Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (12): 2454-2462    DOI: 10.3866/PKU.WHXB201706092
Article     
Dynamic Analysis of Carbon Dots/KOH Electrolyte Interface by IMPS/IMVS
SANG Li-Xia, LIN Jia, GE Hao, LEI Lei
Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Municipality, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
Download:   PDF(1268KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The dynamic behaviors at the interface of carbon dots and KOH electrolyte were studied using intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) in the photoelectrochemical hydrogen production from water splitting. The results show that the kinetic parameters like electron transport time (τd), electron diffusion coefficient (Dn), electron lifetime (τn), and electron diffusion length (Ln) remain unchanged in the light intensity range of 30-90 mW·cm-2. When the light intensity increases to 110 and 130 mW·cm-2, τd and τn increase, while Dn decreases. It is indicated that the photogenerated electrons are mainly transported in the trap-free limited diffusion mode at the electrode/electrolyte interface due to the presence of few defects in carbon dots, which is different from the mode of transport at the semiconductor TiO2/electrolyte interface. Moreover, the photocarrier collection efficiencies (ηcc) associated with the electron transport time and the electron lifetime are similar for light intensity of 30-130 mW·cm-2.



Key wordsCarbon dots      Photoelectrochemical hydrogen production      Interface dynamic      IMPS      IMVS     
Received: 08 May 2017      Published: 09 June 2017
O649  
Fund:  

The project was supported by the National Natural Science Foundation of China (51376013).

Corresponding Authors: SANG Li-Xia     E-mail: sanglixia@bjut.edu.cn
Cite this article:

SANG Li-Xia, LIN Jia, GE Hao, LEI Lei. Dynamic Analysis of Carbon Dots/KOH Electrolyte Interface by IMPS/IMVS. Acta Phys. -Chim. Sin., 2017, 33(12): 2454-2462.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706092     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2454

(1) Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Nat. Photon. 2012, 6, 511. doi: 10.1038/NPHOTON.2012.175
(2) Youngblood, W. J.; Lee, S. H. A.; Maeda, K.; Mallouk, T. E. Acc. Chem. Res. 2009, 42, 1966. doi: 10.1021/ar9002398
(3) Shen, C.; Chua, C. S.; Lim, Y. F.; Wang, Q. ChemElectroChem 2016, 24, 1471. doi: 10.1002/celc.201600273
(4) Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W. J. Am. Chem. Soc. 2004, 126, 12736. doi: 10.1021/ja040082h
(5) Zhang, Z. Y.; Sang, L. X.; Sun, B.; Zhang, X. M.; Ma, C. F. Acta Phys. -Chim. Sin. 2010, 26, 2935. [张知宇, 桑丽霞, 孙 彪, 张晓敏, 马重芳, 物理化学学报, 2010, 26, 2935.]doi: 10.3866/PKU.WHXB201006001
(6) Yu, H. J.; Zhao, Y. F.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R.. J. Mater. Chem. A 2014, 2, 3344. doi: 10.1039/c3ta14108j
(7) Leng, W. H.; Barnes, P. R.; Juozapavicius, M.; Regan, B. C.; Durrant, J. R. J. Phys. Chem. Lett. 2010, 1, 967. doi: 10.1021/jz100051q
(8) Sang, L. X.; Zhang, Y. D.; Wang, J.; Zhao, Y. X.; Chen, Y. T. Phys. Chem. Chem. Phys. 2016, 18, 15427. doi: 10.1039/c6cp01990k
(9) Bian, J. C.; Hang, C.; Wang, L. Y.; Hung, T. F.; Daoud, W. A.; Zhang, R. Q. ACS Appl. Mater. Interfaces 2014, 6, 4883. doi: 10.1021/am4059183
(10) Wang, F.; Zhang, Y. L.; Liu, Y.; Wang, X. F.; Shen, M. R.; Lee, S. T.; Kang, Z. H. J. Mater. Chem. A 2013, 5, 1831. doi: 10.1039/c3nr33985h
(11) Yang, P. J.; Zhao, J. H.; Wang, J.; Cui, H. J.; Li, L.; Zhu, Z. P. RSC Adv. 2015, 5, 21332. doi: 10.1039/c5ra01924a
(12) Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, C. E.; Xu, J.; Fernando, K. A. S.; Wang, P.; Guliants, E. A.; Tackett, K. N.; Sun, Y. P. J. Am. Chem. Soc. 2011, 133, 4754. doi: 10.1021/ja200804h
(13) Dino, K.; David, S. E.; Hen, D.; Avner, R. Phys. Chem. Chem. Phys. 2016, 18, 23438. doi: 10.1039/c6cp04683e
(14) Yin, F.; Lin, Y.; Lin, R. F.; Xiao, X. R. Acta Phys. -Chim. Sin. 2002, 18, 21. [尹 峰, 林 原, 林瑞峰, 肖绪瑞. 物理化学学报, 2002, 18, 21.] doi: 10.3866/PKU.WHXB20020105
(15) Zhang, C. N.; Huang, Y.; Chen, S. H.; Tian, H. J.; Mo, L.; Hu, L. H.; Huo, Z. P.; Kong, F. T.; Ma, Y. W.; Dai, S.Y. J. Phys. Chem. C 2012, 116, 19807. doi: 10.1021/jp304911u
(16) Bertoluzzi, L.; Lopezvaro, P.; Tejada, J. A. J.; Bisquert, J. J. Mater. Chem. A 2016, 4, 2873. doi: 10.1039/c5ta03210e
(17) Yu, X.; Liu, R.; Zhang, G.; Cao, H. Nanotechnology 2013, 24, 335401. doi: 10.1088/0597-4484/24/33/335401
(18) Sun, Y J. Preparation and Photoelectrochemical Properties ofModified TiO2 Thin Films. Master Dissertation, FudanUniversity, Shanghai, 2012. [孙钰珺. 改性 TiO2 薄膜的制备及其光电化学性能研究[D]. 上海: 复旦大学, 2012.]
(19) Bao, L.; Zhang, Z. L.; Tian, Z.Q.; Peng, D. W. Adv. Mater. 2011, 23, 5801. doi: 10.1002/adma.201102866
(20) Hu, S.; Tian, R.; Wu, L.; Zhao, Q.; Yang, J.; Liu, J.; Cao, S. Chem. Asian. J. 2013, 8, 1035. doi: 10.1002/asia.201300076
(21) Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Bai, Y. Nano Res. 2015, 8, 355. doi: 10.1007/s12274-014-0644-3
(22) Bisquert, J.; Belmonte, G. G.; Santiago, F. F. J. Solid State Electrochem. 1999, 3, 337. doi: 10.1007/s100080050164
(23) Zhang, J. B.; Lin, Y.; Lin R. F. Sinence in China (Series B). 2000, 20, 263. [张敬波, 林 原, 林瑞峰. 中国科学化学, 2000, 20, 263.] doi: 10.3221/j.issn:1006-9240.2000.03.010
(24) Vanmaekelbergh, D.; Jongh, P. E. D. Phys. Rev. B 2000, 61, 4699. doi: 10.1103/physRevB.61.4699
(25) Hsiao, P. T.; Tung, Y. L.; Teng, H. J. Phys. Chem. C 2010, 114, 6762. doi: 10.1021/jp1006457
(26) Shangguan, P. P.; Tong, S. P.; Li, H. L.; Leng, W. H. Acta Phys. -Chim. Sin. 2013, 29, 1954. [上官鹏鹏, 童少平, 李海丽, 冷文华. 物理化学学报, 2013, 29, 1954.]doi: 10.3866/PKU.WHXB201306261
(27) Peter, L. M.; Wijayantha, K. G. U.; Tahir, A. A. FaradayDiscuss. 2012, 155, 309. doi: 10.1039/C1FD00079A
(28) Lewerenz, H. J.; Peter, L. RSC Energy and Environment Series; Springer: New York, 2013; pp 19–47.
(29) Jongh, P. E. D.; Vanmaekelbergh, D. Phys. Rev. Lett. 1996, 77, 3427. doi: 10.1103/PhysRevLett.77.3427
(30) Miyashita, M.; Sunahara, K. J.; Nishikawa, T.; Uemura, Y.; Koumura, N.; Hara, K.; Mori, A.; Abe, T.; Suzuki, E.; Mori, S. J. Am. Chem. Soc. 2008, 130, 17874. doi: 10.1021/ja803534u
(31) Dloczik, L.; Lleperuma, O.; Lauermann, I.; Peter, L. M.; Ponomarev, E. A.; Redmond, G.; Shaw, N. J.; Uhlendorf, I. J. Phys.Chem. B 1997, 101, 10281. doi: 10.1021/jp972466i
(32) Franco, G.; Gehring, J.; Peter, L. M.; Ponomarev, E. A.; Uhlendorf, I. J. Phys. Chem. B 1999, 103, 692. doi: 10.1021/jp984060r
(33) Kem, R.; Sastrawan, R.; Ferber, J.; Luther, R. S. Electrochim. Acta 2002, 47, 4213. doi: 10.1016/S0013-4686(02)00444-9
(34) Peter, L. M.; Wijayantha, K. G. U. Electrochim. Acta 2000, 45, 4543. doi: 10.1016/S0013-4686(00)00605-8
(35) Guillen, E.; Peter, L. M.; Anta, J. A. J. Phys. Chem. C 2016, 115, 22622. doi: 10.1021/jp206698t
(36) Schlichthörl, G.; Huang, S. Y.; Sprague, J.; Frank, A. J. J. Phys. Chem. B 1997, 101, 8141. doi: 10.1021/jp9714126
(37) Zheng, J. W.; Mo, L. E.; Chen, W.C.; Jiang, L.; Ding, Y. C.; Ding, Y.; Li, Z. Q.; Hu, L. H.; Dai, S. Y. Electrochim. Acta 2017, 232, 38. doi: 10.1016/j.electacta.2017.02.121
(38) Yu, X. Y.; Liao, J. Y.; Qiu, K. Q.; Kuang, D. B.; Su, C. Y. ACS Nano 2011, 5, 9494. doi: 10.1021/nnn203375g
(39) Desario, P. A.; Pietron, J. J.; Taffa, D. H.; Compton, R.; Schuenemann, S.; Marschall, R.; Brintlinger, T. H.; Stroud, R.M.; Wark, M.; Owrutsky, J. C.; Rolison, D. R. J. Phys. Chem. C 2015, 119, 17529. doi: 10.1021/acs.jpcc.5b04013
(40) Liang, L. Y.; Dai, S. Y.; Fang, X. Q.; Hu, L. H. Acta Phys. Sin. 2008, 57, 1190. [梁林云, 戴松元, 方霞琴,胡林华.物理学报, 2008, 57, 1190.]doi: 10.3321/j.issn:1000-3290.2008.03.111

[1] LIU Jin-Long, LIN Liang-Zhen, HU Jin-Feng, BAI Ming-Jie, CHEN Liang-Xian, WEI Jun-Jun, HEI Li-Fu, LI Cheng-Ming. Reaction Process and Luminescence Mechanism of Carbon Nanodots Prepared by Microwave Synthesis[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 92-98.
[2] Yin Feng;Lin Yuan;Lin Rui-Feng;Xiao Xu-Rui. Photocatalytic Mechanism Studies of TiO2 Particulate Suspension by IntensityModulation Photocurrent Spectroscopy[J]. Acta Phys. -Chim. Sin., 2002, 18(01): 21-25.