ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 0,Vol.>> Issue()>> 0-0     doi: 10.3866/PKU.WHXB201705183         中文摘要
Accepted manuscript
S(3P) Fragmentation Channel of Carbonyl Sulfide at 230 nm
WU Xiang-Kun, GAO Zhi, YU Tong-Po, ZHOU Xiao-Guo, LIU Shi-Lin
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
Full text: PDF (2136KB) Export: BibTeX | EndNote (RIS)

Carbonyl sulfide (OCS) was photoexcited at 230 nm so that it dissociated into a vibrationally cold but rotationally hot CO (X1Σg+, v = 0, J = 42–69) fragment, which was eventually subjected to resonance enhanced multiphoton ionization. The kinetic energy release distribution and angular distribution of the CO fragment were obtained by detecting the time-sliced velocity map images of CO+ in various rotational states (J = 55–69), wherein both the singlet dissociation channel of S(1D) + CO and the triplet pathway of S(3PJ) + CO were involved. For the triplet fragment channel, the total quantum yield of OCS dissociation at 230 nm was estimated to be 4.16%, based on the measured branching ratioin every rotational state. High-level quantum chemical calculations on the potential energy surface and the absorption cross section of OCS revealed the dissociation mechanism along the triplet channel of OCS, with photolysis at 230 nm. The ground state OCS (X1A') is photoexcited to the bent A1A' state at 230 nm, which then decays back to X1A' in a bent structure via internal conversion and subsequently couples to the 23A"(c3A") state by spin-orbit coupling, followed by direct dissociation along its potential energy surface.

Keywords: Carbonyl sulfide (OCS)   Photodissociation   Resonance enhanced multiphoton ionization   Branching ratio   Ion velocity imaging  
Received: 2017-04-22 Accepted: 2017-05-10 Publication Date (Web): 2017-05-18
Corresponding Authors: ZHOU Xiao-Guo Email:

Fund: The project was supported by the National Natural Science Foundation of China (21373194 and 21573210), National Key Research and Development Program (2016YFF0200502), National Key Basic Research Program of China (973) (2013CB834602) and the Ministry of Science and Technology of China (2012YQ220113).

Cite this article: WU Xiang-Kun, GAO Zhi, YU Tong-Po, ZHOU Xiao-Guo, LIU Shi-Lin . S(3P) Fragmentation Channel of Carbonyl Sulfide at 230 nm[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.    doi: 10.3866/PKU.WHXB201705183

(1) Hanst, P. L.; Spiller, L. L.; Watts, D. M.; Spence, J. W.; Miller, M. F. J. Air Pollut. Control Assoc. 1975, 25, 1220. doi: 10.1080/00022470.1975.10470199
(2) Montzka, S.; Aydin, M.; Battle, M.; Butler, J.; Saltzman, E.; Hall, B.; Clarke, A.; Mondeel, D.; Elkins, J. J. Geophys. Res. Atmos. 2004, 109, D22. doi: 10.1029/2004JD004686
(3) Cagnioncle, A. -M.; Parmentier, E. M.; Elkins-Tanton, L. T. J. Geophys. Res. Solid Earth 2007, 112, B9. doi: 10.1029/2007JB004934
(4) Andreae, M. O.; Crutzen, P. J. Science 1997, 276, 1052. doi: 10.1126/science.276.5315.1052
(5) Krysztofiak, G.; Té, Y. V.; Catoire, V.; Berthet, G.; Toon, G. C.; Jégou, F.; Jeseck, P.; Robert, C. Atmosphere-Ocean 2015, 53, 89. doi: 10.1080/07055900.2013.876609
(6) Brühl, C.; Lelieveld, J.; Crutzen, P. J.; Tost, H. Atmos. Chem. Phys. 2012, 12, 1239. doi: 10.5194/acp-12-1239-2012
(7) Forbes, G. S.; Cline, J. E. J. Am. Chem. Soc. 1939, 61, 151. doi: 10.1021/ja01870a049
(8) Sidhu, K.; Csizmadia, I.; Strausz, O.; Gunning, H. J. Am. Chem. Soc. 1966, 88, 2412. doi: 10.1021/ja00963a009
(9) Breckenridge, W.; Taube, H. J. Chem. Phys. 1970, 52, 1713. doi: 10.1063/1.1673209
(10) Ferro, B.; Reuben, B.. Trans. Faraday Soc. 1971, 67, 2847.
(11) Rudolph, R. N.; Inn, E. C. J. Geophys. Res. Oceans 1981, 86, 9891. doi: 10.1029/JC086iC10p09891
(12) Molina, L.; Lamb, J.; Molina, M. Geophys. Res. Lett. 1981, 8, 1008. doi: 10.1029/GL008i009p01008
(13) Zhao, Z.; Stickel, R.; Wine, P. Geophys. Res. Lett. 1995, 22, 615. doi: 10.1029/95GL00170
(14) Wu, C. R.; Chen, F.; Judge, D. J. Quant. Spectrosc. Radiat. Transf. 1999, 61, 265.
(15) Colussi, A. J.; Leung, F.-Y.; Hoffmann, M. R. Environ. Chem 2004, 1, 44. doi: 10.1071/EN04010
(16) Danielache, S. O.; Nanbu, S.; Eskebjerg, C.; Johnson, M. S.; Yoshida, N. J. Chem. Phys. 2009, 131, 024307. doi: 10.1063/1.3156314
(17) Hattori, S.; Danielache, S.; Johnson, M. S.; Schmidt, J. A.; Kjaergaard, H. G.; Toyoda, S.; Ueno, Y.; Yoshida, N. Atmos. Chem.Phys. 2011, 11, 10293. doi: 10.5194/acp-11-10293-2011
(18) Sunanda, K.; Rajasekhar, B.; Saraswathy, P.; Jagatap, B. J. Quant.Spectrosc. Radiat. Transf. 2012, 113, 58. doi: 10.1016/j.jqsrt.2011.09.009
(19) Limão-Vieira, P.; Da Silva, F. F.; Almeida, D.; Hoshino, M.; Tanaka, H.; Mogi, D.; Tanioka, T.; Mason, N.; Hoffmann, S.; Hubin-Franskin, M. -J. J. Chem. Phys. 2015, 142, 064303. doi: 10.1063/1.4907200
(20) Grosch, H.; Fateev, A.; Clausen, S. J. Quant. Spectrosc. Radiat.Transf. 2015, 154, 28. doi: 10.1016/j.jqsrt.2014.11.020
(21) Toulson, B. W.; Murray, C. J. Phys. Chem. A 2016, 120, 6745. doi: 10.1021/acs.jpca.6b06060
(22) Schmidt, J. A.; Johnson, M. S.; McBane, G. C.; Schinke, R. J. Chem.Phys. 2012, 136, 131101. doi: 10.1063/1.3701699
(23) Schmidt, J. A.; Johnson, M. S.; McBane, G. C.; Schinke, R. J. Chem.Phys. 2012, 137, 054313. doi: 10.1063/1.4739756
(24) Suzuki, T.; Katayanagi, H.; Nanbu, S.; Aoyagi, M. J. Chem. Phys. 1998, 109, 5778. doi: 10.1063/1.477200
(25) Sivakumar, N.; Burak, I.; Cheung, W.; Houston, P.; Hepburn, J. J. Phys. Chem. 1985, 89, 3609. doi: 10.1021/j100263a008
(26) Sivakumar, N.; Hall, G.; Houston, P.; Hepburn, J.; Burak, I. J. Chem.Phys. 1988, 88, 3692. doi: 10.1063/1.453869
(27) Nan, G.; Burak, I.; Houston, P. Chem. Phys. Lett. 1993, 209, 383. doi: 10.1016/0009-2614(93)80035-N
(28) Katayanagi, H.; Mo, Y.; Suzuki, T. Chem. Phys. Lett. 1995, 247, 571. doi: 10.1016/0009-2614(95)01253-2
(29) Sato, Y.; Matsumi, Y.; Kawasaki, M.; Tsukiyama, K.; Bersohn, R. J. Phys. Chem. 1995, 99, 16307. doi: 10.1021/j100044a017
(30) Mo, Y.; Katayanagi, H.; Heaven, M. C.; Suzuki, T. Phys. Rev. Lett. 1996, 77, 830. doi: 10.1103/PhysRevLett.77.830
(31) Sugita, A.; Mashino, M.; Kawasaki, M.; Matsumi, Y.; Bersohn, R.; Trott-Kriegeskorte, G.; Karl-Heinz, G. J. Chem. Phys. 2000, 112, 7095. doi: 10.1063/1.481324
(32) Katayanagi, H.; Suzuki, T. Chem. Phys. Lett. 2002, 360, 104. doi: 10.1016/S0009-2614(02)00788-1
(33) Van den Brom, A. J.; Rakitzis, T. P.; van Heyst, J.; Kitsopoulos, T. N.; Jezowski, S. R.; Janssen, M. H. J. Chem. Phys. 2002, 117, 4255. doi: 10.1063/1.1496464
(34) Rakitzis, T. P.; van den Brom, A. J.; Janssen, M. H. Science 2004, 303, 1852. doi: 10.1126/science.1094186
(35) Kim, M. H.; Li, W.; Lee, S. K.; Suits, A. G. Can. J. Chem. 2004, 82, 880. doi: 10.1139/V04-072
(36) Lipciuc, M. L.; Janssen, M. H. Phys. Chem. Chem. Phys. 2006, 8, 3007. doi: 10.1039/b605108a
(37) Brouard, M.; Green, A.; Quadrini, F.; Vallance, C. J. Chem. Phys. 2007, 127, 084304. doi: 10.1063/1.2757618
(38) Brouard, M.; Quadrini, F.; Vallance, C. J. Chem. Phys. 2007, 127, 084305. doi: 10.1063/1.2757619
(39) Lipciuc, M. L.; Rakitzis, T. P.; Meerts, W. L.; Groenenboom, G. C.; Janssen, M. H. M. Phys. Chem. Chem. Phys. 2011, 13, 8549. doi: 10.1039/c0cp02671a
(40) Wei, W.; Wallace, C. J.; McBane, G. C.; North, S. W. J. Chem. Phys. 2016, 145, 024310. doi: 10.1063/1.4955189
(41) McBane, G. C.; Schmidt, J. A.; Johnson, M. S.; Schinke, R. J. Chem.Phys. 2013, 138, 094314. doi: 10.1063/1.4793275
(42) Rijs, A. M.; Backus, E. H.; de Lange, C. A.; Janssen, M. H.; Westwood, N. P.; Wang, K.; McKoy, V. J. Chem. Phys. 2002, 116, 2776. doi: 10.1063/1.1434993
(43) Lee, S. K.; Silva, R.; Thamanna, S.; Vasyutinskii, O. S.; Suits, A. G. J. Chem. Phys. 2006, 125, 144318. doi: 10.1063/1.2357948
(44) Gebhardt, C. R.; Rakitzis, T. P.; Samartzis, P. C.; Ladopoulos, V.; Kitsopoulos, T. N. Rev. Sci. Instrum. 2001, 72, 3848. doi: 10.1063/1.1403010
(45) Tang, X.; Zhou, X.; Niu, M.; Liu, S.; Sun, J.; Shan, X.; Liu, F.; Sheng, L. Rev. Sci. Instrum. 2009, 80, 113101. doi: 10.1063/1.3250872
(46) Tjossem, P. J.; Smyth, K. C. J. Chem. Phys. 1989, 91, 2041. doi: 10.1063/1.457064
(47) Rottke, H.; Zacharias, H. Opt. Commun. 1985, 55, 87. doi: 10.1016/0030-4018(85)90306-2
(48) Bray, R.; Hochstrasser, R. -M. Mol. Phys. 1976, 31, 1199. doi: 10.1080/00268977600100931
(49) Holdy, K. E.; Klotz, L. C.; Wilson, K. R. J. Chem. Phys. 1970, 52, 4588. doi: 10.1063/1.1673690
(50) Zare, R. N. Mol. Photochem 1972, 4, 1.

1. SUN Zhong-Fa, GAO Zhi, WU Xiang-Kun, TANG Guo-Qiang, ZHOU Xiao-Guo, LIU Shi-Lin.Excitation Spectra and Photodissociation Dynamics of the B2П State of the N2O+ Ion[J]. Acta Phys. -Chim. Sin., 2015,31(5): 829-835
2. WU Dan, ZHANG Li-Min, ZHOU Dan-Na.Study on the Photodissociation Mechanism of N2O+ via B2ПiX2П Transitions[J]. Acta Phys. -Chim. Sin., 2014,30(8): 1575-1580
3. ZHOU Dan-Na, CHEN Lin, WU Dan, ZHANG Li-Min.Photodissociation Spectra of OCS+ via A2ПX2П Transitions[J]. Acta Phys. -Chim. Sin., 2012,28(04): 963-970
4. WU Man-Man, TANG Xiao-Feng, NIU Ming-Li, ZHOU Xiao-Guo, DAI Jing-Hua, LIU Shi-Lin.Ionization and Dissociation of Methyl Chloride in an Excitation Energy Range of 13-17 eV[J]. Acta Phys. -Chim. Sin., 2011,27(12): 2749-2754
5. ZHEN Cheng, TANG Xiao-Feng, ZHOU Xiao-Guo, LIU Shi-Lin.Application and Improvement in the Ion Velocity Imaging of Threshold Photoelectron-Photoion Coincidence Measurements[J]. Acta Phys. -Chim. Sin., 2011,27(07): 1574-1578
6. CI Cheng-Gang, DUAN Xue-Mei, LIU Jing-Yao, SUN Chia-Chung.Photodissociation Mechanism of Cyanogen Azide[J]. Acta Phys. -Chim. Sin., 2010,26(10): 2787-2792
7. ZHANG Chang-Hua, ZHANG Yan, ZHANG Song, ZHANG Bing.Photodissociation Dynamics of Chloroiodomethane in the A-Band[J]. Acta Phys. -Chim. Sin., 2009,25(08): 1708-1712
8. ZHANG Yan, WANG Jun, ZHENG Qiu-Sha, LIU Yu-Zhu, ZHANG Rong-Rong, HU Chang-Jin, TANG Bi-Feng, ZHANG Bing.Study on Photodissociation Dynamics of n-Pentyliodide Using Velocity Map Ion Imaging[J]. Acta Phys. -Chim. Sin., 2009,25(04): 661-667
9. CAO Zhen-Zhou, ZHANG Chang-Hua, WANG Yan-Mei, ZHANG Feng, HUA Lin-Qiang, ZHANG Bing.Photodissociation Dynamics of o-Bromotoluene at 234 and 267 nm[J]. Acta Phys. -Chim. Sin., 2009,25(03): 423-429
10. ZHANG Feng, CAO Zhen-Zhou, QIN Xiao, LIU Yu-Zhu, WANG Yan-Mei, ZHANG Bing.C—Br Bond Dissociation Mechanisms of 2-Bromothiophene and 3-Bromothiophene at 267 nm[J]. Acta Phys. -Chim. Sin., 2008,24(08): 1335-1341
11. CHEN Yin; ZHANG Chang-Hua; CAO Zhen-Zhou; ZHANG Bing.UV Photodissociation Dynamics of C6H11Br by Velocity Map Ion Imaging[J]. Acta Phys. -Chim. Sin., 2008,24(05): 844-848
12. MA Yu-Chao;ZHANG Li-Min;ZHUANG Xiu-Juan;WANG Jin-Ting;YANG Mao-Ping;YU Shu-Qin.Calculation of the Franck-Condon Factors for the C2Σg+←B2Σu+ Transitions of CS2+ Ions and Comparison with Related Photodissociation Spectra[J]. Acta Phys. -Chim. Sin., 2006,22(12): 1532-1536
13. QU Hong-Bo;LIANG Feng;WEI Zheng-Rong;LI Hai-Yang;ZHANG Bing.Photodissociation Dynamics of n-C7H15Br Molecule by Ion Velocity Imaging[J]. Acta Phys. -Chim. Sin., 2006,22(09): 1106-1110
14. ZHENG Qiu-Sha;TANG Ying;ZHU Rong-Shu;WEI Zheng-Rong;ZHANG Bing.Study on Photodissociation Dynamics of C8H17Br by Velocity Map Ion Imaging[J]. Acta Phys. -Chim. Sin., 2006,22(04): 460-464
15. ZHOU Xiao-Guo;LIU Shi-Lin.Ro-vibrational Analysis of the A2A″ Electronic State of the Vinyl Radical[J]. Acta Phys. -Chim. Sin., 2006,22(04): 481-485
16. ZHOU Xiao-guo; LIU Shi-lin.Rotational Analysis of the A2A''(v'=0)←X2A'(v''=0) Band of the Vinyl Radical[J]. Acta Phys. -Chim. Sin., 2006,22(01): 6-10
17. Tang Ying;Ji Lei;Tang Bi-Feng;Zhu Rong-Shu;Zhang Song;Zhang Bing.Photodissociation of Alkyl Bromides at UV Scope[J]. Acta Phys. -Chim. Sin., 2004,20(04): 344-349
18. Gao Wen-Bin;Hoger T;Halpern J B;Zacharias H.REMPI Spectrum of Atomic Oxygen O(3PJ″) from Photofragment of NO2[J]. Acta Phys. -Chim. Sin., 2003,19(09): 875-878
19. Chu Gao-Sheng, Song Qin-Hua, Wang Zhong-Yi, Ge Xue-Wu, Zhang Zhi-Cheng, Wang Wen-Feng, Yao Si-De.Laser Flsah Photolysis Study of Cyclic-Phe-His in Aqueous Solution[J]. Acta Phys. -Chim. Sin., 2000,16(03): 232-237
20. Hu Yi-Hua, Liu Mei-Xi, Wang Xiao-Juan, Zhou Jin-Yun, Yang Xin, Yang Shi-He.Photodissociation Spectroscopy of (C6H5F)+2[J]. Acta Phys. -Chim. Sin., 1999,15(12): 1057-1059
21. Zhang Li-Min, Chen Jun, Dai Jing-Hua, Wang Chu-Ji, Zhang Tao, Chen Cong-Xiang, Ma Xing-Xiao.The Multiphoton Dissociation and lonization of CS2 in the Range 242-260nm[J]. Acta Phys. -Chim. Sin., 1998,14(11): 1007-1012
22. Zhang Qun, Shu Ji-Nian, Zhou Xiao-Guo, Dai Jing-Hua, Li Quan-Xin.The Rotational Analysis for the 5pπE2Пr(ν’=1)←X2П(ν’’=0) Band of CF Radical[J]. Acta Phys. -Chim. Sin., 1998,14(10): 865-868
23. Zhang Bing, Zhang Fei-Hua, Fang Li, Zhang Fu-Yi, Lin Miao.Studies on the Reactions of Nickel Ion with n-Alkanes in the Gas Phase Using Time of Flight Mass Spectrometer[J]. Acta Phys. -Chim. Sin., 1994,10(12): 1059-1061
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388
^ Top