ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 0,Vol.>> Issue()>> 0-0     doi: 10.3866/PKU.WHXB201715185         中文摘要
Accepted manuscript
Visualization of Energy Band Alignment in Thin-Film Optoelectronic Devices with Scanning Kelvin Probe Microscopy
LIU Ji-Chong1,2, TANG Feng1,2, YE Feng-Ye1,3, CHEN Qi1, CHEN Li-Wei1
1. i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, P. R. China;
2. University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
3. Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
Full text: PDF (2025KB) Export: BibTeX | EndNote (RIS)

Understanding the energy band alignment across multiple layers in thin-film optoelectronic devices is extremely important because it governs elementary optoelectronic processes, such as charge carrier generation, separation, transport, recombination and collection. This monograph summarizes recent progress in visualization of energy band alignment in thin-film optoelectronic devices, such as organic solar cells (OSCs) and organic-inorganic perovskite photodetectors from our group by using scanning Kelvin probe microscopy (SKPM). Since active layers are enclosed by the top and bottom electrodes in vertically stacked devices, it is highly challenging to study the energy band alignment under operando conditions. Thus, cross-sectional SKPM has been developed to resolve this challenge. The results demonstrated that the interlayer was one of the most important factors for adjusting energy band alignment, determining device polarity and improving device performance. The characterization methods described in this monograph are poised to be widely applied to research in various thin-film optoelectronic devices, such as photovoltaic devices, photodetectors and light-emitting diodes (LEDs), especially those devices with tandem structures.

Keywords: Scanning Kelvin probe microscopy   Energy band alignment   Cross-section   Interlayer Organic solar cells   Organic-inorganic perovskite photodetectors  
Received: 2017-04-13 Accepted: 2017-05-16 Publication Date (Web): 2017-05-18
Corresponding Authors: CHEN Qi, CHEN Li-Wei Email:;

Fund: The project was supported by the National Natural Science Foundation of China (21625304, 51473184 and 11504408), Ministry of Science and Technology of China (2016YFA0200703), the CAS Research Equipment Development Program (YZ201654).

Cite this article: LIU Ji-Chong, TANG Feng, YE Feng-Ye, CHEN Qi, CHEN Li-Wei. Visualization of Energy Band Alignment in Thin-Film Optoelectronic Devices with Scanning Kelvin Probe Microscopy[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.    doi: 10.3866/PKU.WHXB201715185

(1) He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nat. Photon. 2012, 6, 591. doi: 10.1038/nphoton.2012.190
(2) Hu, X.; Zhang, X. D.; Liang, L.; Bao, J.; Li, S.; Yang, W. L.; Xie, Y. Adv. Funct. Mater. 2014, 24, 7373. doi: 10.1002/adfm.201402020
(3) Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Nat. Nanotechnol. 2014, 9, 687. doi: 10.1038/nnano.2014.149
(4) Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Nature 2014, 515, 96. doi: 10.1038/nature13829
(5) He, Z. C.; Xiao, B.; Liu, F.; Wu, H. B.; Yang, Y. L.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y. Nat. Photon. 2015, 9, 174. doi: 10.1038/nphoton.2015.6
(6) Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv.Mater. 2015, 27, 1170. doi: 10.1002/adma.201404317
(7) Zhang, Y.; Deng, D.; Lu, K.; Zhang, J.; Xia, B.; Zhao, Y.; Fang, J.; Wei, Z. Adv. Mater. 2015, 27, 1071. doi: 10.1002/adma.201404902
(8) Liu, W.; Li, S.; Huang, J.; Yang, S.; Chen, J.; Zuo, L.; Shi, M.; Zhan, X.; Li, C. Z.; Chen, H. Adv. Mater. 2016, 28, 9729. doi: 10.1002/adma.201603518
(9) Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Adv. Mater. 2016, 28, 9423. doi: 10.1002/adma.201602776
(10) Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganas, O.; Gao, F.; Hou, J. Adv. Mater. 2016, 28, 4734. doi: 10.1002/adma.201600281
(11) Yang, Y.; Zhang, Z. G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 15011. doi: 10.1021/jacs.6b09110
(12) Zhang, J.; Zhang, Y.; Fang, J.; Lu, K.; Wang, Z.; Ma, W.; Wei, Z. J. Am. Chem. Soc. 2015, 137, 8176. doi: 10.1021/jacs.5b03449
(13) Zhao, W.; Li, S.; Zhang, S.; Liu, X.; Hou, J. Adv. Mater. 2017, 29, 1604059. doi: 10.1002/adma.201604059
(14) Wang, W.; Zhang, F.; Du, M.; Li, L.; Zhang, M.; Wang, K.; Wang, Y.; Hu, B.; Fang, Y.; Huang, J. Nano Lett. 2017, 17, 1995. doi: 10.1021/acs.nanolett.6b05418
(15) Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Adv. Mater. 2007, 19, 1551. doi: 10.1002/adma.200601093
(16) Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Adv. Mater. 1999, 11, 605. doi: 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
(17) Ishii, H.; Hayashi, N.; Ito, E.; Washizu, Y.; Sugi, K.; Kimura, Y.; Niwano, M.; Ouchi, Y.; Seki, K. Phys. Stat. Sol. A 2004, 201, 1075. doi: 10.1002/pssa.200404346
(18) Li, D. H.; Yan, H.; Li, C.; Yang, Y. L.; Wei, Z. X.; Wang, C. Chin. Sci.Bull. 2014, 59, 360. doi: 10.1007/s11434-013-0040-5
(19) He, Z.; Zhong, C.; Huang, X.; Wong, W. Y.; Wu, H. B.; Chen, L.; Su, S.; Cao, Y. Adv. Mater. 2011, 23, 4636. doi: 10.1002/adma.201103006
(20) Huang, F.; Wu, H. B.; Wang, D.; Yang, W.; Cao, Y. Chem. Mater. 2004, 16, 708. doi: 10.1021/cm034650o
(21) He, C.; Zhong, C. M.; Wu, H. B.; Yang, R. Q.; Yang, W.; Huang, F.; Bazan, G. C.; Cao, Y. J. Mater. Chem. 2010, 20, 2617. doi: 10.1039/b921775d
(22) Tan, W. Y.; Wang, R.; Li, M.; Liu, G.; Chen, P.; Li, X. C.; Lu, S. M.; Zhu, H. L.; Peng, Q. M.; Zhu, X. H.; Chen, W.; Choy, W. C. H.; Li, F.; Peng, J. B.; Cao, Y. Adv. Funct. Mater. 2014, 24, 6540. doi: 10.1002/adfm.201401685
(23) Liu, W.; Liang, T.; Chen, Q.; Yu, Z.; Zhang, Y.; Liu, Y.; Fu, W.; Tang, F.; Chen, L.; Chen, H. ACS Appl. Mater. Interfaces 2016, 8, 9254. doi: 10.1021/acsami.6b00327
(24) Tan, W. Y.; Gao, D. Y.; Zhong, S.; Zhang, J.; Zou, J. H.; Zhu, X. H.; Chen, W.; Peng, J. B.; Cao, Y. Org. Electron. 2016, 28, 269. doi: 10.1016/j.orgel.2015.11.002
(25) Li, Y.; Mao, L.; Tang, F.; Chen, Q.; Wang, Y.; Ye, F.; Chen, L.; Li, Y.; Wu, D.; Cui, Z.; Cai, J.; Chen, L. Sol. Energy Mater. Sol. Cells 2015, 143, 354. doi: 10.1016/j.solmat.2015.07.022
(26) Chen, F.; Chen, Q.; Mao, L.; Wang, Y.; Huang, X.; Lu, W.; Wang, B.; Chen, L. Nanotechnology 2013, 24, 484011. doi: 10.1088/0957-4484/24/48/484011
(27) Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Gratzel, M.; Han, H. Science 2014, 345, 295. doi: 10.1126/science.1254763
(28) Li, Y.; Meng, L.; Yang, Y. M.; Xu, G.; Hong, Z.; Chen, Q.; You, J.; Li, G.; Yang, Y.; Li, Y. Nat. Commun. 2016, 7, 10214. doi: 10.1038/ncomms10214
(29) Liu, X.; Lin, F.; Chueh, C. C.; Chen, Q.; Zhao, T.; Liang, P. W.; Zhu, Z. L.; Sun, Y.; Jen, A. K. Y. Nano Energy 2016, 30, 417. doi: 10.1016/j.nanoen.2016.10.036
(30) Li, X. Y.; Zhang, L. P.; Tang, F.; Bao, Z. M.; Lin, J.; Li, Y. Q.; Chen, L.; Ma, C. Q. RSC Adv. 2016, 6, 24501. doi: 10.1039/c5ra25787e
(31) Zhao, T.; Chueh, C. C.; Chen, Q.; Rajagopal, A.; Jen, A. K. Y. ACSEnergy Lett. 2016, 1, 757. doi: 10.1021/acsenergylett.6b00327
(32) Chen, Q.; Chen, L.; Ye, F.; Zhao, T.; Tang, F.; Rajagopal, A.; Jiang, Z.; Jiang, S.; Jen, A. K.; Xie, Y.; Cai, J.; Chen, L. Nano Lett. 2017. doi: 10.1021/acs.nanolett.7b00847
(33) Dou, L.; Yang, Y. M.; You, J.; Hong, Z.; Chang, W. H.; Li, G.; Yang, Y. Nat. Commun. 2014, 5, 5404. doi: 10.1038/ncomms6404
(34) Tang, F.; Chen, Q.; Chen, L.; Ye, F.; Cai, J.; Chen, L. Appl. Phys. Lett. 2016, 109, 123301. doi: 10.1063/1.4963269
(35) Yip, H. L.; Jen, A. K. Y. Energy Environ. Sci. 2012, 5, 5994. doi: 10.1039/c2ee02806a
(36) Liang, X.; Ren, Y.; Bai, S.; Zhang, N.; Dai, X.; Wang, X.; He, H.; Jin, C.; Ye, Z.; Chen, Q.; Chen, L.; Wang, J.; Jin, Y. Chem. Mater. 2014, 26, 5169. doi: 10.1021/cm502812c
(37) Lee, J.; Kong, J.; Kim, H.; Kang, S. O.; Lee, K. Appl. Phys. Lett. 2011, 99, 243301. doi: 10.1063/1.3669533
(38) Saive, R.; Scherer, M.; Mueller, C.; Daume, D.; Schinke, J.; Kroeger, M.; Kowalsky, W. Adv. Funct. Mater. 2013, 23, 5854. doi: 10.1002/adfm.201301315
(39) Bergmann, V. W.; Weber, S. A.; Javier Ramos, F.; Nazeeruddin, M.K.; Gratzel, M.; Li, D.; Domanski, A. L.; Lieberwirth, I.; Ahmad, S.; Berger, R. Nat. Commun. 2014, 5, 5001. doi: 10.1038/ncomms6001
(40) Chen, Q.; Mao, L.; Li, Y.; Kong, T.; Wu, N.; Ma, C.; Bai, S.; Jin, Y.; Wu, D.; Lu, W.; Wang, B.; Chen, L. Nat. Commun. 2015, 6, 7745. doi: 10.1038/ncomms8745
(41) Liscio, A.; Palermo, V.; Samorì, P. Acc. Chem. Res. 2010, 43, 541. doi: 10.1021/ar900247p
(42) Charrier, D. S. H.; Kemerink, M.; Smalbrugge, B. E.; de Vries, T.; Janssen, R. A. J. ACS Nano 2008, 2, 622. doi: 10.1021/nn700190t
(43) Cohen, G.; Halpern, E.; Nanayakkara, S. U.; Luther, J. M.; Held, C.; Bennewitz, R.; Boag, A.; Rosenwaks, Y. Nanotechnology 2013, 24, 295702. doi: 10.1088/0957-4484/24/29/295702
(44) Nanayakkara, S. U.; Cohen, G.; Jiang, C. S.; Romero, M. J.; Maturova, K.; Al-Jassim, M.; van de Lagemaat, J.; Rosenwaks, Y.; Luther, J. M. Nano Lett. 2013, 13, 1278. doi: 10.1021/nl400014

Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388
^ Top