Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (10): 2004-2012    DOI: 10.3866/PKU.WHXB201705183
ARTICLE     
S(3P) Fragmentation Channel of Carbonyl Sulfide at 230 nm
Xiang-Kun WU,Zhi GAO,Tong-Po YU,Xiao-Guo ZHOU*(),Shi-Lin LIU
Download: HTML     PDF(2129KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Carbonyl sulfide (OCS) was photoexcited at 230 nm so that it dissociated into a vibrationally cold but rotationally hot CO (X1Σg+, v = 0, J = 42–69) fragment, which was eventually subjected to resonance enhanced multiphoton ionization. The kinetic energy release distribution and angular distribution of the CO fragment were obtained by detecting the time-sliced velocity map images of CO+ in various rotational states (J = 55–69), wherein both the singlet dissociation channel of S(1D) + CO and the triplet pathway of S(3PJ) + CO were involved. For the triplet fragment channel, the total quantum yield of OCS dissociation at 230 nm was estimated to be 4.16%, based on the measured branching ratioin every rotational state. High-level quantum chemical calculations on the potential energy surface and the absorption cross section of OCS revealed the dissociation mechanism along the triplet channel of OCS, with photolysis at 230 nm. The ground state OCS (X1A') is photoexcited to the bent A1A' state at 230 nm, which then decays back to X1A' in a bent structure via internal conversion and subsequently couples to the 23A"(c3A") state by spin-orbit coupling, followed by direct dissociation along its potential energy surface.



Key wordsCarbonyl sulfide (OCS)      Photodissociation      Resonance enhanced multiphoton ionization      Branching ratio      Ion velocity imaging     
Received: 22 April 2017      Published: 18 May 2017
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(21373194);the National Natural Science Foundation of China(21573210);National Key Research and Development Program(2016YFF0200502);National Key Basic Research Program of China (973)(2013CB834602);the Ministry of Science and Technology of China(2012YQ220113)
Corresponding Authors: Xiao-Guo ZHOU     E-mail: xzhou@ustc.edu.cn
Cite this article:

Xiang-Kun WU,Zhi GAO,Tong-Po YU,Xiao-Guo ZHOU,Shi-Lin LIU. S(3P) Fragmentation Channel of Carbonyl Sulfide at 230 nm. Acta Phys. -Chim. Sin., 2017, 33(10): 2004-2012.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705183     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I10/2004

Fig 1 (a) (2 + 1) REMPI of CO(X1Σg+, v = 0, J) fragment; (b) relative population, PJ (J = 38–70), of CO(X1Σg+, v = 0, J) fragment.
Fig 2 Time-of-flight mass spectra of dissociative photoionization of OCS at 229.956, 229.868 and 229.848 eV.
Fig 3 Time-sliced velocity map images of CO (X1Σg+, v = 0, J) fragment dissociated from OCS.
Fig 4 Speed distributions of the CO fragment dissociation from OCS. (a) J = 60; (b) J = 63; (c) J = 66.
Fig 5 Branching ratio of the singlet and triplet dissociation channels TPJ of CO (X1Σg+, v = 0, J = 55-69) fragment.
JSingle channelTriplet channel
v2 = 0v2 = 1v2 = 2
This workExp. aThis workExp. aThis workThis workExp.b
550.75 ± 0.020.47 ± 0.050.86 ± 0.020.95 ± 0.020.76 ± 0.021.45 ± 0.20
571.27 ± 0.020.95 ± 0.081.12 ± 0.021.13 ± 0.030.74 ± 0.021.63 ± 0.13
581.54 ± 0.021.41 ± 0.071.35 ± 0.021.23 ± 0.050.83 ± 0.021.47 ± 0.07
591.64 ± 0.021.51 ± 0.091.53 ± 0.021.61 ± 0.030.92 ± 0.021.34 ± 0.08
601.56 ± 0.021.69 ± 0.051.68 ± 0.021.66 ± 0.031.10 ± 0.031.17 ± 0.06
611.67 ± 0.031.65 ± 0.041.81 ± 0.041.81 ± 0.041.34 ± 0.031.05 ± 0.09
621.46 ± 0.021.75 ± 0.041.75 ± 0.041.84 ± 0.021.60 ± 0.071.12 ± 0.07
631.37 ± 0.021.50 ± 0.101.73 ± 0.031.75 ± 0.031.60 ± 0.051.58 ± 0.10
641.41 ± 0.021.64 ± 0.011.70 ± 0.031.69 ± 0.021.77 ±0.051.10 ± 0.05
651.19 ± 0.021.42 ± 0.011.65 ± 0.031.71 ± 0.051.71 ± 0.040.88 ± 0.04
660.63 ± 0.011.17 ± 0.081.46 ± 0.021.63 ± 0.011.71 ± 0.040.83 ± 0.030.4
670.00 ± 0.010.98 ± 0.051.22 ± 0.021.59 ± 0.021.50 ± 0.030.82 ± 0.020.4
680.25 ± 0.010.76 ± 0.021.46 ± 0.040.77 ± 0.03
690.00 ± 0.011.19 ± 0.06
Table 1 Anisotropy parameters of CO (X1Σg+, v = 0, J = 55–69) fragment dissociated from OCS.
Fig 6 Potential energy curves of OCS along with the C―S bond22.
1 Hanst P. L. ; Spiller L. L. ; Watts D. M. ; Spence J. W. ; Miller M. F. J.Air Pollut. Control Assoc. 1975, 25, 1220.
2 Montzka S. ; Aydin M. ; Battle M. ; Butler J. ; Saltzman E. ; Hall B. ; Clarke A. ; Mondeel D. ; Elkins J. J.Geophys. Res. Atmos. 2004, 109, D22.
3 Cagnioncle A.-M. ; Parmentier E. M. ; Elkins-Tanton L. T. J.Geophys. Res. Solid Earth 2007, 112, B9.
4 Andreae M. O. ; Crutzen P. J. Science 1997, 276, 1052.
5 Krysztofiak G. ; Té Y.V. ; Catoire V. ; Berthet G. ; Toon G. C. ; Jégou F. ; Jeseck P. ; Robert C. Atmosphere-Ocean 2015, 53, 89.
6 Brühl C. ; Lelieveld J. ; Crutzen P. J. ; Tost H. Atmos. Chem. Phys. 2012, 12, 1239.
7 Forbes G. S. ; Cline J. E. J.Am. Chem. Soc. 1939, 61, 151.
8 Sidhu K. ; Csizmadia I. ; Strausz O. ; Gunning H. J.Am. Chem. Soc. 1966, 88, 2412.
9 Breckenridge W. ; Taube H. J.Chem. Phys. 1970, 52, 1713.
10 Ferro B. ; Reuben B. Trans. Faraday Soc. 1971, 67, 2847.
11 Rudolph R. N. ; Inn E. C. J.Geophys. Res. Oceans 1981, 86, 9891.
12 Molina L. ; Lamb J. ; Molina M. Geophys. Res. Lett. 1981, 8, 1008.
13 Zhao Z. ; Stickel R. ; Wine P. Geophys. Res. Lett. 1995, 22, 615.
14 Wu C. R. ; Chen F. ; Judge D. J.Quant. Spectrosc. Radiat. Transf. 1999, 61, 265.
15 Colussi A. J. ; Leung F.-Y. ; Hoffmann M. R. Environ. Chem 2004, 1, 44.
16 Danielache S. O. ; Nanbu S. ; Eskebjerg C. ; Johnson M. S. ; Yoshida N. J.Chem. Phys. 2009, 131, 024307.
17 Hattori S. ; Danielache S. ; Johnson M. S. ; Schmidt J. A. ; Kjaergaard H. G. ; Toyoda S. ; Ueno Y. ; Yoshida N. Atmos. Chem.Phys. 2011, 11, 10293.
18 Sunanda K. ; Rajasekhar B. ; Saraswathy P. ; Jagatap B. J.Quant.Spectrosc. Radiat. Transf. 2012, 113, 58.
19 Lim?o-Vieira P. ; Da Silva F. F. ; Almeida D. ; Hoshino M. ; Tanaka H. ; Mogi D. ; Tanioka T. ; Mason N. ; Hoffmann S. ; Hubin-Franskin M.-J J. Chem. Phys. 2015, 142, 064303.
20 Grosch H. ; Fateev A. ; Clausen S. J.Quant. Spectrosc. Radiat.Transf. 2015, 154, 28.
21 Toulson B. W. ; Murray C. J.Phys. Chem. A 2016, 120, 6745.
22 Schmidt J. A. ; Johnson M. S. ; McBane G. C. ; Schinke R. J.Chem.Phys. 2012, 136, 131101.
23 Schmidt J. A. ; Johnson M. S. ; McBane G. C. ; Schinke R. J.Chem.Phys. 2012, 137, 054313.
24 Suzuki T. ; Katayanagi H. ; Nanbu S. ; Aoyagi M. J.Chem. Phys. 1998, 109, 5778.
25 Sivakumar N. ; Burak I. ; Cheung W. ; Houston P. ; Hepburn J. J.Phys. Chem. 1985, 89, 3609.
26 Sivakumar N. ; Hall G. ; Houston P. ; Hepburn J. ; Burak I. J.Chem.Phys. 1988, 88, 3692.
27 Nan G. ; Burak I. ; Houston P. Chem. Phys. Lett. 1993, 209, 383.
28 Katayanagi H. ; Mo Y. ; Suzuki T. Chem. Phys. Lett. 1995, 247, 571.
29 Sato Y. ; Matsumi Y. ; Kawasaki M. ; Tsukiyama K. ; Bersohn R. J.Phys. Chem. 1995, 99, 16307.
30 Mo Y. ; Katayanagi H. ; Heaven M. C. ; Suzuki T. Phys. Rev. Lett. 1996, 77, 830.
31 Sugita A. ; Mashino M. ; Kawasaki M. ; Matsumi Y. ; Bersohn R. ; Trott-Kriegeskorte G. ; Karl-Heinz G. J.Chem. Phys. 2000, 112, 7095.
32 Katayanagi H. ; Suzuki T. Chem. Phys. Lett. 2002, 360, 104.
33 Van den Brom A. J. ; Rakitzis T. P. ; van Heyst J. ; Kitsopoulos T. N. ; Jezowski S. R. ; Janssen M. H. J.Chem. Phys. 2002, 117, 4255.
34 Rakitzis T. P. ; van den Brom A. J. ; Janssen M. H. Science 2004, 303, 1852.
35 Kim M. H. ; Li W. ; Lee S. K. ; Suits A. G. Can. J. Chem. 2004, 82, 880.
36 Lipciuc M. L. ; Janssen M. H. Phys. Chem. Chem. Phys. 2006, 8, 3007.
37 Brouard M. ; Green A. ; Quadrini F. ; Vallance C. J.Chem. Phys. 2007, 127, 084304.
38 Brouard M. ; Quadrini F. ; Vallance C. J.Chem. Phys. 2007, 127, 084305.
39 Lipciuc M. L. ; Rakitzis T. P. ; Meerts W. L. ; Groenenboom G. C. ; Janssen M. H. M. Phys. Chem. Chem. Phys. 2011, 13, 8549.
40 Wei W. ; Wallace C. J. ; McBane G. C. ; North S. W. J.Chem. Phys. 2016, 145, 024310.
41 McBane G. C. ; Schmidt J. A. ; Johnson M. S. ; Schinke R. J.Chem.Phys. 2013, 138, 094314.
42 Rijs A. M. ; Backus E. H. ; de Lange C. A. ; Janssen M. H. ; Westwood N. P. ; Wang K. ; McKoy V. J.Chem. Phys. 2002, 116, 2776.
43 Lee S. K. ; Silva R. ; Thamanna S. ; Vasyutinskii O. S. ; Suits A. G. J.Chem. Phys. 2006, 125, 144318.
44 Gebhardt C. R. ; Rakitzis T. P. ; Samartzis P. C. ; Ladopoulos V. ; Kitsopoulos T. N. Rev. Sci. Instrum. 2001, 72, 3848.
45 Tang X. ; Zhou X. ; Niu M. ; Liu S. ; Sun J. ; Shan X. ; Liu F. ; Sheng L. Rev. Sci. Instrum. 2009, 80, 113101.
46 Tjossem P. J. ; Smyth K. C. J.Chem. Phys. 1989, 91, 2041.
47 Rottke H. ; Zacharias H. Opt. Commun. 1985, 55, 87.
48 Bray R. ; Hochstrasser R.-M Mol. Phys. 1976, 31, 1199.
49 Holdy K. E. ; Klotz L. C. ; Wilson K. R. J.Chem. Phys. 1970, 52, 4588.
50 Zare R. N. Mol. Photochem 1972, 4, 1.
[1] SUN Zhong-Fa, GAO Zhi, WU Xiang-Kun, TANG Guo-Qiang, ZHOU Xiao-Guo, LIU Shi-Lin. Excitation Spectra and Photodissociation Dynamics of the B2П State of the N2O+ Ion[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 829-835.
[2] WU Dan, ZHANG Li-Min, ZHOU Dan-Na. Study on the Photodissociation Mechanism of N2O+ via B2ПiX2П Transitions[J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1575-1580.
[3] ZHANG Xiu, WU Dong, TANG Bi-Feng. Vibrational Internal Energy of Chloromethyl Radical Formed by the Photodissociation of CH2BrCl at 265 nm[J]. Acta Phys. -Chim. Sin., 2012, 28(05): 1045-1053.
[4] ZHOU Dan-Na, CHEN Lin, WU Dan, ZHANG Li-Min. Photodissociation Spectra of OCS+ via A2ПX2П Transitions[J]. Acta Phys. -Chim. Sin., 2012, 28(04): 963-970.
[5] WU Man-Man, TANG Xiao-Feng, NIU Ming-Li, ZHOU Xiao-Guo, DAI Jing-Hua, LIU Shi-Lin. Ionization and Dissociation of Methyl Chloride in an Excitation Energy Range of 13-17 eV[J]. Acta Phys. -Chim. Sin., 2011, 27(12): 2749-2754.
[6] ZHEN Cheng, TANG Xiao-Feng, ZHOU Xiao-Guo, LIU Shi-Lin. Application and Improvement in the Ion Velocity Imaging of Threshold Photoelectron-Photoion Coincidence Measurements[J]. Acta Phys. -Chim. Sin., 2011, 27(07): 1574-1578.
[7] CI Cheng-Gang, DUAN Xue-Mei, LIU Jing-Yao, SUN Chia-Chung. Photodissociation Mechanism of Cyanogen Azide[J]. Acta Phys. -Chim. Sin., 2010, 26(10): 2787-2792.
[8] ZHANG Feng, WANG Yan-Mei, ZHANG Bing, FENG Wen-Lin. Photolysis of n-C3H7I and i-C3H7I at 266 nm: Effect of Alkyl Radical Branching on the Dissociation Dynamics of the C—I Bond[J]. Acta Phys. -Chim. Sin., 2010, 26(07): 1903-1908.
[9] JI Min, ZHEN Jun-Feng, ZHANG Qun, CHEN Yang. Photodissociation Dynamics of tert-Butyl Nitrite Investigated by Time-Resolved Fourier TransformInfrared Emission Spectroscopy[J]. Acta Phys. -Chim. Sin., 2009, 25(08): 1641-1644.
[10] ZHANG Chang-Hua, ZHANG Yan, ZHANG Song, ZHANG Bing. Photodissociation Dynamics of Chloroiodomethane in the A-Band[J]. Acta Phys. -Chim. Sin., 2009, 25(08): 1708-1712.
[11] CAO Zhen-Zhou, ZHANG Chang-Hua, WANG Yan-Mei, ZHANG Feng, HUA Lin-Qiang, ZHANG Bing. Photodissociation Dynamics of o-Bromotoluene at 234 and 267 nm[J]. Acta Phys. -Chim. Sin., 2009, 25(03): 423-429.
[12] ZHANG Feng, CAO Zhen-Zhou, QIN Xiao, LIU Yu-Zhu, WANG Yan-Mei, ZHANG Bing. C—Br Bond Dissociation Mechanisms of 2-Bromothiophene and 3-Bromothiophene at 267 nm[J]. Acta Phys. -Chim. Sin., 2008, 24(08): 1335-1341.
[13] CHEN Yin; ZHANG Chang-Hua; CAO Zhen-Zhou; ZHANG Bing. UV Photodissociation Dynamics of C6H11Br by Velocity Map Ion Imaging[J]. Acta Phys. -Chim. Sin., 2008, 24(05): 844-848.
[14] MA Yu-Chao;ZHANG Li-Min;ZHUANG Xiu-Juan;WANG Jin-Ting;YANG Mao-Ping;YU Shu-Qin. Calculation of the Franck-Condon Factors for the C2Σg+←B2Σu+ Transitions of CS2+ Ions and Comparison with Related Photodissociation Spectra[J]. Acta Phys. -Chim. Sin., 2006, 22(12): 1532-1536.
[15] QU Hong-Bo;LIANG Feng;WEI Zheng-Rong;LI Hai-Yang;ZHANG Bing. Photodissociation Dynamics of n-C7H15Br Molecule by Ion Velocity Imaging[J]. Acta Phys. -Chim. Sin., 2006, 22(09): 1106-1110.