Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (12): 2377-2387    DOI: 10.3866/PKU.WHXB201706096
REVIEW     
Thermodynamics of the Interactions between Quantum Dots and Proteins
YAN Ren1, LAI Lu2, XU Zi-Qiang3, JIANG Feng-Lei1, LIU Yi1
1 College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China;
2 College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, Hubei Province, P. R. China;
3 Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062, P. R. China
Download:   PDF(2121KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Quantum dots (QDs) exhibit excellent properties, such as broad absorption, narrow emission, high photoluminescence quantum yields, tunable emission wavelength, and anti-photobleaching. As a result, QDs have important applications in biological imaging, tracking, and sensing. When QDs enter living systems, they first encounter proteins. The interactions between proteins and QDs significantly influence the structures and functions of the proteins, as well as the performance of the QDs in applications. Studies on the interactions between QDs and proteins can provide a theoretical basis for the design, efficient application, and safety evaluation of QDs. Herein we have summarized methods for characterizing the thermodynamics of QD-protein interactions, on the basis of previous work by both our group and others. We also highlight the thermodynamic mechanisms of the QD-protein interactions.



Key wordsQDs      Protein      Interaction      Thermodynamics      Fluorescence quenching     
Received: 07 April 2017      Published: 09 June 2017
O642  
Fund:  

The project was supported by the National Science Foundation of China (21573168, 21303126, 21473125, 21403017, 21603067) and National Science Fund for Distinguished Young Scholars, China (21225313).

Corresponding Authors: JIANG Feng-Lei, LIU Yi     E-mail: fljiang@whu.edu.cn;yiliuchem@whu.edu.cn
Cite this article:

YAN Ren, LAI Lu, XU Zi-Qiang, JIANG Feng-Lei, LIU Yi. Thermodynamics of the Interactions between Quantum Dots and Proteins. Acta Phys. -Chim. Sin., 2017, 33(12): 2377-2387.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706096     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2377

(1) Wang, F.; Tan, W. B.; Zhang, Y.; Fan, X. P.; Wang, M. Q. Nanotechnology 2005, 17, R1. doi: 10.1088/0957-4484/17/1/R01
(2) Ruan, G.; Agrawal, A.; Marcus, A. I.; Nie. S. M. J. Am. Chem. Soc. 2007, 129, 14759. doi: 10.1021/ja074936k
(3) Gao, X.; Cui, Y.; Levenson. R. M.; Chung. L. W.; Nie, S. M. Nat. Biotech. 2004, 22, 969. doi: 10.1038/nbt994
(4) Michalet, X.; Pinaud. F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538. doi: 10.1126/science.1104274
(5) Yong, K. T.; Law, W. C.; Hu, R.; Ye, L.; Liu, L.W.; Swihart, M. T.; Prasad, P. N. Chem. Soc. Rev. 2013, 42, 1236. doi: 10.1039/c2cs35392j
(6) Dumas, E. M.; Ozenne, V.; Mielke, R. E.; Nadeau, L.J. IEEE. T. Nanobiosci. 2009, 8, 58. doi: 10.1109/TNB.2009.2017313
(7) Bottrill, M.; Green, M. Chem. Commun. 2011, 47, 7039. doi: 10.1039/C1CC10692A
(8) Vannoy, C. H.; Leblanc, R. M. J. Phys. Chem. B 2010, 114, 10881. doi: 10.1021/jp1045904
(9) Atay, Z.; Biver, T.; Corti, A.; Eltugral, N.; Lorenzini, E.; Masini, M.; Paolicchi, A.; Pucci, A.; Ruggeri, G.; Secco, F.; Venturini, M. J. Nanopart. Res. 2009, 12, 2241. doi: 10.1007/s11051-009-9791-y
(10) Li, J. H.; Zhang, Y.; Xiao, Q.; Tian, F. F.; Liu, X. R.; Li, R.; Zhao, G. Y.; Jiang. F. L.; Liu, Y. J. Hazard. Mater. 2011, 194, 440. doi: 10.1016/j.jhazmat.2011.07.113
(11) Lu, Z.; Li, C. M.; Bao, H. F.; Qiao, Y.; Toh, Y.; Yang, X. Langmuir 2008, 24, 5445. doi: 10.1021/la704075r
(12) Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Nano Lett. 2004, 4, 11. doi: 10.1021/nl0347334
(13) Hoshino, A.; Fujioka, K.; Oku, T.; Suga, M.; Sasaki, Y. F.; Ohta, T.; Yasuhara, M.; Suzuki K.; Yamamoto, K. Nano Lett. 2004, 4, 2163. doi: 10.1021/nl048715d
(14) Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L. Nanoscale 2011, 3, 2552. doi:10.1039/c1nr10131e
(15) Werlin, R.; Priester, J. H.; Mielke, R. E.; Krämer, S.; Jackson, S.; Stoimenov, P. K.; Stucky, G. D.; Cherr, G. N.; Orias, E.; Holden, P. A. Nat. Nanotechnol. 2011, 6, 65. doi: 10.1038/nnano.2010.251
(16) Donaldson, K..; Brown, D.; Clouter, A.; Duffin, R.; MacNee, W.; Renwick, L.; Tran, L.; Stone, V. J. Aerosol. Med. 2002, 15, 213. doi: 10.1089/089426802320282338
(17) Safi, J.; Courtois, J.; Seigneuret, M.; Conjeaud, H.; Berret, J. F. Biomaterials 2011, 32, 9353. doi: 10.1016/j.biomaterials.2011.08.048
(18) Wu, X. Y.; Liu, H. J.; Liu, J. Q.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N. F.; Peale, F.; Bruchez, M. P. Nat. Biotechnol. 2003, 21, 41. doi: 10.1038/nbt764
(19) Chen, L. N.; Wang, J.; Li, W. T.; Han, H. Y. Chem. Commun. 2012, 48, 4971. doi: 10.1039/C2CC31259J
(20) Voura, E. B.; Jaiswal, J. K.; Mattoussi, H.; Simon, S. M. Nat. Med. 2004, 10, 993. doi:10.1038/nm1096
(21) Hadjipanayis, C. G.; Machaidze, R.; Kaluzova, M.; Wang, L.; Schuette, A. J.; Chen, H.; Wu, X.; Mao, H. Cancer Res. 2010, 70, 6303. doi:10.1158/0008-5472.CAN-10-1022
(22) Huang, B. X.; Kim, H. Y.; Dass, C. J. Am. Soc. Mass. Spectrum 2004, 15, 1237. doi: 10.1016/j.jasms.2004.05.004
(23) Robertson, A.; Brodersen, R. Dev. Pharmacol. Ther. 1991, 17, 95.
(24) Vorum, H.; Honoré, B. J. Pharm. Pharmacol. 1996, 48, 870. doi:10.1111/j.2042-7158.1996.tb03990.x
(25) Freeman, R.; Gill, R.; Shweky, I.; Kotler, M.; Banin. U.; Willner, I. Angew. Chem. 2009, 121, 315. doi: 10.1002/anie.200803421
(26) He, X. M.; Carter, D. C. Nature 1992, 358, 209. doi: 10.1038/358209a0
(27) Xiao, J. B.; Chen, L. C.; Yang, F.; Liu, C. X.; Bai, Y. L. J. Hazard. Mater. 2010, 182, 696. doi: 10.1016/j.jhazmat.2010.06.088
(28) Xu, Z. Q.; Yang, Q. Q.; Lan, J. Y.; Zhang, J. Q.; Wu, P.; Jin, J. C.; Jiang, F. L.; Liu, Y. J. Hazard. Mater. 2016, 301, 242. doi: 10.1016/j.jhazmat.2015.08.062
(29) Wei, X. L.; Zhang, X. G.; Jiang, H. Y.; Wei, S. C.; Sun, N. N.; Chen, X. Clinical Focus 2011, 26
(18), 1623 [魏新亮, 张秀刚, 姜红玉, 魏思忱, 孙宁宁, 陈 霞. 临床荟萃, 2011, 26
(18), 1623.] doi: 1004-583X
(2011)18-1623-02]

(30) Huang, R. X.; Lau, B. L. Biochim. Biophys. Acta 2016, 1860, 945. doi: 10.1016/j.bbagen.2016.01.027
(31) Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S. P. Natl. Acad. Sci. USA 2007, 104, 2050. doi:10.1073/pnas.0608582104
(32) Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Nat. Mater. 2009, 8, 543. doi:10.1038/nmat2442

(33) Goy-Lopez, S.; Juarez, J.; Alatorre-Meda, M.; Casals, E.; Puntes, V. F.; Taboada, P.; Mosquera, V. Langmuir 2012, 28, 9113. doi:10.1021/la300402w
(34) Pelaz, B.; Charron, G.; Pfeiffer, C.; Zhao, Y; de la Fuente, J. M.; Liang, X. J.; Parak, W. J.; Del Pino, P. Small 2013, 9, 1573. doi:10.1002/smll.201201229
(35) Ross, P. D.; Subramanian, S. Biochemistry 1981, 20, 3096. doi: 10.1021/bi00517a022
(36) Sun, H. Y.; Cui, E. Q.; Tan. Z. G.; Liu, R. T. J. Biochem. Mol. Toxic. 2014, 28, 549. doi: 10.1002/jbt
(37) Yang, B. J.; Liu, R. T.; Hao, X. P.; Wu. Y. Z.; Du, J. Biol. Trace. Elem. Res. 2013, 155, 150. doi: 10.1007/s12011-013-9771-z
(38) Ding, L.; Zhou, P. J.; Zhan, H, J.; Zhao, X. H.; Chen, C.; He, Z. Y. Chemosphere 2013, 92, 892. doi: 10.1016/j.chemosphere.2013.02.045
(39) Sun, H. Y.; Cui. E. Q.; Liu, R. T. Environ. Sci. Pollut. R 2015, 22, 18267. doi:10.1007/s11356-015-5035-0
(40) Xue, F. F.; Liu, L. Z.; Mi, Y. Y.; Han. H. Y.; Liang, J. G. RSC Adv. 2016, 6, 10215. doi: 10.1039/c5ra16586e
(41) AbouZied, O. K.; Al-Shihi, O. I. K. J. Am. Chem. Soc. 2008, 130, 10793. doi10.1021/ja8031289
(42) Lynch, I.; Dawson, K. A. Nano Today 2008, 3, 40. doi:10.1016/S1748-0132
(08)70014-8

(43) Gelamo, E. L.; Silva, C. H.; Imasato, T. P. H.; Tabak, M. BBA-Biomembranes 2002, 1594, 84. doi: 10.1016/S0167-4838
(01)00287-4

(44) Joshi, P.; Shewale, V.; Pandey, R.; Shanker, V.; Hussain, S.; Karna, S. P. J. Phys. Chem. C 2011, 115, 22818. doi: 10.1021/jp2070437
(45) Wang, R.Y.; Chai, Y. H.; Wang, R. Q.; Zhang, L.; Wu, J.; Chang, J. B. Spectrochim. Acta A 2012, 96, 324. doi: 10.1016/j.saa.2012.05.030
(46) Weert, M. V. D.; Stella, L. J. Mol. Struct. 2011, 998, 144. doi: 10.1016/j.molstruc.2011.05.023
(47) Gauthier, T. D.; Shane, E.C.; Guerin, W. F.; Seitz, W. R.; Grant, C. L. Environ. Sci. Technol. 1986, 20, 1162. doi: 10.1021/es00153a012
(48) Zhang, M. F.; Xu, Z. Q.; Ge, Y. S.; Jiang. F. L.; Liu, Y. J. Photoch. Photobio. B 2012, 108, 34. doi: 10.1016/j.jphotobiol.2011.12.006
(49) Lehrer, S. Biochemistry 1971, 10, 3254.
(50) Xiao, Q.; Huang, S.; Su, W.; Li, P. Y.; Ma, J. Q.; Luo, F. P.; Chen, J.; Liu, Y. Colloid. Surface B 2013, 102, 76. doi: 10.1016/j.colsurfb.2012.08.028
(51) Lai, L.; Lin, C.; Xu, Z. Q.; Han, X. L.; Tian, F. F.; Mei, P.; Li, D. W.; Ge, Y. S.; Jiang, F. L.; Zhang, Y. Z.; Liu, Y. Spectrochim. Acta A 2012, 97, 366. doi: 10.1016/j.saa.2012.06.025
(52) Tian, J. N.; Wei, S. Z.; Zhao, Y. C.; Liu. R. J.; Zhao, S. L. J. Chem. Sci. 2010, 122, 391. doi: 10.1007/s12039-010-0044-5
(53) Sun, H. Y.; Yang, B. J.; Cui, E. Q.; Liu, R. T. Spectrochim. Acta A 2014, 132, 692. doi: 10.1016/j.saa.2014.04.157
(54) Huang, S.; Qiu, H. N.; Liu, Y.; Huang, C. S.; Sheng, J. R.; Cui, J. G.; Su, W.; Xiao, Q. Colloid. Surface. B 2016, 148, 165. doi: 10.1016/j.colsurfb.2016.08.060
(55) Huang, S.; Qiu, H. N.; Liu, Y.; Huang, C. S.; Sheng, J. R.; Su, W.; Xiao, Q. Colloid. Surface B 2015, 136, 955. doi: 10.1016/j.colsurfb.2015.10.028
(56) Xiao, Q.; Huang, S.; Ma, J. Q.; Su, W.; Li, P. Y.; Cui, J. G.; Liu, Y. J. Photochem. Photobio. 2012, 249, 53. doi: 10.1016/j.jphotochem.2012.08.019
(57) Ge, B. Y.; Li, Z. G.; Yang, L. L.; Wang, R. Y.; Chang, J. B. Spectrochim. Acta A 2015, 149, 667. doi: 10.1016/j.saa.2015.04.106
(58) Wang, Q. S.; Zhang, X. L.; Zhou, X. L.; Fang, T. T.; Liu, P. F.; Liu, P.; Min, X. M.; Li, X. J. Lumin. 2012, 132, 1695. doi: 10.1016/j.jlumin.2012.02.016
(59) Khani, O.; Rajabi, H. R.; Yousefi, M. H.; Khosravi, A. A.; Jannesari, M.; Shamsipur, M. Spectrochimi. Acta A 2011, 79, 361. doi: 10.1016/j.saa.2011.03.025
(60) Das, K.; Rawat, K.; Patel. R.; Bohidar, H. B. RSC Adv. 2016, 6, 46744. doi: 10.1039/C6RA07368A
(61) Shen, X.C.; Liou, X. Y.; Ye, L.P.; Liang, H.; Wang, Z. Y. J. Colloid Interface Sci. 2007, 311, 400. doi: 10.1016/j.jcis.2007.03.006
(62) Xu, Z. Q.; Lai, L.; Li, D. W.; Li, R.; Xiang, C.; Jiang, F. L.; Sun, S. F.; Liu, Y. Mol. Biol. Rep. 2013, 40, 1009. doi: 10.1007/s11033-0 12-2142-6
(63) Liu, R. T.; Zong, W. S.; Jin, K. K.; Lu, X. T.; Zhu, J. H.; Zhang, L. J.; Gao, C. Z. Spectrochim. Acta A 2008, 70, 198. doi: 10.1016/j.saa.2007.07.037
(64) Liu, R. T.; Sun, F.; Zhang, L. J.; Zong, W. S.; Zhao, X. C.; Wang, L.; Wu, R. L.; Hao, X. P. Sci. Total. Environ. 2009, 407, 4184. doi: 10.1016/j.scitotenv.2009.01.042
(65) Delfino. I.; Cannistraro, S. Biophys. Chem. 2009, 139, 1. doi: 10.1016/j.bpc.2008.09.016
(66) Kathiravan, A.; Renganathan, R.; Anandan, S. Polyhedron. 2009, 28, 157. doi: 10.1016/j.poly.2008.09.023
(67) Kotresh, M. G.; Inamdar, L. S.; Shivkumar, M. A.; Adarsh, K. S.; Jagatap, B. N.; Mulimani, B. G.; Advirao. G. M.; Inamdar, S. R. Luminescence 2016, 31, 760. doi: 10.1002/bio.3231.

(68) Jiang, X. E.; Jiang, J. G.; Jin, Y. D.; Wang. E. K.; Dong, S. J. Biomacromolecules 2005, 6, 46. doi: 10.1021/bm049744l
(69) AubinTam, M. E.; HamadSchifferli, K. Langmuir 2005, 21, 12080. doi: 10.1021/la052102e
(70) Vertegel, A. A.; Siegel, R. W.; Dordick, J. S. Langmuir 2004, 20, 6800. doi: 10.1021/la0497200
(71) Hu, Y. J.; Liu, Y.; Shen, X. S.; Fang, X. Y.; Qu, S. S. J. Mol. Struc. 2005, 738, 143. doi: 10.1016/j.molstruc.2004.11.062
(72) Pan, X. R.; Liu, R.T.; Qin, P.F.; Wang. L.; Zhao, X. C. J. Lumin. 2010, 130, 611. doi: 10.1016/j.jlumin.2009.11.004
(73) Bai, J.; Wang, T, T.; Wang, Y. C.; Jiang, X. E. Biomater. Sci. 2014, 2, 493. doi:10.1039/c3bm60224a
(74) Rahmelow, K.; Hübner, W. Anal. Biochem. 1996, 241, 5. doi:10.1006/abio.1996.0369
(75) Huang, S.; Qiu, H. N.; Xie, J. N.; Huang, C. S.; Su, W.; Hu, B. Q.; Xiao, Q. RSC Adv. 2016, 6, 44531. doi: 10.1039/c6ra01386d
(76) Xiao, Q.; Huang, S.; Qi, Z. D.; Zhou, B.; He, Z. K.; Liu, Y. BBA-Proteins Proteomics 2008, 1784, 1020. doi: 10.1016/j.bbapap.2008.03.018
(77) Ashraf, S.; Park, J.; Bichelberger, M.A.; Kantner, K.; Hartmann, R.; Maffre, P.; Said, A. H.; Feliu, N.; Lee, J.; Lee, D.; Nienhaus, G. U.; Kim, S.; Parak, W. J. Nanoscale 2016, 8, 17794. doi:10.1039/C6NR05805A
(78) Xiao, J. B.; Bai, Y. L.; Wang, Y. F.; Chen. J. W.; Wei, X. L. Spectrochim. Acta A 2010, 76, 93. doi: 10.1016/j.saa.2010.02.028

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 168-176.
[2] LIU Fu-Feng, FAN Yu-Bo, LIU Zhen, BAI Shu. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1905-1914.
[3] XU Wei-Yun, WANG Li-Li, MI Yi-Ming, ZHAO Xin-Xin. Effect of Adsorption of Fe Atoms on the Structure and Properties of WS2 Monolayer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1765-1772.
[4] HE Yu, WANG Yi-Bo. B972-PFD: A High Accuracy Density Functional Method for Dispersion Correction[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1149-1159.
[5] HUANG Yu-Fen, ZHANG Hai-Long, YANG Zheng-Zheng, ZHAO Ming, HUANG Mu-Lan, LIANG Yan-Li, WANG Jian-Li, CHEN Yao-Qiang. Effects of CeO2 Addition on Improved NO Oxidation Activities of Pt/SiO2-Al2O3 Diesel Oxidation Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1242-1252.
[6] WANG Xiao-Wen, LI Lei, WANG Chang-Sheng. A Scheme for Rapid Simulation of Anion-π Interactions Involving Halide Anions and Substituted Benzenes[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 755-762.
[7] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[8] YU Hai-Yang, WANG Fang, LIU Qi-Chun, MA Qing-Yu, GU Zheng-Gui. Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 344-355.
[9] LI Shen-Hui, LI Jing, ZHENG An-Min, DENG Feng. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 270-282.
[10] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[11] HOU Jing-Fei, YANG Yan-Lian, WANG Chen. Molecular Mechanisms of Interface Interactions between Nanomaterials and Proteins[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 63-79.
[12] DENG Yu-Ling, YU Lu, HUANG Qiang. A Multi-Target Docking System of Human Kinome[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2355-2363.
[13] JING Peng-Fei, LIU Hui-Jun, ZHANG Qin, HU Sheng-Yong, LEI Lan-Lin, FENG Zhi-Yuan. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1933-1940.
[14] LI Hong-Mei, LAN Li, CHEN Shan-Hu, LIU Da-Yu, WANG Wei, GONG Mao-Chu, CHEN Yao-Qiang. Preparation of CeO2-ZrO2-Al2O3 with a Composite Precipitant and Its Supported Pd-Only Three-Way Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1734-1746.
[15] GUO Qing-Lian, HE Huan, PAN Ling-Li, LIU Yi. Thermodynamics of the Interaction of BCBP with Bovine Serum Albumin[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1383-1390.