
55 Yang W. Z. ; Widenkvist E. ; Jansson U. ; Grennberg H. New J. Chem. 2011, 35, 780.
56 O'Neill A. ; Khan U. ; Nirmalraj P. N. ; Boland J. ; Coleman J.N. J.Phys. Chem. C 2011, 115, 5422.
57 Gogotsi Y. ; Simon P. Science 2011, 334, 917.
58 Fan W. ; Zhang C. ; Tjiu W. W. ; Pramoda K. P. ; He C. ; Liu T. ACS Appl. Mater. Interfaces 2013, 5, 3382.
59 Aoki K. ; Cao J. A. ; Hoshino Y. Electrochim. Acta 1993, 38, 1711.
60 Aoki K. ; Kawase M. J.Electroanal. Chem. 1994, 377, 125.
[1] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[2] CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui. Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1105-1112.
[3] WANG Jian-De, PENG Tong-Jiang, SUN Hong-Juan, HOU Yun-Dan. Effect of the Hydrothermal Reaction Temperature on Three-Dimensional Reduced Graphene Oxide's Appearance, Structure and Super Capacitor Performance[J]. Acta Phys. -Chim. Sin., 2014, 30(11): 2077-2084.
[4] SHEN Bao-Shou, FENG Wang-Jun, LANG Jun-Wei, WANG Ru-Tao, TAI Zhi-Xin, YAN Xing-Bin. Nitric Acid Modification of Graphene Nanosheets Prepared by Arc- Discharge Method and Their Enhanced Electrochemical Properties[J]. Acta Phys. -Chim. Sin., 2012, 28(07): 1726-1732.
[5] LI Zhao, XU Ju-Liang, LI Xu-Yan, GUO Li-Fang, LI Jin, JIANG Yi-Ming. Preparation of Manganese Dioxide for Electrodes of Supercapacitors Based on Duplex Stainless Steel[J]. Acta Phys. -Chim. Sin., 2011, 27(06): 1424-1430.
[6] KONG De-Shuai, WANG Jian-Ming, PI Ou-Yang, SHAO Hai-Bo, ZHANG Jian-Qing. Electrochemical Fabrication and Pseudocapacitive Performance of a Porous Nanostructured Nickel-Based Complex Film Electrode[J]. Acta Phys. -Chim. Sin., 2011, 27(04): 764-768.
[7] ZHANG Lei-Yong, HE Shui-Jian, CHEN Shui-Liang, GUO Qiao-Hui, HOU Hao-Qing. Preparation and Electrochemical Properties of Polyaniline/Carbon Nanofiber Composite Materials[J]. Acta Phys. -Chim. Sin., 2010, 26(12): 3181-3186.
[8] WANG Tao, HE Jian-Ping, ZHANG Chuan-Xiang, ZHOU Jian-Hua, GUO Yun-Xia, CHEN Xiu, DI Zhi-Yong, SUN Dun, WANG Dao-Jun. Preparation and Electrochemical Properties of Ordered Mesoporous C/NiO Composites[J]. Acta Phys. -Chim. Sin., 2008, 24(12): 2314-2320.
[9] LIU Ya-Fei; HU Zhong-Hua; XU Kun; ZHENG Xiang-Wei; GAO Qiang. Surface Modification and Performance of Activated Carbon Electrode Material[J]. Acta Phys. -Chim. Sin., 2008, 24(07): 1143-1148.
[10] Chen Hong;Chen Jin-Song;Zhou Hai-Hui;Jiao Shu-Qiang;Chen Jin-Hua;Kuang Ya-Fei. The Application of Nano-fibrous Polyaniline in Electrochemical Capacitor[J]. Acta Phys. -Chim. Sin., 2004, 20(06): 593-597.
[11] Liu Xian-Ming;Zhang Yi-He;Zhang Xiao-Gang;Fu Shao-Yun. The Supercapacitive Properties of Ni-Ru Oxide Composites[J]. Acta Phys. -Chim. Sin., 2004, 20(04): 417-420.
[12] Zhang Bao-Hong;Zhang Na. Research on Nanophase MnO2 for Electrochemical Supercapacitor[J]. Acta Phys. -Chim. Sin., 2003, 19(03): 286-288.