Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (11): 2284-2292    DOI: 10.3866/PKU.WHXB201705184
ARTICLE     
Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites
Yun-Long ZHANG1,2,Yu-Zhi ZHANG1,*(),Li-Xin SONG1,*(),Yun-Feng GUO1,2,Ling-Nan WU1,Tao ZHANG1
1 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(2133KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A special ZnO/graphene composite with an ink slab-like shape was synthesized by a facile one-step solution method. The morphology of the ink slab-like ZnO/graphene composites produced under different reaction conditions was studied by scanning electron microscopy (SEM), field emission SEM (FESEM), and high resolution transmission electron microscopy (HRTEM). The photocatalytic properties of the products obtained under different reaction conditions were evaluated to determine the effect of reaction conditions and morphology. Photoluminescence (PL) and UV-visible spectra were measured to study the recombination of electron-hole pairs and absorption of UV-visible light. The results showed that the growth process of the ink slab-like ZnO involves the 'corrosion mechanism'. The combination of graphene greatly enhanced the photocatalytic performance by enhancing light absorption, decreasing the band gap, and reducing the recombination probability of electron-hole pairs. Moreover, the bottom of the ink slab-like ZnO with a rough surface can greatly increase the reaction area. The extremely thin bottom of the ink slab offers a considerable build-in internal electric field that accelerates the separation of electron-hole pairs, thus decreasing the recombination probability and enhancing the photocatalytic performance.



Key wordsInk slab-like ZnO      Graphene      Composite      Photocatalytic degradation      Methylene blue     
Received: 20 March 2017      Published: 18 May 2017
MSC2000:  O643  
Corresponding Authors: Yu-Zhi ZHANG,Li-Xin SONG     E-mail: yzzhang@mail.sic.ac.cn;lxsong@mail.sic.ac.cn
Cite this article:

Yun-Long ZHANG,Yu-Zhi ZHANG,Li-Xin SONG,Yun-Feng GUO,Ling-Nan WU,Tao ZHANG. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites. Acta Physico-Chimica Sinca, 2017, 33(11): 2284-2292.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705184     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I11/2284

Fig 1 SEM images of productions acquired in different reaction conditions. The ratio of V(H2O) : V(DMF) in reaction solvent of (a)-(f) is 1 : 3, 1 : 2, 1 : 1, 2 : 1, 3 : 1 and 1 : 0.
Fig 2 SEM images of ink slab-like ZnO.
Fig 3 FESEM images of ink slab-like ZnO.
Fig 4 Schematic illustration of the growth of ink slab-like ZnO.
Fig 5 SEM images of productions acquired in different addition of GO in reaction solvents when the ratio of V(H2O) : V(DMF) is 1 : 1. The volume of GO in reaction solvent of (a)?(f) is 0 mL, 3 mL, 6 mL, 9 mL, 12 mL and 15 mL.
Fig 6 (a) TEM image of ink slab-like ZnO/graphene composite, (b) (c) HRTEM images of ink slab-like ZnO, (d) transmission electron diffraction patterns of the bottom of ink slab-like ZnO.
Fig 7 Different photocatalysts on the efficiency of photocatalytic degradation of MB.
Fig 8 Different photocatalysts acquired by controlling different addition of GO on the efficiency of photocatalytic degradation of MB.
Fig 9 PL emission spectra of ink slab-like ZnO, ink slab-like ZnO/graphene and composite A, B, D and E.
Fig 10 UV-Vis-DRS and (αhν)2 spectra of ink slablike ZnO and ink slab-like ZnO/graphene composite.
1 Hoffmann M. R. ; Martin S. T. ; Choi W. ; Bahnemann D. W. Chem.Rev. 1995, 95, 69.
2 Pekakis P. A. ; Xekoukoulotakis N. P. ; Mantzavinos D. Water Res. 2006, 40, 1276.
3 Chen C. ; Ma W. ; Zhao J. Chem. Soc. Rev. 2010, 39, 4206.
4 Chong M. N. ; Jin B. ; Chow C. W. K. ; Saint C. Water Res. 2010, 44, 2997.
5 Linsebigler A. L. ; Lu G. ; Yates J. T. Chem. Rev. 1995, 95, 735.
6 Ashkarran A. A. ; Mohammadi B. Appl. Surf. Sci. 2015, 342, 112.
7 Li B. ; Wang Y. J. Phys. Chem. C 2010, 114, 890.
8 Chen J. ; Bi H. ; Sun S. ; Tang Y. ; Zhao W. ; Lin T. ; Wan D. ; Huang F. ; Zhou X. ; Xie X. ; Jiang M. ACS Appl. Mater.Inter. 2013, 5, 1408.
9 Li B. ; Liu T. ; Wang Y. ; Wang Z. J. Colloid Interface Sci. 2012, 377, 114.
10 Hao C. ; Yang Y. ; Shen Y. ; Feng F. ; Wang X. ; Zhao Y. ; Ge C. Mater. Des. 2016, 89, 864.
11 Jang E. S. ; Won J. H. ; Hwang S. J. ; Choy J. H. Adv. Mater. 2006, 18, 3309.
12 Mclaren A. ; Valdes-Solis T. ; Li G. ; Tsang S. C. J. Am.Chem. Soc. 2009, 131, 12540.
13 Hummers W. S.; JR ; Offeman R. E. J. Am. Chem. Soc. 1958, 1339.
14 Chen Z. ; Zhou Y. ; Weng L. ; Zhao D. Cryst. Growth Des. 2008, 8, 4045.
15 Huang M. ; Yan Y. ; Feng W. ; Weng S. ; Zheng Z. ; Fu X. ; Liu P. Cryst. Growth Des. 2014, 14, 2179.
16 Sun S. ; Zhang X. ; Zhang J. ; Song X. ; Yang Z. Cryst.Growth Des. 2012, 12, 2411.
17 Fu D. ; Han G. ; Chang Y. ; Dong J. Mater. Chem. Phys. 2012, 132, 673.
18 Chen Y. ; Zhao H. ; Bin Liu ; Yang H. Appl. Catal. B-Environ. 2015, 163, 189.
19 Wu X. ; Wen L. ; Lv K. ; Deng K. ; Tang D. ; Ye H. ; Du D. ; Liu S. ; Li M. Appl. Surf. Sci. 2015, 358, 130.
20 Moussa H. ; Girot E. ; Mozet K. ; Alem H. ; Medjahdi G. ; Schneider R. Appl. Catal. B-Environ. 2016, 185, 11.
21 Zhou M. ; Lou X. W. D. ; Xie Y. Nano Today 2013, 8, 598.
[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[2] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[3] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[4] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[5] LI Guo-Min, ZHU Bao-Shun, LIANG Li-Ping, TIAN Yu-Ming, Lü Bao-Liang, WANG Lian-Cheng. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1715-1720.
[6] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[7] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[8] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[9] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1338-1353.
[10] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1492-1498.
[11] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1230-1235.
[12] LI Jun-Tao, WU Jiao-Hong, ZHANG Tao, HUANG Ling. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 968-975.
[13] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 520-529.
[14] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 554-562.
[15] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 377-385.