Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(12)>> 2454-2462     doi: 10.3866/PKU.WHXB201706092         中文摘要
Article
Dynamic Analysis of Carbon Dots/KOH Electrolyte Interface by IMPS/IMVS
SANG Li-Xia, LIN Jia, GE Hao, LEI Lei
Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Municipality, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
Full text: PDF (1268KB) HTML Export: BibTeX | EndNote (RIS)

The dynamic behaviors at the interface of carbon dots and KOH electrolyte were studied using intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) in the photoelectrochemical hydrogen production from water splitting. The results show that the kinetic parameters like electron transport time (τd), electron diffusion coefficient (Dn), electron lifetime (τn), and electron diffusion length (Ln) remain unchanged in the light intensity range of 30-90 mW·cm-2. When the light intensity increases to 110 and 130 mW·cm-2, τd and τn increase, while Dn decreases. It is indicated that the photogenerated electrons are mainly transported in the trap-free limited diffusion mode at the electrode/electrolyte interface due to the presence of few defects in carbon dots, which is different from the mode of transport at the semiconductor TiO2/electrolyte interface. Moreover, the photocarrier collection efficiencies (ηcc) associated with the electron transport time and the electron lifetime are similar for light intensity of 30-130 mW·cm-2.



Keywords: Carbon dots   Photoelectrochemical hydrogen production   Interface dynamic   IMPS   IMVS  
Received: 2017-05-08 Accepted: 2017-05-31 Publication Date (Web): 2017-06-09
Corresponding Authors: SANG Li-Xia Email: sanglixia@bjut.edu.cn

Fund: The project was supported by the National Natural Science Foundation of China (51376013).

Cite this article: SANG Li-Xia, LIN Jia, GE Hao, LEI Lei. Dynamic Analysis of Carbon Dots/KOH Electrolyte Interface by IMPS/IMVS[J]. Acta Phys. -Chim. Sin., 2017,33 (12): 2454-2462.    doi: 10.3866/PKU.WHXB201706092

(1) Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Nat. Photon. 2012, 6, 511. doi: 10.1038/NPHOTON.2012.175
(2) Youngblood, W. J.; Lee, S. H. A.; Maeda, K.; Mallouk, T. E. Acc. Chem. Res. 2009, 42, 1966. doi: 10.1021/ar9002398
(3) Shen, C.; Chua, C. S.; Lim, Y. F.; Wang, Q. ChemElectroChem 2016, 24, 1471. doi: 10.1002/celc.201600273
(4) Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W. J. Am. Chem. Soc. 2004, 126, 12736. doi: 10.1021/ja040082h
(5) Zhang, Z. Y.; Sang, L. X.; Sun, B.; Zhang, X. M.; Ma, C. F. Acta Phys. -Chim. Sin. 2010, 26, 2935. [张知宇, 桑丽霞, 孙 彪, 张晓敏, 马重芳, 物理化学学报, 2010, 26, 2935.]doi: 10.3866/PKU.WHXB201006001
(6) Yu, H. J.; Zhao, Y. F.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R.. J. Mater. Chem. A 2014, 2, 3344. doi: 10.1039/c3ta14108j
(7) Leng, W. H.; Barnes, P. R.; Juozapavicius, M.; Regan, B. C.; Durrant, J. R. J. Phys. Chem. Lett. 2010, 1, 967. doi: 10.1021/jz100051q
(8) Sang, L. X.; Zhang, Y. D.; Wang, J.; Zhao, Y. X.; Chen, Y. T. Phys. Chem. Chem. Phys. 2016, 18, 15427. doi: 10.1039/c6cp01990k
(9) Bian, J. C.; Hang, C.; Wang, L. Y.; Hung, T. F.; Daoud, W. A.; Zhang, R. Q. ACS Appl. Mater. Interfaces 2014, 6, 4883. doi: 10.1021/am4059183
(10) Wang, F.; Zhang, Y. L.; Liu, Y.; Wang, X. F.; Shen, M. R.; Lee, S. T.; Kang, Z. H. J. Mater. Chem. A 2013, 5, 1831. doi: 10.1039/c3nr33985h
(11) Yang, P. J.; Zhao, J. H.; Wang, J.; Cui, H. J.; Li, L.; Zhu, Z. P. RSC Adv. 2015, 5, 21332. doi: 10.1039/c5ra01924a
(12) Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, C. E.; Xu, J.; Fernando, K. A. S.; Wang, P.; Guliants, E. A.; Tackett, K. N.; Sun, Y. P. J. Am. Chem. Soc. 2011, 133, 4754. doi: 10.1021/ja200804h
(13) Dino, K.; David, S. E.; Hen, D.; Avner, R. Phys. Chem. Chem. Phys. 2016, 18, 23438. doi: 10.1039/c6cp04683e
(14) Yin, F.; Lin, Y.; Lin, R. F.; Xiao, X. R. Acta Phys. -Chim. Sin. 2002, 18, 21. [尹 峰, 林 原, 林瑞峰, 肖绪瑞. 物理化学学报, 2002, 18, 21.] doi: 10.3866/PKU.WHXB20020105
(15) Zhang, C. N.; Huang, Y.; Chen, S. H.; Tian, H. J.; Mo, L.; Hu, L. H.; Huo, Z. P.; Kong, F. T.; Ma, Y. W.; Dai, S.Y. J. Phys. Chem. C 2012, 116, 19807. doi: 10.1021/jp304911u
(16) Bertoluzzi, L.; Lopezvaro, P.; Tejada, J. A. J.; Bisquert, J. J. Mater. Chem. A 2016, 4, 2873. doi: 10.1039/c5ta03210e
(17) Yu, X.; Liu, R.; Zhang, G.; Cao, H. Nanotechnology 2013, 24, 335401. doi: 10.1088/0597-4484/24/33/335401
(18) Sun, Y J. Preparation and Photoelectrochemical Properties ofModified TiO2 Thin Films. Master Dissertation, FudanUniversity, Shanghai, 2012. [孙钰珺. 改性 TiO2 薄膜的制备及其光电化学性能研究[D]. 上海: 复旦大学, 2012.]
(19) Bao, L.; Zhang, Z. L.; Tian, Z.Q.; Peng, D. W. Adv. Mater. 2011, 23, 5801. doi: 10.1002/adma.201102866
(20) Hu, S.; Tian, R.; Wu, L.; Zhao, Q.; Yang, J.; Liu, J.; Cao, S. Chem. Asian. J. 2013, 8, 1035. doi: 10.1002/asia.201300076
(21) Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Bai, Y. Nano Res. 2015, 8, 355. doi: 10.1007/s12274-014-0644-3
(22) Bisquert, J.; Belmonte, G. G.; Santiago, F. F. J. Solid State Electrochem. 1999, 3, 337. doi: 10.1007/s100080050164
(23) Zhang, J. B.; Lin, Y.; Lin R. F. Sinence in China (Series B). 2000, 20, 263. [张敬波, 林 原, 林瑞峰. 中国科学化学, 2000, 20, 263.] doi: 10.3221/j.issn:1006-9240.2000.03.010
(24) Vanmaekelbergh, D.; Jongh, P. E. D. Phys. Rev. B 2000, 61, 4699. doi: 10.1103/physRevB.61.4699
(25) Hsiao, P. T.; Tung, Y. L.; Teng, H. J. Phys. Chem. C 2010, 114, 6762. doi: 10.1021/jp1006457
(26) Shangguan, P. P.; Tong, S. P.; Li, H. L.; Leng, W. H. Acta Phys. -Chim. Sin. 2013, 29, 1954. [上官鹏鹏, 童少平, 李海丽, 冷文华. 物理化学学报, 2013, 29, 1954.]doi: 10.3866/PKU.WHXB201306261
(27) Peter, L. M.; Wijayantha, K. G. U.; Tahir, A. A. FaradayDiscuss. 2012, 155, 309. doi: 10.1039/C1FD00079A
(28) Lewerenz, H. J.; Peter, L. RSC Energy and Environment Series; Springer: New York, 2013; pp 19–47.
(29) Jongh, P. E. D.; Vanmaekelbergh, D. Phys. Rev. Lett. 1996, 77, 3427. doi: 10.1103/PhysRevLett.77.3427
(30) Miyashita, M.; Sunahara, K. J.; Nishikawa, T.; Uemura, Y.; Koumura, N.; Hara, K.; Mori, A.; Abe, T.; Suzuki, E.; Mori, S. J. Am. Chem. Soc. 2008, 130, 17874. doi: 10.1021/ja803534u
(31) Dloczik, L.; Lleperuma, O.; Lauermann, I.; Peter, L. M.; Ponomarev, E. A.; Redmond, G.; Shaw, N. J.; Uhlendorf, I. J. Phys.Chem. B 1997, 101, 10281. doi: 10.1021/jp972466i
(32) Franco, G.; Gehring, J.; Peter, L. M.; Ponomarev, E. A.; Uhlendorf, I. J. Phys. Chem. B 1999, 103, 692. doi: 10.1021/jp984060r
(33) Kem, R.; Sastrawan, R.; Ferber, J.; Luther, R. S. Electrochim. Acta 2002, 47, 4213. doi: 10.1016/S0013-4686(02)00444-9
(34) Peter, L. M.; Wijayantha, K. G. U. Electrochim. Acta 2000, 45, 4543. doi: 10.1016/S0013-4686(00)00605-8
(35) Guillen, E.; Peter, L. M.; Anta, J. A. J. Phys. Chem. C 2016, 115, 22622. doi: 10.1021/jp206698t
(36) Schlichthörl, G.; Huang, S. Y.; Sprague, J.; Frank, A. J. J. Phys. Chem. B 1997, 101, 8141. doi: 10.1021/jp9714126
(37) Zheng, J. W.; Mo, L. E.; Chen, W.C.; Jiang, L.; Ding, Y. C.; Ding, Y.; Li, Z. Q.; Hu, L. H.; Dai, S. Y. Electrochim. Acta 2017, 232, 38. doi: 10.1016/j.electacta.2017.02.121
(38) Yu, X. Y.; Liao, J. Y.; Qiu, K. Q.; Kuang, D. B.; Su, C. Y. ACS Nano 2011, 5, 9494. doi: 10.1021/nnn203375g
(39) Desario, P. A.; Pietron, J. J.; Taffa, D. H.; Compton, R.; Schuenemann, S.; Marschall, R.; Brintlinger, T. H.; Stroud, R.M.; Wark, M.; Owrutsky, J. C.; Rolison, D. R. J. Phys. Chem. C 2015, 119, 17529. doi: 10.1021/acs.jpcc.5b04013
(40) Liang, L. Y.; Dai, S. Y.; Fang, X. Q.; Hu, L. H. Acta Phys. Sin. 2008, 57, 1190. [梁林云, 戴松元, 方霞琴,胡林华.物理学报, 2008, 57, 1190.]doi: 10.3321/j.issn:1000-3290.2008.03.111

Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top