Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (12): 2510-2516    DOI: 10.3866/PKU.WHXB201705311
ARTICLE     
Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials
Zhao-Yang JIA1,2,Mei-Nan LIU2,*(),Xin-Luo ZHAO3,Xian-Shu WANG2,Zheng-Hui PAN2,Yue-Gang ZHANG2,4,*()
1 Department of Chemistry, Shanghai University, Shanghai 200444, P. R. China
2 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, P. R. China
3 Department of Physics, Shanghai University, Shanghai 200444, P. R. China
4 Department of Physics, Tsinghua University, Beijing 100084, P. R. China
Download: HTML     PDF(1060KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A lithium ion hybrid supercapacitor system with battery and supercapacitor characteristics has the potential to meet the increasing demand for an energy storage device with both high energy and power densities. In this work, orthorhombic Nb2O5 (T-Nb2O5) with three-dimensional (3D) flower-like structures was synthesized by a facile hydrothermal reaction and an annealing process. A lithium ion hybrid supercapacitor was constructed by using T-Nb2O5 as an anode and commercial activated carbon (AC) as a cathode. The electrochemical performance of these T-Nb2O5/AC hybrid capacitors was measured by cyclic voltammetry and galvanostatic charge/discharge tests. The results showed that the working voltage of the hybrid supercapacitor could reach 3.0 V in the organic carbonate electrolyte system. The as-assembled device showed impressive power density of 294 W·kg-1 and energy density of 53.79 W·h·kg-1 at a current density of 100 mA·g-1 with a voltage range of 0.5-3.5 V. Moreover, it also showed excellent cycling stability with a retention of 73% after 1000 cycles at 200 mA·g-1. These results demonstrate that this novel lithium ion hybrid supercapacitor based on T-Nb2O5 with 3D flower-like structures and AC is a promising candidate for high power density energy storage applications.



Key wordsLithium ion hybrid supercapacitor      Three-dimensional flower-like structure      Orthorhombic Nb2O5      Organic electrolyte      Activate carbon     
Received: 08 May 2017      Published: 31 May 2017
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(51402345)
Corresponding Authors: Mei-Nan LIU,Yue-Gang ZHANG     E-mail: mnliu2013@sinano.ac.cn;ygzhang2012@sinano.ac.cn
Cite this article:

Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials. Acta Physico-Chimica Sinca, 2017, 33(12): 2510-2516.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705311     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2510

Fig 1 XRD pattern (a) and Raman spectrum (b) of the as-prepared T-Nb2O5.
Fig 2 SEM (a, b) and TEM (c, d) images of the as-prepared 3D T-Nb2O5 flowers.
Fig 3 Cyclic voltammogram curves of the 3D T-Nb2O5 flowers at different scanning rate.
Fig 4 Cycling performance of the 3D T-Nb2O5 flowers and the c-Nb2O5 at 0.5C (a), and Rate performance of the 3D T-Nb2O5 flower electrode from 0.1C to 5C in the half-cell test (b).
Fig 5 Cycle performance of AC with the potential range of 3.0-4.5 V (vs Li/Li+) (a); Ragone plots of T-Nb2O5/AC hybrid capacitor with different mass ratio of anode and cathode active materials.
Fig 6 Cyclic voltammograms (a) and Galvanostatic charging/discharging curves of the T-Nb2O5/AC lithium ion hybrid supercapacitor (b); Ragone plot of different capacitors (c); Cycling performance of the T-Nb2O5/AC hybrid capacitor at 200 mA?g-1 (d).
1 Winter M. ; Brodd R. J Chem. Rev. 2004, 104, 4245.
2 Zheng Z. M. ; Zhang P. ; Yan X. B Chin. Sci. Bull 2013, 58, 3115.
2 郑宗敏; 张鹏; 阎兴斌. 科学通报, 2013, 58, 3115.
3 An B. K. H. ; Kim W. S. ; Park Y. S. ; Moon J. M. ; Bea D. J. ; Lim S. C. ; Lee Y. S. ; Lee Y. H Adv. Funct. Mater 2001, 11, 387.
4 Yoshino A Angew. Chem. Int. Ed 2012, 51, 5798.
5 Simon P. ; Gogotsi Y Nat. Mater 2008, 7, 845.
6 Miller J R ; Simon P Science 2008, 321, 651.
7 Su Y. F. ; Wu F. ; Bao L. Y. ; Xu B. ; Chen S Acta Chim. Sin 2008, 66, 591.
7 苏岳峰; 吴锋; 包丽颖; 徐斌; 陈实. 化学学报, 2008, 66, 591.
8 Jiang J. M. ; Nie P. ; Dong S.P ; Wu Y.T ; Zhang X. G Acta Phys. -Chim. Sin 2017, 33, 780.
8 将江民; 聂平; 董升阳; 吴宇婷; 张校刚. 物理化学学报, 2017, 33, 780.
9 Naoi K. ; Naoi W. ; Aoyagi S. ; Miyamoto J. I. ; Kamino T Acc. Chem. Res 2012, 46, 1075.
10 Liu H. J. ; Xia Y. Y Prog. Chem 2011, 23, 595.
10 刘海晶; 夏永姚. 化学进展, 2011, 23, 595.
11 Naoi K. ; Ishimoto S. ; Miyamoto J. I. ; Naoi W Energy Environ. Sci 2012, 5, 9363.
12 Cheng L. ; Liu H. J. ; Zhang J. J. ; Xiong H. M. ; Xia Y.Y. J.Electrochem. Soc 2006, 153, A1472.
13 Naoi K Fuel. Cells 2010, 10, 825.
14 Chen Z. ; Augustyn V. ; Wen J. ; Zhang Y. W. ; Shen M. Q. ; Dunn B. ; Lu Y. F Adv. Mater 2011, 23, 791.
15 Aravindan V. ; Sundaramurthy J. ; Jain A. ; Kumar S. ; Ling W.C. ; Ramarkrishna S. ; Srinivasan M. P. ; Madhavi S ChemSusChem 2014, 7, 1858.
16 Augustyn V. ; Come J. ; Lowe M. A. ; Kim J. W. ; Taberna P. L. ; Tolbert S. H. ; Abrüna H. D. ; Simon P. ; Dunn B Nat. Mater 2013, 12, 518.
17 Viet A. L. ; Reddy M. V. ; Jose R. ; Chowdari B. V. R. ; Ramakrishna S. J. Phys. Chem. C. 2014, 114, 664.
18 Liu M. N. ; Yan C. ; Zhang Y. G Sci. Rep 2015, 5, 8326.
19 Come J. ; Augustyn V. ; Kim J. W. ; Rozier P. ; Taberna P. L. ; Gogotsi P. ; Log J. W ; Dunn B. ; Simon P. J Electrochem. Soc 2014, 161, A718.
20 Li G. Z. ; Qiu Y. C. ; Hou Y. ; Li H. F. ; Zhou L. S. ; Deng H. ; Zhang Y.G. J. Mater. Chem. A 2015, 3, 1103.
21 Kim S. I. ; Lee J. S. ; Ahn H. J. ; Song H. K. ; Jang J. H ACS Appl. Mat. Interfaces 2013, 5, 1596.
22 Tang Y. X. ; Rui X. H. ; Zhang Y. Y. ; Lim T. M. ; Dong Z. L. ; Hng H. H. ; Chen X. D. ; Yan Q. Y. ; Chen Z. J. Mater. Chem. A 2013, 1, 82.
23 Griffith K. J. ; Forse A. C. ; Griffin J. M. ; Grey C. P. J Am. Chem. Soc 2016, 138, 8888.
24 Arunkumar P. ; Ashish A. G. ; Babu B. ; Sarang S. ; Suresh A. ; Sharma C. H. ; Thalakulam M. ; Shaijumon M. M RSC Adv 2015, 5, 59997.
25 Xie S. B. ; Iglesia E. ; Bell A. T. J. Phys. Chem. B 2001, 105, 5144.
26 Wang X. L. ; Li G. ; Chen Z. ; Augustyn V. ; Ma X.M. ; Wang G. ; Dunn B. ; Lu Y. F Adv. Energy Mater 2011, 1, 1089.
27 Tang C. H. ; Tang Z. ; Gong H. J Electrochem. Soc 2012, 159, A651.
28 Deng L. J. ; Zhu G. ; Wang J. F. ; Kang L. P. ; Liu Z. H. ; Yang Z.P. ; Wang Z. L. J Power Sources 2011, 196, 10782.
29 Aravindan V. ; Shubha N. ; Ling W. C. ; Madhavi S. J. Mater. Chem. A 2013, 1, 6145.
30 Chen Z. ; Augustyn V. ; Wen J. ; Zhang Y. W. ; Shen M. Q. ; Dunn B. ; Lu Y. F Adv. Energy Mater 2011, 23, 791.
[1] HUANG Bo, SUN Xian-Zhong, ZHANG Xiong, ZHANG Da-Cheng, MA Yan-Wei. Organic Electrolytes for Activated Carbon-Based Supercapacitors with Flexible Package[J]. Acta Physico-Chimica Sinca, 2013, 29(09): 1998-2004.
[2] ZHOU Jin, LI Wen, XING Wei, ZHUO Shu-Ping. Capacitive Performance of Tunable Ordered Mesoporous Carbons in Organic and H2SO4 Electrolytes[J]. Acta Physico-Chimica Sinca, 2011, 27(06): 1431-1438.
[3] SUN Gang-Wei, SONG Wen-Hua, LIU Xiao-Jun, QIAO Wen-Ming, LING Li-Cheng. Asymmetric Capacitance Behavior Based on the Relationship between Ion Dimension and Pore Size[J]. Acta Physico-Chimica Sinca, 2011, 27(02): 449-454.
[4] GAO Bao-jiao; ZHANG Xin; LIU Qi-fa. Effect of Organic Electrolyte on Chloromethylation of Polystyrene in Micellar Catalytic System[J]. Acta Physico-Chimica Sinca, 2006, 22(01): 86-91.