Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (12): 2377-2387    DOI: 10.3866/PKU.WHXB201706096
REVIEW     
Thermodynamics of the Interactions between Quantum Dots and Proteins
Ren YAN1,Lu LAI2,Zi-Qiang XU3,Feng-Lei JIANG1,*(),Yi LIU1,*()
1 College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
2 College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, Hubei Province, P. R. China
3 Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062, P. R. China
Download: HTML     PDF(2121KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Quantum dots (QDs) exhibit excellent properties, such as broad absorption, narrow emission, high photoluminescence quantum yields, tunable emission wavelength, and anti-photobleaching. As a result, QDs have important applications in biological imaging, tracking, and sensing. When QDs enter living systems, they first encounter proteins. The interactions between proteins and QDs significantly influence the structures and functions of the proteins, as well as the performance of the QDs in applications. Studies on the interactions between QDs and proteins can provide a theoretical basis for the design, efficient application, and safety evaluation of QDs. Herein we have summarized methods for characterizing the thermodynamics of QD-protein interactions, on the basis of previous work by both our group and others. We also highlight the thermodynamic mechanisms of the QD-protein interactions.



Key wordsQDs      Protein      Interaction      Thermodynamics      Fluorescence quenching     
Received: 07 April 2017      Published: 09 June 2017
MSC2000:  O642  
Fund:  the National Science Foundation of China(21573168);the National Science Foundation of China(21303126);the National Science Foundation of China(21473125);the National Science Foundation of China(21403017);the National Science Foundation of China(21603067);National Science Fund for Distinguished Young Scholars, China(21225313)
Corresponding Authors: Feng-Lei JIANG,Yi LIU     E-mail: fljiang@whu.edu.cn;yiliuchem@whu.edu.cn
Cite this article:

Ren YAN,Lu LAI,Zi-Qiang XU,Feng-Lei JIANG,Yi LIU. Thermodynamics of the Interactions between Quantum Dots and Proteins. Acta Phys. -Chim. Sin., 2017, 33(12): 2377-2387.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706096     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2377

Complex Size/nm Ligand 10-5K/(L·mol-1) ΔH/(kJ·mol-1) ΔG/(kJ·mol-1) ΔS/(J·mol-1·K-1) Ref.
CdTe QDs-BSA 3.7 NAC (1.19 ± 0.53) 9.98 × 103 -4.78 33492.82 36
CdTe QDs-BHb 3.7 NAC (2.19 ± 0.74) 3.18 × 103 -1.36 112.68 36
CdTe QDs-HSA 3 GSH (4.50 ± 2.86) 1.04 -1.845 9.69 37
CdTe QDs-HSA 2.8 GSH (1.34 ± 1.24) 1.653 -1.668 9.71 37
ZnSe@ZnS QDs-BSA - GSH 1.58 -28.65 -29.67 3.42 38
CdTe QDs-Cu/ZnSOD 3.4 NAC (3.28 ± 0.45) 48.8 -1.813 169.86 39
CdTe QDs-protamine sulfate 3 TGA - -20.01 -34.28 47.89 40
Table 1 Thermodynamics parameters of interaction between proteins and QDs studied by ITC (298 K).
Complex Size/nm Ligand Quenching type K/(L·mol-1) ΔH/(kJ·mol-1) ΔG/(kJ·mol-1) ΔS/(J·mol-1·K) Ref.
CdTe QDs-HSA 2.0 MPA static 6.40 × 106 -11.83 -38.83 90.53 50
CdTe QDs-HSA 5 MPA static 4.33 × 106 -23.27 -37.87 49 51
CdTe QDs-HSA 5 NAC static 4.29 × 106 -30.30 -37.90 25.49 51
CdTe QDs-HSA 5 GSH static 3.16 × 106 -33.57 -37.17 12.08 51
CdTe QDs-α-chymotrypsin 3-4 TGA static 8.97 × 106 8.71 -20.49 104.99 52
CdTe QDs-catalyse 3.45 NAC static 7.21 × 106 -7.24 -33.42 87.85 53
InP/ZnS QDs-HSA 4.1 - static 3.51 × 106 -42.4 -43.18 2.10 54
CdTe:Zn QDs-HSA 1.5 NAC static 8.74 × 106 -11.79 -33.90 74.16 55
CdSe/ZnS QDs-BSA 2.8 MAA static 6.03 × 106 -14.14 -37.15 77.20 56
CdTe QDs-FTO 1.7 TGA static 5.07 × 104 24.56 -22.12 -8.06 57
3.5 GSH static 8.89 × 105 -8.40 33.92 83.84 58
CdTe QDs-BSA 3.5 L-cys static 2.01 × 105 -27.70 -30.25 8.31 58
3.5 MPA static 1.11 × 105 -11.98 -28.78 56.37 58
Zn(1-x)FexS QDs-BSA - ME static 2.90 × 106 -19.70 -27.7 27.30 59
CdTe QDs-lysosome 2.5 MPA static 8.27 × 105 58 -33.74 307 60
CdTe QDs-lysosome 6.3 MPA static 8.39 × 105 152 -33.77 623 60
CdS QDs-Hb 9.1 TAA static 5.63 × 107 -23.11 -43.82 70.22 61
Table 2 Thermodynamic parameters of interactions between proteins and QDs studied by fluorescence spectroscopy (298 K).
Fig 1 Fluorescence emission spectra of HSA in presence of different QDs51. (a) MPA(3-Mercaptopropionic acid)-CdTe QDs, (b) NAC(N-acetyl-L-cystein)-CdTe QDs, (c) GSH(Glutataione)-CdTe QDs, (d) CA(2-AMINOETHANETHIOL)-CdTe QDs) at 298 K. c(HSA) = 1 × 10-6 mol·L-1. The insets correspond to the Stern-Volmer plot.
Fig 2 Cyclic voltammetric curves of HSA modified Au electrodes62. in 5.0 × 10-3 mol·L-1 Fe[(CN)6]3-/4-, pH 7.20 PBS buffer solution, 0.1 mol·L-1 KCl supporting electrolyte in the potential range 0.00 and 0.50 V at a sweep rate of 50.0 mV·s-1 in the presence of QDs with different size distribution. The concentrations of QDs are from 0 to 96 × 10-9 mol·L-1 at an interval of 1.2 × 10-9 mol·L-1.
Fig 3 Electrochemical impedance spectrum of HSA modified Au electrode62. in 5.0 × 10-3 mol·L-1 Fe[(CN)6]3-/4-, pH 7.20 buffer solution, 0.1 mol·L-1 KCl supporting electrolyte in th frequency range from 10 to 0.1 Hz in the presence of QDs with different size distribution. The concentrations of QDs are varied from 0 to 9.6 × 10-10 mol·L-1 at an interval of 1.2 × 10-10-1.2 × 10-9 mol·L-1.
Fig 4 CD spectra of the MPA-QDs-HSA system 52. c(HSA) = 1 × 10-5 mol·L-1; 106c(QDs)/(mol·L-1): A 0, B 0.5, C 1, D 2; pH = 7.4
QDs [HAS]: [QDs] α-helix β-strand Turn Unordered
(?)MPA-CdTe 1 : 0 56.7 7 15.4 21.6
20 : 1 56.2 7.6 16.1 22.2
10 : 1 54.2 7.7 15.0 23.5
5 : 1 53.8 9 16.5 24.1
(?)NAC-CdTe 1 : 0 56.7 7 15.4 21.6
20 : 1 56.5 6.9 15.3 21.4
10 : 1 54.4 8.8 16.4 23.4
5 : 1 54.5 8.5 16.1 23.7
(?)GSH-CdTe 1 : 0 56.7 7 15.4 21.6
20 : 1 56.3 7 15.3 21.4
10 : 1 56.1 8.1 16.5 22.8
5 : 1 53.4 9 16.5 24.8
(+)CA-CdTe 1 : 0 56.7 7 15.4 21.6
20 : 1 51.8 9.7 17.7 24.6
10 : 1 47.9 10.1 18.7 25.7
5 : 1 42.7 13.9 19.0 27.0
Table 3 Effects of CdTe QDs on the secondary structures of HSA51.
System Fraction of secondary structures
α-Helix/% β-sheet/% Turn/% Random/%
Free HSA 59 17 11 8
DPA-CdTe QDs-HSA 56 19 11 10
MSA-CdTe QDs-HSA 45 20 16 13
Table 4 Fractions of secondary structure of HSA in the absence and presence of DPA-QDs and MSA-QDs 73.
[MPA-QDs]: [HSA] Size/nm [NAC-QDs]: [HSA] Size/nm [GSH-QDs]: [HSA] Size/nm [CA-QDs]: [HSA] Size/nm
1 : 0 5.17 ± 0.21 1 : 0 5.33 ± 0.17 1 : 0 5.22 ± 0.07 1 : 0 5.76 ± 0.45
1 : 1 8.12 ± 0.43 1 : 1 9.09 ± 0.14 1 : 1 8.68 ± 0.11 1 : 1 586.80 ± 21.90
1 : 2 7.28 ± 0.35 1 : 2 10.13 ± 0.31 1 : 2 9.52 ± 0.50 1 : 2 710.40 ± 41.50
1 : 3 7.86 ± 0.30 1 : 3 11.59 ± 0.22 1 : 3 10.07 ± 0.23 1 : 3 410.50 ± 26.40
1 : 4 8.06 ± 0.27 1 : 4 11.36 ± 0.30 1 : 4 9.01 ± 0.22 1 : 4 257.50 ± 19.60
1 : 5 8.06 ± 0.36 1 : 5 10.90 ± 0.72 1 : 5 9.84 ± 0.08 1 : 5 269.10 ± 23.10
1 : 6 8.20 ± 0.12 1 : 6 10.17 ± 0.11 1 : 6 9.61 ± 0.05 1 : 6 343.20 ± 25.0
Table 5 Hydrodynamic sizes of QDs in the presence of different molar ratios of HSA51.
Method Advantage Disadvantages Ref.
ITC no labeling and immobilization; directly acquire the binding affinity constant, enthalpy change, binding stoichiometry require high concentrations of samples 30, 31, 36-40
FL convenient and sensitive not stable 40, 51-62, 75
UV-Vis determine the stuctural changes of proteins not sensitive and selective 36, 37, 50, 51, 53-60
FT-IR analyze the structural variation of proteins. not able to get the accurate information about proteins 54, 55, 73
CD determine the secondary structures of proteins not able to reflect the structural changes at the level of individual amino acids 36-40, 50-60, 62-64
DLS determine the changes of hydrodynamic diameter the shape of the materials has influence in the results 51, 76
EC no labeling complicated operation 62, 75
Table 6 Advantages and disadvantages of methods for studying the interactions between proteins and QDs.
1 Wang F. ; Tan W. B. ; Zhang Y. ; Fan X. P. ; Wang M. Q. Nanotechnology 2005, 17, R1.
2 Ruan G. ; Agrawal A. ; Marcus A. I. ; Nie S. M. J. Am. Chem. Soc. 2007, 129, 14759.
3 Gao X. ; Cui Y. ; Levenson R. M. ; Chung L. W. ; Nie S. M. Nat. Biotech. 2004, 22, 969.
4 Michalet X. ; Pinaud F. F. ; Bentolila L. A. ; Tsay J. M. ; Doose S. ; Li J. J. ; Sundaresan G. ; Wu A. M. ; Gambhir S. S. ; Weiss S. Science 2005, 307, 538.
5 Yong K. T. ; Law W. C. ; Hu R. ; Ye L. ; Liu L.W. ; Swihart M. T. ; Prasad P. N. Chem. Soc. Rev. 2013, 42, 1236.
6 Dumas E. M. ; Ozenne V. ; Mielke R. E. ; Nadeau L.J. IEEE. T. Nanobiosci. 2009, 8, 58.
7 Bottrill M. ; Green M. Chem. Commun. 2011, 47, 7039.
8 Vannoy C. H. ; Leblanc R. M. J. Phys. Chem. B 2010, 114, 10881.
9 Atay Z. ; Biver T. ; Corti A. ; Eltugral N. ; Lorenzini E. ; Masini M. ; Paolicchi A. ; Pucci A. ; Ruggeri G. ; Secco F. ; Venturini M. J. Nanopart. Res. 2009, 12, 2241.
10 Li J. H. ; Zhang Y. ; Xiao Q. ; Tian F. F. ; Liu X. R. ; Li R. ; Zhao G. Y. ; Jiang F. L. ; Liu Y. J. Hazard. Mater. 2011, 194, 440.
11 Lu Z. ; Li C. M. ; Bao H. F. ; Qiao Y. ; Toh Y. ; Yang X. Langmuir 2008, 24, 5445.
12 Derfus A. M. ; Chan W. C. W. ; Bhatia S. N. Nano Lett. 2004, 4, 11.
13 Hoshino A. ; Fujioka K. ; Oku T. ; Suga M. ; Sasaki Y. F. ; Ohta T. ; Yasuhara M. ; Suzuki K. ; Yamamoto K. Nano Lett. 2004, 4, 2163.
14 Chibli H. ; Carlini L. ; Park S. ; Dimitrijevic N. M. ; Nadeau J. L. Nanoscale 2011, 3, 2552.
15 Werlin R. ; Priester J. H. ; Mielke R. E. ; Kr?mer S. ; Jackson S. ; Stoimenov P. K. ; Stucky G. D. ; Cherr G. N. ; Orias E. ; Holden P. A. Nat. Nanotechnol. 2011, 6, 65.
16 Donaldson K. ; Brown D. ; Clouter A. ; Duffin R. ; MacNee W. ; Renwick L. ; Tran L. ; Stone V. J. Aerosol. Med. 2002, 15, 213.
17 Safi J. ; Courtois J. ; Seigneuret M. ; Conjeaud H. ; Berret J. F. Biomaterials 2011, 32, 9353.
18 Wu X. Y. ; Liu H. J. ; Liu J. Q. ; Haley K. N. ; Treadway J. A. ; Larson J. P. ; Ge N. F. ; Peale F. ; Bruchez M. P. Nat. Biotechnol. 2003, 21, 41.
19 Chen L. N. ; Wang J. ; Li W. T. ; Han H. Y. Chem. Commun. 2012, 48, 4971.
20 Voura E. B. ; Jaiswal J. K. ; Mattoussi H. ; Simon S. M. Nat. Med. 2004, 10, 993.
21 Hadjipanayis C. G. ; Machaidze R. ; Kaluzova M. ; Wang L. ; Schuette A. J. ; Chen H. ; Wu X. ; Mao H. Cancer Res. 2010, 70, 6303.
22 Huang B. X. ; Kim H. Y. ; Dass C. J. Am. Soc. Mass. Spectrum 2004, 15, 1237.
23 Robertson A. ; Brodersen R. Dev. Pharmacol. Ther. 1991, 17, 95.
24 Vorum H. ; Honoré B. J. Pharm. Pharmacol. 1996, 48, 870.
25 Freeman R. ; Gill R. ; Shweky I. ; Kotler M. ; Banin U. ; Willner I. Angew. Chem. 2009, 121, 315.
26 He X. M. ; Carter D. C. Nature 1992, 358, 209.
27 Xiao J. B. ; Chen L. C. ; Yang F. ; Liu C. X. ; Bai Y. L. J. Hazard. Mater. 2010, 182, 696.
28 Xu Z. Q. ; Yang Q. Q. ; Lan J. Y. ; Zhang J. Q. ; Wu P. ; Jin J. C. ; Jiang F. L. ; Liu Y. J. Hazard. Mater. 2016, 301, 242.
29 Wei X. L. ; Zhang X. G. ; Jiang H. Y. ; Wei S. C. ; Sun N. N. ; Chen X. Clinical Focus 2011, 26 (18), 1623.
29 魏新亮; 张秀刚; 姜红玉; 魏思忱; 孙宁宁; 陈霞. 临床荟萃, 2011, 26 (18), 163.
30 Huang R. X. ; Lau B. L. Biochim. Biophys. Acta 2016, 1860, 945.
31 Cedervall T. ; Lynch I. ; Lindman S. ; Berggard T. ; Thulin E. ; Nilsson H. ; Dawson K. A. ; Linse S. P. Natl. Acad. Sci. USA 2007, 104, 2050.
32 Nel A. E. ; Madler L. ; Velegol D. ; Xia T. ; Hoek E. M. ; Somasundaran P. ; Klaessig F. ; Castranova V. ; Thompson M. Nat. Mater. 2009, 8, 543.
33 Goy-Lopez S. ; Juarez J. ; Alatorre-Meda M. ; Casals E. ; Puntes V. F. ; Taboada P. ; Mosquera V. Langmuir 2012, 28, 9113.
34 Pelaz B. ; Charron G. ; Pfeiffer C. ; Zhao Y. ; de la Fuente J. M. ; Liang X. J. ; Parak W. J. ; Del Pino P. Small 2013, 9, 1573.
35 Ross P. D. ; Subramanian S. Biochemistry 1981, 20, 3096.
36 Sun H. Y. ; Cui E. Q. ; Tan Z. G. ; Liu R. T. J. Biochem. Mol. Toxic. 2014, 28, 549.
37 Yang B. J. ; Liu R. T. ; Hao X. P. ; Wu Y. Z. ; Du J. Biol. Trace. Elem. Res. 2013, 155, 150.
38 Ding L. ; Zhou P. J. ; Zhan H. J. ; Zhao X. H. ; Chen C. ; He Z. Y. Chemosphere 2013, 92, 892.
39 Sun H. Y. ; Cui E. Q. ; Liu R. T. Environ. Sci. Pollut. R 2015, 22, 18267.
40 Xue F. F. ; Liu L. Z. ; Mi Y. Y. ; Han H. Y. ; Liang J. G. RSC Adv. 2016, 6, 10215.
41 AbouZied O. K. ; Al-Shihi O. I. K. J. Am. Chem. Soc. 2008, 130, 10793.
42 Lynch I. ; Dawson K. A. Nano Today 2008, 3, 40.
43 Gelamo E. L. ; Silva C. H. ; Imasato T. P. H. ; Tabak M. BBA-Biomembranes 2002, 1594, 84.
44 Joshi P. ; Shewale V. ; Pandey R. ; Shanker V. ; Hussain S. ; Karna S. P. J. Phys. Chem. C 2011, 115, 22818.
45 Wang R.Y. ; Chai Y. H. ; Wang R. Q. ; Zhang L. ; Wu J. ; Chang J. B. Spectrochim. Acta A 2012, 96, 324.
46 Weert M. V. D. ; Stella L. J. Mol. Struct. 2011, 998, 144.
47 Gauthier T. D. ; Shane E.C. ; Guerin W. F. ; Seitz W. R. ; Grant C. L. Environ. Sci. Technol. 1986, 20, 1162.
48 Zhang M. F. ; Xu Z. Q. ; Ge Y. S. ; Jiang F. L. ; Liu Y. J. Photoch. Photobio. B 2012, 108, 34.
49 Lehrer S. Biochemistry 1971, 10, 3254.
50 Xiao Q. ; Huang S. ; Su W. ; Li P. Y. ; Ma J. Q. ; Luo F. P. ; Chen J. ; Liu Y. Colloid. Surface B 2013, 102, 76.
51 Lai L. ; Lin C. ; Xu Z. Q. ; Han X. L. ; Tian F. F. ; Mei P. ; Li D. W. ; Ge Y. S. ; Jiang F. L. ; Zhang Y. Z. ; Liu Y. Spectrochim. Acta A 2012, 97, 366.
52 Tian J. N. ; Wei S. Z. ; Zhao Y. C. ; Liu R. J. ; Zhao S. L. J. Chem. Sci. 2010, 122, 391.
53 Sun H. Y. ; Yang B. J. ; Cui E. Q. ; Liu R. T. Spectrochim. Acta A 2014, 132, 692.
54 Huang S. ; Qiu H. N. ; Liu Y. ; Huang C. S. ; Sheng J. R. ; Cui J. G. ; Su W. ; Xiao Q. Colloid. Surface. B 2016, 148, 165.
55 Huang S. ; Qiu H. N. ; Liu Y. ; Huang C. S. ; Sheng J. R. ; Su W. ; Xiao Q. Colloid. Surface B 2015, 136, 955.
56 Xiao Q. ; Huang S. ; Ma J. Q. ; Su W. ; Li P. Y. ; Cui J. G. ; Liu Y. J. Photochem. Photobio. 2012, 249, 53.
57 Ge B. Y. ; Li Z. G. ; Yang L. L. ; Wang R. Y. ; Chang J. B. Spectrochim. Acta A 2015, 149, 667.
58 Wang Q. S. ; Zhang X. L. ; Zhou X. L. ; Fang T. T. ; Liu P. F. ; Liu P. ; Min X. M. ; Li X. J. Lumin. 2012, 132, 1695.
59 Khani O. ; Rajabi H. R. ; Yousefi M. H. ; Khosravi A. A. ; Jannesari M. ; Shamsipur M. Spectrochimi. Acta A 2011, 79, 361.
60 Das K. ; Rawat K. ; Patel R. ; Bohidar H. B. RSC Adv. 2016, 6, 46744.
61 Shen X.C. ; Liou X. Y. ; Ye L.P. ; Liang H. ; Wang Z. Y. J. Colloid Interface Sci. 2007, 311, 400.
62 Xu Z. Q. ; Lai L. ; Li D. W. ; Li R. ; Xiang C. ; Jiang F. L. ; Sun S. F. ; Liu Y. Mol. Biol. Rep. 2013, 40, 1009.
63 Liu R. T. ; Zong W. S. ; Jin K. K. ; Lu X. T. ; Zhu J. H. ; Zhang L. J. ; Gao C. Z. Spectrochim. Acta A 2008, 70, 198.
64 Liu R. T. ; Sun F. ; Zhang L. J. ; Zong W. S. ; Zhao X. C. ; Wang L. ; Wu R. L. ; Hao X. P. Sci. Total. Environ. 2009, 407, 4184.
65 Delfino I. ; Cannistraro S. Biophys. Chem. 2009, 139, 1.
66 Kathiravan A. ; Renganathan R. ; Anandan S. Polyhedron. 2009, 28, 157.
67 Kotresh M. G. ; Inamdar L. S. ; Shivkumar M. A. ; Adarsh K. S. ; Jagatap B. N. ; Mulimani B. G. ; Advirao G. M. ; Inamdar S. R. Luminescence 2016, 31, 760.
68 Jiang X. E. ; Jiang J. G. ; Jin Y. D. ; Wang E. K. ; Dong S. J. Biomacromolecules 2005, 6, 46.
69 AubinTam M. E. ; HamadSchifferli K. Langmuir 2005, 21, 12080.
70 Vertegel A. A. ; Siegel R. W. ; Dordick J. S. Langmuir 2004, 20, 6800.
71 Hu Y. J. ; Liu Y. ; Shen X. S. ; Fang X. Y. ; Qu S. S. J. Mol. Struc. 2005, 738, 143.
72 Pan X. R. ; Liu R.T. ; Qin P.F. ; Wang L. ; Zhao X. C. J. Lumin. 2010, 130, 611.
73 Bai J. ; Wang T. T. ; Wang Y. C. ; Jiang X. E. Biomater. Sci. 2014, 2, 493.
74 Rahmelow K. ; Hübner W. Anal. Biochem. 1996, 241, 5.
75 Huang S. ; Qiu H. N. ; Xie J. N. ; Huang C. S. ; Su W. ; Hu B. Q. ; Xiao Q. RSC Adv. 2016, 6, 44531.
76 Xiao Q. ; Huang S. ; Qi Z. D. ; Zhou B. ; He Z. K. ; Liu Y. BBA-Proteins Proteomics 2008, 1784, 1020.
77 Ashraf S. ; Park J. ; Bichelberger M.A. ; Kantner K. ; Hartmann R. ; Maffre P. ; Said A. H. ; Feliu N. ; Lee J. ; Lee D. ; Nienhaus G. U. ; Kim S. ; Parak W. J. Nanoscale 2016, 8, 17794.
78 Xiao J. B. ; Bai Y. L. ; Wang Y. F. ; Chen J. W. ; Wei X. L. Spectrochim. Acta A 2010, 76, 93.
[1] Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079.
[2] Yanfang SHEN,Longjiu CHENG. Electronic Stability of Eight-electron Tetrahedral Pd4 Clusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 830-836.
[3] Paul GEERLINGS,Frank DE PROFT,Stijn FIAS. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 699-707.
[4] Changjiang LIU,Hongwen MA,Pan ZHANG. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 168-176.
[5] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[6] Fu-Feng LIU,Yu-Bo FAN,Zhen LIU,Shu BAI. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1905-1914.
[7] Wei-Yun XU,Li-Li WANG,Yi-Ming MI,Xin-Xin ZHAO. Effect of Adsorption of Fe Atoms on the Structure and Properties of WS2 Monolayer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1765-1772.
[8] Yu HE,Yi-Bo WANG. B972-PFD: A High Accuracy Density Functional Method for Dispersion Correction[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1149-1159.
[9] . Effects of CeO2 Addition on Improved NO Oxidation Activities of Pt/SiO2-Al2O3 Diesel Oxidation Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1242-1252.
[10] Xiao-Wen WANG,Lei LI,Chang-Sheng WANG. A Scheme for Rapid Simulation of Anion-π Interactions Involving Halide Anions and Substituted Benzenes[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 755-762.
[11] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[12] . Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 270-282.
[13] Hai-Yang YU,Fang WANG,Qi-Chun LIU,Qing-Yu MA,Zheng-Gui GU. Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 344-355.
[14] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[15] Jing-Fei HOU,Yan-Lian YANG,Chen WANG. Molecular Mechanisms of Interface Interactions between Nanomaterials and Proteins[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 63-79.