ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(10)>> 2106-2112     doi: 10.3866/PKU.WHXB201705186         中文摘要
Investigation of the Growth Mechanism and Compositional Segregations of Monodispersed Ferrite Nanoparticles by Transmission Electron Microscopy
LIU Wei-Yan1, LI Ya-Dong1,2, LIU Tian1, GAN Lin1,2
1. Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, P. R. China;
2. Electron Microscopy Laboratory, Materials and Devices Testing Center, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, P. R. China
Full text: PDF (1688KB) HTML Export: BibTeX | EndNote (RIS)

Understanding the growth mechanism of nanocrystals is crucial for the synthesis of high-quality monodispersed nanoparticles. In contrast to the widely studied growth mechanism of metal nanocrystals, the growth mechanism of metal oxide nanoparticles is still poorly understood. Exemplified by cobalt/manganese ferrite nanoparticles prepared by thermal decomposition, we reveal the growth mechanism and associated compositional segregations of bimetallic metal oxide nanoparticles by using transmission electron microscopy combined with electron energy loss spectroscopy (EELS). We found that a two-stage heating protocol, involving a first-stage heating at a relatively lower temperature followed by a second-stage heating at a relatively higher temperature, is crucial to synthesize monodispersed ferrite nanoparticles. Controlling the reaction time of the first-stage heating can effectively decouple the nucleation stage and growth stage of ferrite nanoparticles, leading to monodispersed nanoparticles with a narrow size distribution. EELS spectrum imaging further reveals previously unreported compositional segregations in the as-prepared ferrite nanoparticles, suggesting that an Fe-rich core formed at the nucleation stage and a Co-/Mn-rich shell formed at the growth stage. Our results provide useful insight into the synthesis of high-quality monodispersed metal oxide nanoparticles as well as a correct understanding of the surface chemistry and related physiochemical properties of spinel oxide nanocrystals prepared by thermal decomposition.

Keywords: Nanocrystal growth mechanism   Ferrite nanocrystals   Surface segregation   Transmission electron microscopy   Electron energy loss spectroscopy  
Received: 2017-03-30 Accepted: 2017-05-02 Publication Date (Web): 2017-05-18
Corresponding Authors: GAN Lin Email:

Fund: The project was supported by the Guangdong Natural Science Foundation for Distinguished Young Scholars, China (2016A030306035) and Shenzhen Basic Research Program, China (JCYJ20160531194754308).

Cite this article: LIU Wei-Yan, LI Ya-Dong, LIU Tian, GAN Lin. Investigation of the Growth Mechanism and Compositional Segregations of Monodispersed Ferrite Nanoparticles by Transmission Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2017,33 (10): 2106-2112.    doi: 10.3866/PKU.WHXB201705186

(1) Zhu, H.; Zhang, S.; Huang, Y. X.; Wu, L.; Sun, S. Nano Lett. 2013, 13, 2947. doi: 10.1021/nl401325u
(2) Sartale, S. D.; Lokhande, C. D.; Ganesan, V. Phys. Status Solidi A 2005, 202, 85. doi: 10.1002/pssa.200406898
(3) Wu, Z. S.; Yang, S.; Sun, Y.; Parvez, K.; Feng, X.; Mullen, K. J. Am.Chem. Soc. 2012, 134, 9082. doi: 10.1021/ja3030565
(4) Singh, J. P.; Singh, N. K.; Singh, R. N. Int. J. Hydrog. Energy 1999, 24, 322. doi: 10.1016/S0360-3199(98)00084-6
(5) Singh, N. K.; Singh, R. N. Indian J. Chem. 1999, 38, 491.
(6) Singh, R. N.; Singh, J. P.; Lal, B.; Thomas, M. J. K.; Bera, S. Electrochim. Acta 2006, 51, 5515. doi: 10.1016/j.electacta.200602028
(7) Landon, J.; Demeter, E.; ?no?lu, N.; Keturakis, C.; Wachs, I. E.; Vasi?, R.; Frenkel, A. I.; Kitchin, J. R. ACS Catal. 2012, 2, 1793. doi: 10.1021/cs3002644
(8) Khurshid, H.; Li, W. F.; Chandra, S.; Phan, M. H.; Hadjipanayis, G.C.; Mukherjeea, P.; Srikanth, H. Nanoscale 2013, 5, 7942. doi: 10.1039/c3nr02596a
(9) Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S.X.; Li, G. J. Am. Chem. Soc. 2004, 126, 273. doi: 10.1021/ja0380852
(10) Xie, J.; Liu, G.; Eden, H. S.; Ai, H.; Chen, X. Y. Acc. Chem.Res. 2011, 44, 883. doi: 10.1021/ar200044b
(11) Kumar, C. S.; Mohammad, F. Adv. Drug Deliv. Rev. 2011, 63, 789. doi: 10.1016/j.addr.2011.03.008
(12) Hao, R.; Xing, R.; Xu, Z.; Hou, Y.; Gao, S.; Sun, S. Adv.Mater. 2010, 22, 2729. doi: 10.1002/adma.201000260
(13) Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I. ACS Nano 2008, 2, 889. doi: 10.1021/nn800072t
(14) Kikuchi, T.; Kasuya, R.; Endo, S.; Nakamura, A.; Takai, T.; Metzler-Nolte, N.; Balachandran, J. J. Magn. Magn. Mater. 2011, 323, 1216. doi: 10.1016/j.jmmm.2010.11.009
(15) Xu, Z. C.; Shen, C. M.; Hou, Y. L.; Gao, H. J.; Sun, S. S. Chem. Mater. 2009, 21, 1778. doi: 10.1021/cm802978z
(16) Zeng, H.; Rice, P. M.; Wang, S. X.; Sun, S. J. Am. Chem. Soc. 2004, 126, 11458. doi: 10.1021/ja045911d
(17) Jana, N. R.; Chen, Y. F.; Peng, X. G. Chem. Mater. 2004, 16, 3931. doi: 10.1021/cm049221k
(18) Li, M.; Xiong, Y.; Liu, X.; Bo, X.; Zhang, Y.; Han, C.; Guo, L. Nanoscale 2015, 7, 8920. doi: 10.1039/c4nr07243j
(19) Harris, R. A.; Shumbula, P. M.; van der Walt, H. Langmuir 2015, 31, 3934. doi: 10.1021/acs.langmuir.5b00671
(20) Gan, L.; Cui, C. H.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Science 2014, 346, 1502. doi: 10.1126/science.1261212
(21) Gan, L.; Rudi, S.; Cui, C. H.; Heggen, M.; Strasser, P. Small 2016, 12, 3189. doi: 10.1002/smll.201600027
(22) Niu, Z. Q.; Becknell, N.; Yu, Y.; Kim, D.; Chen, C.; Kornienko, N.; Somorjai, G. A.; Yang, P. D. Nature Mater. 2016, 15, 1188. doi: 10.1038/nmat4724
(23) Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Science 2009, 324, 1309. doi: 10.1126/science.1172104
(24) Snyder, J.; McCue, I.; Livi, K.; Erlebacher, J. J. Am. Chem.Soc. 2012, 134, 8633. doi: 10.1021/ja3019498
(25) Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Angew.Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248
(26) Liang, W.; Zhang, X.; Bustillo, K.; Chiu, C. H.; Wu, W. W.; Xu, J.; Chu, Y. H.; Zheng, H. Chem. Mater. 2015, 27, 8146. doi: 10.1021/acs.chemmater.5b03930
(27) Zhang, F.; Yuan, C.; Zhu, J.; Wang, J.; Zhang, X.; Lou, X. W.D. Adv. Funct. Mater. 2013, 23, 3909. doi: 10.1002/adfm.201203844
(28) LaMer, V. K.; Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847. doi: 10.1021/ja01167a001
(29) Watzky, M. A.; Finke, R. G. J. Am. Chem. Soc. 1997, 119, 10382. doi: 10.1021/ja9705102
(30) Schmid, H. K.; Mader, W. Micron 2006, 37, 426. doi: 10.1016/j.micron.2005.12.004
(31) Van Aken, P. A.; Liebscher, B. Phys. Chem. Miner. 2002, 29, 188. doi: 10.1007/s00269-001-0222-6

1. Lü Dan-Hui, ZHU Dan-Cheng, JIN Chuan-Hong.Preferential Substitution of Selenium along the Grain Boundaries in Monolayer MoS2(1-x)Se2x Alloy[J]. Acta Phys. -Chim. Sin., 2017,33(8): 1514-1519
2. JIANG Ao-Ke, ZHAO Ya-Wen, LONG Zhong, ZHANG Lei, HU Yin, ZENG Rong-Guang, ZHANG Yan-Zhi, XIAO Hong, ZHU Kang-Wei, LIU Ke-Zhao.EXELFS Analysis of Lattice Structure of Uranium Dioxide[J]. Acta Phys. -Chim. Sin., 2017,33(2): 364-369
3. LI Ya-Dong, DENG Yu-Feng, PAN Zhi-Yi, WEI Yin-Ping, ZHAO Shi-Xi, GAN Lin.Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Phys. -Chim. Sin., 2017,33(11): 2293-2300
4. HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze.Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2016,32(9): 2287-2292
5. HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze.Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016,32(6): 1489-1494
6. DAI Jian-Feng, GAO Hui-Fang, WANG Jun-Hong, FU Bi.Preparation and Magnetic Properties of La-Co Co-Doped M-Type Strontium Ferrite Nanofibres[J]. Acta Phys. -Chim. Sin., 2012,28(03): 729-732
7. LIU Jian-Hua, YOU Dun, YU Mei, LI Song-Mei.Preparation of BaTiO3-BaFe12O19 Core-Shell Structure Particles by Homogeneous Coprecipitation[J]. Acta Phys. -Chim. Sin., 2011,27(05): 1254-1260
8. GUO Xia, LI Hua, GUO Rong.Coexistence of Oligonucleotide/Single-Chained Cationic Surfactant Vesicles with Precipitates[J]. Acta Phys. -Chim. Sin., 2010,26(08): 2195-2199
9. LIU Jian-Cai, ZHANG Xin-Ming, CHEN Ming-An, TANG Jian-Guo, LIU Sheng-Dan.Prediction of the Surface Segregation of Trace Elements on the Al(100) Surface by Density Functional Theory[J]. Acta Phys. -Chim. Sin., 2009,25(12): 2519-2523
10. GAN Zhi-ping; GUAN Jian-guo.Chemical Self-assembly Route to Fabricate Hollow Barium Ferrite Submicrospheres[J]. Acta Phys. -Chim. Sin., 2006,22(02): 189-192
11. Zhang Sheng-Mao;Zhang Chun-Li;Zhang Jing-Wei;Zhang Zhi-Jun;Dang Hong-Xin;Wu Zhi-Shen;Liu Wei-Min.Preparation of Silver Nanoparticles in Room Temperature Ionic Liquids[J]. Acta Phys. -Chim. Sin., 2004,20(05): 554-556
12. Zhang Han-Jie;Bao Shi-Ning;He Pi-Mo;Wang Sui-Dong;Fung Ming-Kai;Lee Zheng-Sheng;Lee Shu-Tang.Chemical Reaction between LiF and Al with or without the Presence of Alq3[J]. Acta Phys. -Chim. Sin., 2003,19(08): 770-773
13. Ruan Sheng-Ping;Wu Feng-Qing;Wang Yong-Wei;Zhang Li;Wu Ri-Na;Xuan Li.Synthesis and Microwave Absorbing Properties of Nanocrystalline Barium Ferrite Composite Material[J]. Acta Phys. -Chim. Sin., 2003,19(03): 275-277
14. Chi Guang-Jun;Yao Su-Wei;Fan Jun;Zhang Wei-Guo;Wang Hong-Zhi.Electrochemically Assembled Silver Nanowire Arrays and Its Structural Characterization[J]. Acta Phys. -Chim. Sin., 2002,18(06): 532-535
15. Feng Wei-Min.The Adsorption and Reaction of Acetonitrile and Benzonitrile on Cu(111) and Pd(100)[J]. Acta Phys. -Chim. Sin., 1992,8(03): 313-320
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388
^ Top