Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (12): 2454-2462    DOI: 10.3866/PKU.WHXB201706092
ARTICLE     
Dynamic Analysis of Carbon Dots/KOH Electrolyte Interface by IMPS/IMVS
Li-Xia SANG*(),Jia LIN,Hao GE,Lei LEI
Download: HTML     PDF(1268KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The dynamic behaviors at the interface of carbon dots and KOH electrolyte were studied using intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) in the photoelectrochemical hydrogen production from water splitting. The results show that the kinetic parameters like electron transport time (τd), electron diffusion coefficient (Dn), electron lifetime (τn), and electron diffusion length (Ln) remain unchanged in the light intensity range of 30-90 mW·cm-2. When the light intensity increases to 110 and 130 mW·cm-2, τd and τn increase, while Dn decreases. It is indicated that the photogenerated electrons are mainly transported in the trap-free limited diffusion mode at the electrode/electrolyte interface due to the presence of few defects in carbon dots, which is different from the mode of transport at the semiconductor TiO2/electrolyte interface. Moreover, the photocarrier collection efficiencies (ηcc) associated with the electron transport time and the electron lifetime are similar for light intensity of 30-130 mW·cm-2.



Key wordsCarbon dots      Photoelectrochemical hydrogen production      Interface dynamic      IMPS      IMVS     
Received: 08 May 2017      Published: 09 June 2017
MSC2000:  O649  
Fund:  the National Natural Science Foundation of China(51376013)
Corresponding Authors: Li-Xia SANG     E-mail: sanglixia@bjut.edu.cn
Cite this article:

Li-Xia SANG,Jia LIN,Hao GE,Lei LEI. Dynamic Analysis of Carbon Dots/KOH Electrolyte Interface by IMPS/IMVS. Acta Phys. -Chim. Sin., 2017, 33(12): 2454-2462.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706092     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2454

Fig 1 (a) TEM image of the carbon dots prepared at 40 V for 5 h in alkaline solution via the one step alkali-assisted electrochemical method. (b) Size distribution histogram estimated from HRTEM measurements of carbon dots. (c) Up-converted PL spectra of the as-prepared carbon dots with varying excitation wavelengths (λ = 360, 380, 400, 420, 440, 460 nm). (d) FTIR spectra of the as-prepared carbon dots
Fig 2 IMPS plot of carbon dots electrode in 1 mol·L-1 KOH aqueous solution Illumination: λ = 470 nm, Io = 30 mW·cm-2
Fig 3 IMPS plot of carbon dots electrode with different light intensities in 1 mol·L-1 KOH aqueous solution Illumination: λ = 470 nm, Io = 30, 50, 70, 90, 110, 130 mW·cm-2
Light intensity/(mW·cm-2)f(min, IMPS)/kHzτd/μs1011Dn/(cm2·s-1)
3010.015.93.0
5010.015.93.0
7010.015.93.0
9010.015.93.0
1108.917.92.7
1308.917.92.7
Table 1 Electron transport time and diffusion coefficient of carbon dots/KOH interface with different light densities
Fig 4 The IMVS plot of carbon dots electrode in 1mol·L-1 KOH aqueous solution Illumination: λ = 470 nm, Io = 30 mW·cm-2
Fig 5 IMVS plot of carbon dots electrode with different light intensities in 1 mol·L-1 KOH aqueous solution Illumination: λ = 470 nm, Io = 30, 50, 70, 90, 110, 130 mW·cm-2
Light intensity/(mW·cm-2)f(min, IMVS)/kHzτn/μsLn/nmηcc/%
3025.363.40.43674.92
5025.363.40.43674.92
7025.363.40.43674.92
9025.363.40.43674.92
11022.471.10.43874.82
13022.471.10.43874.82
Table 2 Electron lifetime, electron diffusion length and carrier collection efficiency of carbon dots/KOH interface with different light densities
1 Tachibana Y. ; Vayssieres L. ; Durrant J. R. Nat. Photon. 2012, 6, 511.
2 Youngblood W. J. ; Lee S. H. A. ; Maeda K. ; Mallouk T. E. Acc. Chem. Res. 2009, 42, 1966.
3 Shen C. ; Chua C. S. ; Lim Y. F. ; Wang Q. ChemElectroChem 2016, 24, 1471.
4 Xu X. ; Ray R. ; Gu Y. ; Ploehn H.J. ; Gearheart L. ; Raker K. ; Scrivens W. J. Am. Chem. Soc. 2004, 126, 12736.
5 Zhang Z. Y. ; Sang L. X. ; Sun B. ; Zhang X. M. ; Ma C. F. Acta Phys. -Chim. Sin. 2010, 26, 2935.
5 张知宇; 桑丽霞; 孙彪; 张晓敏; 马重芳. 物理化学学报, 2010, 26, 2935.
6 Yu H. J. ; Zhao Y. F. ; Zhou C. ; Shang L. ; Peng Y. ; Cao Y. H. ; Wu L. Z. ; Tung C. H. ; Zhang T. R. J. Mater. Chem. A 2014, 2, 3344.
7 Leng W. H. ; Barnes P. R. ; Juozapavicius M. ; Regan B. C. ; Durrant J. R. J. Phys. Chem. Lett. 2010, 1, 967.
8 Sang L. X. ; Zhang Y. D. ; Wang J. ; Zhao Y. X. ; Chen Y. T. Phys. Chem. Chem. Phys. 2016, 18, 15427.
9 Bian J. C. ; Hang C. ; Wang L. Y. ; Hung T. F. ; Daoud W. A. ; Zhang R. Q. ACS Appl. Mater. Interfaces 2014, 6, 4883.
10 Wang F. ; Zhang Y. L. ; Liu Y. ; Wang X. F. ; Shen M. R. ; Lee S. T. ; Kang Z. H. J. Mater. Chem. A 2013, 5, 1831.
11 Yang P. J. ; Zhao J. H. ; Wang J. ; Cui H. J. ; Li L. ; Zhu Z. P. RSC Adv. 2015, 5, 21332.
12 Cao L. ; Sahu S. ; Anilkumar P. ; Bunker C. E. ; Xu J. ; Fernando K. A. S. ; Wang P. ; Guliants E. A. ; Tackett K. N. ; Sun Y. P. J. Am. Chem. Soc. 2011, 133, 4754.
13 Dino K. ; David S. E. ; Hen D. ; Avner R. Phys. Chem. Chem. Phys. 2016, 18, 23438.
14 Yin F. ; Lin Y. ; Lin R. F. ; Xiao X. R. Acta Phys. -Chim. Sin. 2002, 18, 21.
14 尹峰; 林原; 林瑞峰; 肖绪瑞. 物理化学学报, 2002, 18, 21.
15 Zhang C. N. ; Huang Y. ; Chen S. H. ; Tian H. J. ; Mo L. ; Hu L. H. ; Huo Z. P. ; Kong F. T. ; Ma Y. W. ; Dai S.Y. J. Phys. Chem. C 2012, 116, 19807.
16 Bertoluzzi L. ; Lopezvaro P. ; Tejada J. A. J. ; Bisquert J. J. Mater. Chem. A 2016, 4, 2873.
17 Yu X. ; Liu R. ; Zhang G. ; Cao H. Nanotechnology 2013, 24, 335401.
18 Sun, Y J. Preparation and Photoelectrochemical Properties of Modified TiO2 Thin Films. Master Dissertation, Fudan University, Shanghai, 2012.
18 孙钰珺.改性TiO2薄膜的制备及其光电化学性能研究[D].上海:复旦大学, 2012.
19 Bao L. ; Zhang Z. L. ; Tian Z.Q. ; Peng D. W. Adv. Mater. 2011, 23, 5801.
20 Hu S. ; Tian R. ; Wu L. ; Zhao Q. ; Yang J. ; Liu J. Cao S. Chem. Asian. J. 2013, 8, 1035.
21 Zhu S. J. ; Song Y. B. ; Zhao X. H. ; Bai Y. Nano Res. 2015, 8, 355.
22 Bisquert J. ; Belmonte G. G. ; Santiago F. F. J. Solid State Electrochem. 1999, 3, 337.
23 Zhang J. B. ; Lin Y. ; Lin R. F. Sinence in China (Series B). 2000, 20, 263.
23 张敬波; 林原; 林瑞峰. 中国科学化学, 2000, 20, 263.
24 Vanmaekelbergh D. ; Jongh P. E. D. Phys. Rev. B 2000, 61, 4699.
25 Hsiao P. T. ; Tung Y. L. ; Teng H. J. Phys. Chem. C 2010, 114, 6762.
26 Shangguan P. P. ; Tong S. P. ; Li H. L. ; Leng W. H. Acta Phys. -Chim. Sin. 2013, 29, 1954.
26 上官鹏鹏; 童少平; 李海丽; 冷文华. 物理化学学报, 2013, 29, 1954.
27 Peter L. M. ; Wijayantha K. G. U. ; Tahir A. A. Faraday Discuss. 2012, 155, 309.
28 Lewerenz H. J. ; Peter L. RSC Energy and Environment Series; Springer: New York 2013.
29 Jongh P. E. D. ; Vanmaekelbergh D. Phys. Rev. Lett. 1996, 77, 3427.
30 Miyashita M. ; Sunahara K. J. ; Nishikawa T. ; Uemura Y. ; Koumura N. ; Hara K. ; Mori A. ; Abe T. ; Suzuki E. ; Mori S. J. Am. Chem. Soc. 2008, 130, 17874.
31 Dloczik L. ; Lleperuma O. ; Lauermann I. ; Peter L. M. ; Ponomarev E. A. ; Redmond G. ; Shaw N. J. ; Uhlendorf I. J. Phys.Chem. B 1997, 101, 10281.
32 Franco G. ; Gehring J. ; Peter L. M. ; Ponomarev E. A. ; Uhlendorf I. J. Phys. Chem. B 1999, 103, 692.
33 Kem R. ; Sastrawan R. ; Ferber J. ; Luther R. S. Electrochim. Acta 2002, 47, 4213.
34 Peter L. M. ; Wijayantha K. G. U. Electrochim. Acta 2000, 45, 4543.
35 Guillen E. ; Peter L. M. ; Anta J. A. J. Phys. Chem. C 2016, 115, 22622.
36 Schlichth rl G. ; Huang S. Y. ; Sprague J. ; Frank A. J. J. Phys. Chem. B 1997, 101, 8141.
37 Zheng J. W. ; Mo L. E. ; Chen W.C. ; Jiang L. ; Ding Y. C. ; Ding Y. ; Li Z. Q. ; Hu L. H. ; Dai S. Y. Electrochim. Acta 2017, 232, 38.
38 Yu X. Y. ; Liao J. Y. ; Qiu K. Q. ; Kuang D. B. ; Su C. Y. ACS Nano 2011, 5, 9494.
39 Desario P. A. ; Pietron J. J. ; Taffa D. H. ; Compton R. ; Schuenemann S. ; Marschall R. ; Brintlinger T. H. ; Stroud R. M. ; Wark M. ; Owrutsky J. C. ; Rolison D. R. J. Phys. Chem. C 2015, 119, 17529.
40 Liang L. Y. ; Dai S. Y. ; Fang X. Q. ; Hu L. H. Acta Phys. Sin. 2008, 57, 1190.
40 梁林云; 戴松元; 方霞琴; 胡林华. 物理学报, 2008, 57, 1190.
[1] Jin-Long LIU,Liang-Zhen LIN,Jin-Feng HU,Ming-Jie BAI,Liang-Xian CHEN,Jun-Jun WEI,Li-Fu HEI,Cheng-Ming LI. Reaction Process and Luminescence Mechanism of Carbon Nanodots Prepared by Microwave Synthesis[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 92-98.
[2] Yin Feng;Lin Yuan;Lin Rui-Feng;Xiao Xu-Rui. Photocatalytic Mechanism Studies of TiO2 Particulate Suspension by IntensityModulation Photocurrent Spectroscopy[J]. Acta Phys. -Chim. Sin., 2002, 18(01): 21-25.