Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (12): 2359-2376    DOI: 10.3866/PKU.WHXB201706094
REVIEW     
Synthesis of Inorganic Porous Materials and Their Applications in the Field of Environmental Catalysis
Lan-Yi WANG1,Xue-Hua YU1,*(),Zhen ZHAO1,2,*()
1 Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
2 State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, P. R. China
Download: HTML     PDF(1653KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Inorganic porous materials have been widely applied in the field of chemical industry, energy, environmental protection and other fields owing to their special physicochemical properties. In this paper, the current research progress on inorganic porous materials was summarized. The detailed preparation methods for macroporous, mesoporous, microporous materials and macro-mesoporous, macro-microporous, meso-microporous, macro-meso-microporous materials have been discussed in detail. The indoor and outdoor applications of inorganic porous materials for environmental protection were described and the application of inorganic porous materials in the field of removing mobile source pollution was particularly introduced. Finally, the existing problems about the preparation of inorganic porous materials were summarized and the future research directions for the preparation and application of inorganic porous materials were also prospected.



Key wordsPorous Materials      Synthesis      Application      Environmental protection      Prospect     
Received: 21 April 2017      Published: 09 June 2017
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(21603149);the National Natural Science Foundation of China(91545117);Liaoning Province Doctor Startup Fund, China(201601150);School Projects of Shenyang Normal University, China(XNL2016005);the Engineering Technology Research Center of Catalysis for Energy and Environment, Major Platform for Science and Technology of the Universities in Liaoning Province, China
Corresponding Authors: Xue-Hua YU,Zhen ZHAO     E-mail: yuxuehua1986@163.com;zhaozhen@synu.edu.cn; zhenzhao@cup.edu.cn
Cite this article:

Lan-Yi WANG,Xue-Hua YU,Zhen ZHAO. Synthesis of Inorganic Porous Materials and Their Applications in the Field of Environmental Catalysis. Acta Phys. -Chim. Sin., 2017, 33(12): 2359-2376.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706094     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2359

Fig 1 Crystallization curves of (a) S-Si-ZSM-5 zeolite synthesized from solvent-free route and (b) silicalite-1 zeolite synthesized from hydrothermal route14.
Fig 2 SEM images of (A) and pore size distributions curve(B) of SAPO-34 molecular sieves prepared with organic template and organic template-free17. Adapted from Royal Society of Chemistry.
Fig 3 TEM images of (A) KIT-6/NiMoO4 composite; and (B) mesoporous NiMoO4; Nitrogen adsorption-desorption isotherms and pore size distributions (inset) for mesoporous NiMoO4 under vacuum(C) and atmospheric pressure (D)23. Adapted from Elsevier.
Fig 4 A: The schematic for the formation process of template; B: SEM image of as-made MSN-UV; C: TEM image; D: N2-sorption isotherms, and E: pore size distribution of MSNs after the removal of azobenzene-derived AZTMA template32.
Fig 5 The pore size distributions of prepared sample39, 40. Reprinted with permission from Ref. 39. Copyright 2015 Springer. Reprinted with permission from Ref. 40. Copyright 2015 Royal Society of Chemistry.
Sample Mg-Al400 Mg-Al500 Mg-Al700
Average pore size/nm 4.7 6.5 7.7
Pore volume/(cm3·g?1) 0.4 0.56 0.51
Surface area/(m2·g?1) 338.2 340.1 266.4
Average crystalline size/nm 3.7 5.1 5.5
Table 1 Structural properties of the prepared samples39.
Fig 6 The schematic representation for the formation process through evaporation-driven orientedassembly42.
Fig 7 The schematic of the general procedure for replicating the structure of colloidal crystals into porous materials47, 48. Reprinted with permission from Ref. 47. Copyright 2000 Elsevier; Reprinted with permission from Ref. 48. Copyright 2008 American Chemical Society.
Fig 8 SEM and TEM images of 3DOM catalyst. A: 3DOM AlCe(3:7)53; B: Pt/Mn0.5Ce0.5Oδ54; C and D:3DOM Pt/Mn2O355. Reprinted with permission from Ref. 53. Copyright 2015 Elsevier; Reprinted with permission from Ref. 54. Copyright 2014 American Chemical Society; Reprinted with permission from Ref. 55. Copyright 2014 Elsevier.
Fig 9 SEM, TEM and STEM images of 3DOM catalyst. A: Ce1?xZrxO257, B: La1?xCexFe1?yCoyO358, C: Au/LaFeO359, D: Au@Pt/Ce0.8Zr0.2O260. Reprinted with permission from Ref. 57. Copyright 2011 Elsevier; Reprinted with permission from Ref. 58. Copyright 2015 Royal Society of Chemistry; Reprinted with permission from Ref. 59. Copyright 2011 John Wiley and Sons; Reprinted with permission from Ref. 60. Copyright 2015 Elsevier.
Fig 10 The procedure schematic for controlled modification of carbon nanotubes (CNTs) and polyaniline (PANI) on graphite felt (GF)66. Reprinted with permission from Ref. 66. Copyright 2015 Elsevier.
Fig 11 The schematic for synthesis of ZSM-5 by active carbon template70. Growth of zeolite crystals around carbon particles. The zeolite is nucleated among the carbon particles; the pores are sufficiently large, and the gel is sufficiently concentrated to allow growth to continue within the pore system. Reprinted with permission from Ref. 70. Copyright 2000 American Chemical Society.
Fig 12 The small angle XRD patterns and TEM images of the as-synthesized materials KIT-6; LK78. Reprinted with permission from Ref. 78. Copyright 2015 Elsevier.
Fig 13 The schematic for the loading of Pt NPs on 3DOM CZY catalysts81.
Fig 14 The schematic for the principle of the catalytic regeneration and the picture for the external form of catalytic filter 120.
1 Qin J. ; Che Q. ; Yang C. ; Huang Y. J. Alloys Compd. 2016, 654, 39.
2 Davis M. E. Nature 2002, 417 (6891), 813.
3 Parlett C. M. ; Karen W. ; Lee A. F. Chem. Soc. Rev. 2013, 42, 3876.
4 Khin M. M. ; Nair A. S. ; Babu V. J. ; Murugan R. ; Ramakrishna S. Energy Environ. Sci. 2012, 5, 8075.
5 Sun Wei. ; Huang Y. X. ; Nokhrin S. ; Pan Y. M. ; Mi J. X. Cryst. Growth Des. 2015, 15, 3594.
6 Gao D. W. ; Duan A. J. ; Zhang X. ; Zhao Z. ; Hong E. ; Qin Y. C. ; Xu C. M. Chem. Eng. J. 2015, 270, 176.
7 Duan A. J. ; Li T. S. ; Niu H. ; Yang X. ; Wan Z. G. ; Zhao Z. ; Jiang G.Y. ; Liu J. ; Wei Y. C. ; Pan H. F. Catal. Today 2015, 245, 163.
8 Feng G. D. ; Cheng P. ; Yan W. F. ; Boronat M. ; Li X. ; Su J. H. ; Wang J. Y. ; Li Y. ; Corma A. ; Xu R. ; Yu J. H. Science 2016, 351, 1188.
9 Jamil A. K. ; Muraza O. ; Al-Amer A. M. J. Ind. Eng. Chem. 2015, 29, 112.
10 Xu W. Y. ; Dong J. X. ; Li J. P. ; Li J. Q. ; Wu F. J. Chem. Soc. Chem. Commun. 1990, 10, 755.
11 Zhou H. L. ; Gu J. ; Wu Y. J. ; Wang J. J. Porous Mater. 2013, 20, 523.
12 Cooper E. R. ; Andrews C. D. ; Wheatley P. S. ; Webb P. B. ; Wormald P. ; Morri R. E. Nature 2004, 430, 1012.
13 Zhao X. H. ; Zhao J. B. ; Chiang C.Y. ; Li Z. S. ; Zhao Y. ; Zhou W. Z. N. J. Chem. 2016, 40, 2444.
14 Ren L. M. ; Wu Q. M. ; Yang C. G. ; Zhu L. F. ; Li C. J. ; Zhang P. L. ; Zhang H. Y. ; Meng X. J. ; Xiao F. S. J. Am. Chem. Soc. 2012, 134, 15173.
15 Wang Q. ; Wu Y. J. ; Wang J. ; Lin X. Acta Phys. -Chim. Sin. 2012, 28 (9), 2108.
15 王琦; 吴雅静; 王军; 林晓. 物理化学学报, 2012, 28 (9), 2108.
16 Kim J. F. ; Jung J. T. ; Wang H. H. ; Lee S. Y. ; Moore T. ; Sanguineti A. ; Drioli E. ; Lee Y. M. J. Mater. Sci. 2016, 509, 94.
17 Shi H. RSC Adv. 2015, 5, 38330.
18 Kim Y. W. ; Kim S. H. ; Wang C. J. Am. Ceram. Soc. 2010, 86, 2231.
19 Schitco C. ; Bazarjani M. S. ; Riedel R. ; Gurlo A. J. Mater. Chem. A. 2014, 2, 805.
20 Yanagisawa T. ; Shimizu T. ; Kuroda K. ; Kato C. Bull. Chem. Soc. Jpn. 1990, 63, 988.
21 Beck J. S. ; Vartuli J. C. ; Roth W. J. ; Leonowicz M. E. ; Kresge C. T. ; Schmitt K. D. ; Chu C. T. W. ; Olson D. H. ; Sheppard E. W. ; McCullen S. B. ; Higgins J. B. ; Schlenker J. L. J. Am. Chem. Soc. 1992, 114, 10834.
22 Li Y. ; Zou L. L. ; Li J. ; Guo K. ; Dong X. W. ; Li ; Xiao W. ; Xue X. Z. ; Zhang H. F. ; Yang H. Electrochim. Acta 2014, 129, 14.
23 Fan X. Q. ; Li J. M. ; Zhao Z. ; Wei Y. C. ; Liu J. ; Duan A. J. ; Jiang G. Y. J. Energ. Chem. 2014, 23, 171.
24 Zhao R. ; Wang L. ; Gu Z. J. ; Yuan L. Y. ; Xiao C. L. ; Zhao Y. L. ; Chai Z. F. ; Shi W. Q. Radiochim. Acta 2014, 102, 813.
25 Du Y. C. ; Meng Q. ; Wang J. S. ; Yan J. ; Fan H. G. ; Liu Y. X. ; Dai H. X. Microporous Mesoporous Mater. 2012, 162, 199.
26 Liu Y. X. ; Dai H. X. ; Deng J. G. ; Xie S. H. ; Yang H. G. ; Tan W. ; Han W. ; Jiang Y. ; Guo G. S. J. Catal. 2014, 309, 408.
27 Bai B. ; Li J. ; Hao J. Appl. Catal. B Environ. 2015, 164, 241.
28 Jiang H. X. ; Wang C. X. ; Wang H. Q. ; Zhang M. H. Mater. Lett. 2015, 168, 17.
29 Wang W. X. ; Deng S. X. ; Shi C. X. ; Sun P. C. ; Chen T. H. Acta Phys. -Chim. Sin. 2015, 31 (4), 707.
29 王文轩; 邓绍新; 史成香; 孙平川; 陈铁红. 物理化学学报, 2015, 31 (4), 707.
30 Zhao H. M. ; Lin Dan. ; Yang G. ; Chun Y. ; Xu Q. H. Acta Phys. -Chim. Sin. 2012, 28 (4), 985.
30 赵会民; 林丹; 杨刚; 淳远; 须沁华. 物理化学学报, 2012, 28 (4), 985.
31 Liu J. ; Yu L. H. ; Zhao Z. ; Chen Y. S. ; Zhu P. ; Wang C. ; Luo Y. ; Xu C. M. ; Duan A. J. ; Jiang G. Y. J. Catal. 2012, 285 (1), 134.
32 Wei J. ; Liu Y. Y. ; Chen J. ; Li Y. H. ; Yue Q. ; Pan G. X. ; Yu Y. L. ; Deng Y. H. ; Zhao D. Y. Adv. Mater. 2014, 26, 1782.
33 Roy M. ; Basak S. ; Naskar M. K. PCCP 2016, 18, 5253.
34 Gao D. W. ; Duan A. J. ; Zhang X. ; Zhao Z. ; Hong E. ; Li J. M. ; Wang H. Appl. Catal. B Environ. 2015, 165, 269.
35 Zhou X. F. ; Duan A. J. ; Zhao Z. ; Gong Y. J. ; Wu H. D. ; Li J. M. ; Wei Y. C. ; Jiang G. Y. ; Liu J. ; Zhang Y. J. Mater. Chem. A. 2014, 2, 6823.
36 Cao Z. K. ; Duan A. J. ; Zhao Z. ; Li J. M. ; Wei Y. C. ; Jiang G. Y. ; Liu J. J. Mater. Chem. A. 2014, 2, 19738.
37 Tian H. ; He J. ; Zhang X. ; Zhou L. ; Wang D. Microporous Mesoporous Mater. 2011, 138 (1-3), 118.
38 Zhang F. Q. ; Meng Y. ; Gu D. ; Yan Y. ; Chen Z. X. ; Tu B. ; Zhao D. Y. Chem. Mater. 2007, 18, 5279.
39 Ehsan A. ; Mehran R. ; Behzad N. J. Porous Mater. 2015, 22, 481.
40 Wang Z. G. ; Fu J. Y. ; Deng Y. C. ; Duan A. J. ; Zhao Z. ; Jiang G. Y. ; Liu J. ; Wei Y. C. ; Zhao S. Q. RSC Adv. 2015, 5, 5221.
41 Wei H. ; Lv Y. Y. ; Han L. ; Tu B. ; Zhao D. Y. Chem. Mater. 2011, 23, 2353.
42 Liu Y. ; Che R. C. ; Chen G. ; Fan J. W. ; Sun Z. K. ; Wu Z. X. ; Wang M. H. ; Li B. ; Wei J. ; Wei Y. ; Wang G. ; Guan G. Z. ; Elzatahry A. A. ; Bagabas A. A. ; Al-Enizi A. M. ; Deng Y. H. ; Peng H. S. ; Zhao D. Y. Sci. Adv. 2015, 1, e1500166.
43 Liu D. ; Hu Y. Y. ; Zeng C. ; Qu D. Y. Acta Phys. -Chim. Sin. 2016, 32 (12), 2826.
43 刘丹; 胡艳艳; 曾超; 屈德宇. 物理化学学报, 2016, 32 (12), 2826.
44 Liu B. X. ; Wang J. S. ; Li H. Y. ; Wu J. S. ; Li Z. F. Chin. J. Inorg. Chem. 2012, 28, 465.
44 刘柏雄; 王金淑; 李洪义; 吴俊书; 李志飞. 无机化学学报, 2012, 28, 465.
45 Zhou Y. ; Hu X. C. ; Li L. Q. ; Chen X. R. Acta Phys. -Chim. Sin. 2014, 30 (1), 83.
45 周阳; 胡仙超; 李立清; 陈喜蓉. 物理化学学报, 2014, 30 (1), 83.
46 Velev O. D. ; Jede T. A. ; Lobo R. F. ; Lenhoff A. M. Nature 1997, 389, 447.
47 Velev O. D. ; Lenhoff A. M. Curr. Opin. Coll. Int. Sci. 2000, 5, 56.
48 Stein A. ; Li F. ; Denny N. R. Chem. Mater. 2008, 20, 649.
49 Velev O. D. ; Kaler E. W. Adv. Mater. 2000, 12, 531.
50 Li Z. Q. ; W T. H. ; LI X. Y. ; Zhang Y. Q. ; Ji M. Acta Phys.-him. Sin. 2015, 31 (4), 743.
50 李浙齐; 王特华; 李秀媛; 张雅琴; 纪敏. 物理化学学报, 2015, 31 (4), 743.
51 Wei Y. C. ; Zhao Z. ; Jiao J. Q. ; Liu J. ; Duan A.J. ; Jiang G. Y. Catal. Today 2015, 245, 37.
52 Wei Y. C. ; Zhao Z. ; Liu J. ; Xu C. M. ; Jiang G. Y. ; Duan A. J. Small 2013, 9, 3957.
53 Jin B. F. ; Wei Y. C. ; Zhao Z. ; Liu J. ; Yu X. H. ; Li Y. Z. ; Li J. M. Catal. Today 2015, 258, 487.
54 Yu X. H. ; Li J. M. ; Wei Y. C. ; Zhao Z. ; Liu J. ; Jin B. F. ; Duan A. J. ; Jiang G. Y. Ind. Eng. Chem. Res. 2014, 53, 9653.
55 Wei Y. C. ; Zhao Z. ; Li T. ; Liu J. ; Duan A. J. ; Jiang G. Y. Appl. Phys. B Environ. 2014, 146, 57.
56 Zhang G. Z. ; Zhao Z. ; Liu J. ; Jiang G. Y. ; Duan A. J. ; Zheng J. X. ; Chen S. L. ; Zhou R. X. Chem. Commun. 2010, 46, 457.
57 Xu J. F. ; Liu J. ; Zhao Z. ; Xu C. M. ; Zheng J. X. ; Duan A. J. ; Jiang G. Y. J. Catal. 2011, 282, 1.
58 Feng N. J. ; Wu Y. ; Meng J. ; Chen C. ; Wang L. ; Wan H. ; Guan G. F. RSC Adv. 2015, 5, 91609.
59 Wei Y. C. ; Liu J. ; Zhao Z. ; Chen Y. S. ; Xu C. M. ; Duan A. J. ; Jiang G. Y. ; He H. Angew. Chem. Int. Ed. 2011, 50, 2326.
60 Wei Y. C. ; Zhao Z. ; Jin B. F. ; Yu X. H. ; Jiao J.Q. ; Li K. X. ; Liu J. Catal. Today 2015, 251, 103.
61 Wei Y. C. ; Zhao Z. ; Liu J. ; Liu S. T. ; Xu C. M. ; Duan A. J. ; Jiang G. Y. J. Catal. 2014, 317, 62.
62 Jin B. F. ; Wei Y. C. ; Zhao Z. ; Liu J. ; Jiang G. ; Duan A. J. Chin. J. Catal. 2016, 37 (6), 923.
63 Li S. ; Du C. C. ; Zhao D. F. ; Liu H. F. ; Wang Y. Q. J. Porous Mater. 2014, 21, 939.
64 Xie S. H. ; Deng J. G. ; Zang S. M. ; Yang H. G. ; Guo G. S. ; Arandiyan H. ; Dai H. X. J. Catal. 2015, 322, 38.
65 Jiang P. ; Ostojic G. N. ; Narat R. ; Mittleman D. M. ; Colvin V. L. Adv. Mater. 2001, 13, 389.
66 Cui H. F. ; Du L. ; Guo P. B. ; Zhu B. ; Luong J. H. T. J. Power Sources 2015, 283, 46.
67 Li X. N. ; Zhu C. L. ; Wei Y. Z. ; Lu Z. J. Coll. Polym. Sci. 2014, 292, 115.
68 Lin H. M. ; Ma J. Y. ; Li X. F. ; Wu X. ; Qu F. Y. J. Sol-Gel Sci. Technol. 2012, 62, 170.
69 Liu D. ; Yuan P. ; Tan D. Y. ; Liu H. M. ; Wang T. ; Fan M. D. ; Zhu J. X. ; He H. P. J. Coll. Interf. Sci. 2012, 388, 176.
70 Jacobsen C. J. H. ; Madsen C. ; Houzvicka J. ; Schmidt I. ; Carlsson Anna. JACS 2000, 122, 7116.
71 Tao Y. S. ; Kanoh H. ; Kaneko K. J. Am. Chem. Soc. 2003, 125, 6044.
72 Zhao S. ; Sheng X. L. ; Zhou Y. M. ; He M. ; Fu X. Q. ; Zhang Y. W. J. Porous Mater. 2015, 22, 1.
73 Liu S. Y. ; Ren J. ; Zhang H. K. ; Lv E. J. ; Yang Y. ; Li Y. W. J. Catal. 2016, 335, 11.
74 Qi D. H. ; Duan A. J. ; Zhao Z. ; Wu H. D. ; Fan H. L. ; Fang H. ; Li J. M. ; Jiang G. Y. ; Liu J. ; Wei Y. C. ; Zhang X. J. Porous Mater. 2015, 22, 127.
75 Miyazawa K. ; Inagaki S. Chem. Commun. 2000, 2121.
76 Parfenov V. A. ; Ponomarenko I. V. ; Zharkov S. M. ; Kirik S. D. Glass Phys. Chem. 2014, 40, 69.
77 Li T. S. ; Duan A. J. ; Zhao Z. ; Liu B. J. ; Jiang G. Y. ; Liu J. ; Wei Y. C. ; Pan H. F. Fuel 2014, 117, 974.
78 Duan A. J. ; Li T. S. ; Zhao Z. ; Liu B. J. ; Jiang G. Y. ; Liu J. ; Wei Y. C. Appl. Catal. B:Environ. 2015, 165, 763.
79 Zhang H. ; Zhang L. ; Deng J. G. ; Liu Y. X. ; Jiang H. Y. ; Shi F. J. ; Ji K. M. ; Dai H. X. Chin. J. Catal. 2011, 32, 842.
80 Deng Y. H. ; Liu C. ; Yu T. ; Liu F. ; Zhang F. Q. ; Wan Y. ; Zhang L. J. ; Wang C. C. ; Tu B. ; Webley P. A. ; Wang H. T. ; Zhao D. Y. Chem. Mater. 2007, 19, 3271.
81 Arandiyan H. ; Dai H. X. ; Ji K. M. ; Sun H. Y. ; Zhao Y. Y. ; Li J. H. Small 2015, 11, 2366.
82 Deng W. H. ; Toepke M. W. ; Shanks B. H. Adv. Funct. Mater. 2003, 13, 61.
83 Wang X. C. ; Yu J. C. ; Ho C. M. ; Hou Y. D. ; Fu X. Z. Langmuir 2005, 21, 2552.
84 Liu Z. T. ; Fan T. X. ; Zhang W. ; Zhang D. Microporous Mesoporous Mater. 2005, 85, 82.
85 Yu X. H. ; Zhao Z. ; Wei Y. C. ; Liu J. Sci. Rep. 2017, 7, 43894.
86 Dong A. G. ; Wang Y. J. ; Tang Y. ; Ren N. ; Zhang Y. H. ; Gao Z. Chem. Mater. 2002, 14, 3217.
87 Dong A. G. ; Wang Y. J. ; Tang Y. ; Zhang Y. J. ; Ren N. ; Gao Z. Adv. Mater. 2002, 14, 1506.
88 Yu, J. H.; Xi, D. Y.; Sun, Q. M. The Preparation Method and Application Macro-Microporous Composite Type SAPO-34 Molecular Sieve, 103523797A, 2014.
88 于吉红,喜冬阳,孙启明.大孔微孔复合型结构的SAPO-34分子筛、制备方法及其应用:中国, 103523797A[P]. 2014.
89 Zhang B. ; Davis S. A. ; Mann S. Chem. Mater. 2002, 14, 1369.
90 Song F. ; Su H. L. ; Chen J. J. ; Moon W. J. ; Lau W. M. ; Zhang D. J. Mater. Chem. 2011, 22, 1121.
91 He X. H. ; Qi L. H. ; Wang J. B. ; Shen M. Q. ; Chang W. ; Fu C. ; Yang M. G. ; Su X. L. Bull. Mater. Sci. 2011, 34, 1157.
92 Liu J. ; Jiang G. Y. ; Liu Y. ; Di J. C. ; Wang Y. J. ; Zhao Z. ; Sun Q. Y. ; Xu C. M. ; Gao J. S. ; Duan A. J. ; Liu J. ; Wei Y. C. Sci. Rep. 2014, 4, 7276.
93 Zhou Y. ; Antonietti M. Chem. Commun. 2003, 2564.
94 Kuang D. ; Brezesinski T. ; Smarsly B. J. Am. Chem. Soc. 2004, 126, 10534.
95 Chen L. H. ; Li X. Y. ; Tian G. ; Li Yu ; Rooke J. C. ; Zhu G. S. ; Qiu S. L. ; Yang X. Y. ; Su B. L. Angew. Chem. Int. Ed. 2011, 50, 11156.
96 Li X. Y. ; Chen L. H. ; Rooke J. C. ; Deng Z. ; Hu Z. Y. ; Wang S. Z. ; Wang L. ; Li Y. ; Alain K. ; Su B. L. J. Coll. Interf. Sci. 2012, 394, 252.
97 Suzuki K. ; Ikari K. ; Imai H. J. Mater. Chem. 2003, 13, 1812.
98 Chen L. H. ; Li X. Y. ; Tian G. ; Li Y. ; Tan H. Y. ; Tendeloo G. V. ; Zhu G. S. ; Qiu S. L. ; Yang X. Y. ; Su B. L. ChemSusChem 2011, 4, 1452.
99 Nie P. ; Shen L. F. ; Chen L. ; Su X. F. ; Zhang X. G. ; Li H. S. Acta Phys. -Chim. Sin. 2011, 27 (9), 2123.
99 聂平; 申来法; 陈琳; 苏晓飞; 张校刚; 李洪森. 物理化学学报, 2011, 27 (9), 2123.
100 Veksha A. ; Sasaoka E. ; Uddin M. A. Carbon 2009, 47, 2371.
101 Huang Y. Y. ; He Y. F. ; Wang L. ; Liu J. ; Wang R. M. Ind. Water Treat. 2015, 35 (1), 1.
101 黄一君; 何玉凤; 王丽; 刘洁; 王荣民. 工业水处理, 2015, 35 (1), 1.
102 Chen T. ; Wang T. ; Wang D. J. ; Zhao J. Q. ; Ding X. C. ; Wu S. C. ; Xue H. R. ; He J. P. Acta Phys. -Chim. Sin. 2010, 26 (12), 3249.
102 陈田; 王涛; 王道军; 赵建庆; 丁晓春; 吴士超; 薛海荣; 何建平. 物理化学学报, 2010, 26 (12), 3249.
103 Giraldo L. ; Moreno-Piraján J. C. J. Anal. Appl. Pyrolysis 2014, 106, 41.
104 Tontisirin S. J. Porous Mater. 2015, 22, 1.
105 Tang X. J. ; Bai Y. ; Duong A. ; Smith M. T. ; Li L. Y. ; Zhang L. P. Environ. Int. 2009, 35, 1210.
106 Meyer B. ; Kottes A. B. A. ; Reinhardt R. M. Anal. Chem. 1986, 58, 1364A.
107 Domingo-García M. D. ; Morales I.F. ; Garzon F. J. L. ; Castilla C. M. ; Mendoóza M. P. Langmuir 1999, 15 (9), 3226.
108 Boonamnuayvitaya V. ; Saeung S. ; Tanthapanichakoon W. Sep. Purif. Technol. 2005, 42 (2), 159.
109 Sekine Y. ; Nishimura A. Atmos. Environ. 2001, 35, 2001.
110 Sekine Y. Atmos. Environ. 2002, 36, 5543.
111 Tang W. X. ; Wu X. F. ; Li S. D. ; Li W. H. ; Chen Y. F. Catal. Commun. 2014, 56, 134.
112 Yang P. ; Shi Z. N. ; Yang S. S. ; Zhou R. X. Chem. Eng. Sci. 2015, 126, 361.
113 Liu Y. X. ; Deng J. G. ; Xie S. H. ; Wang Z. W. ; Dai H. X. Chin. J. Catal. 2016, 37, 1193.
114 Wickramaratne N. P. ; Jaroniec M. Adsorption 2013, 20, 1.
115 Xiao Y. H. ; Wang S. D. ; Wu D. Y. ; Yuan Q. J. Hazard. Mater. 2008, 153, 1193.
116 Wagner T. ; Waitz T. ; Roggenbuck J. ; Fr?ba M. ; Kohl C. D. ; Tiemann M. Thin Solid Films 2007, 515, 8360.
117 Sohot M. R. ; Umi S. J. ; Muhd R. S. Adv. Mater. Res. 2014, 875-877, 213.
118 Lian Z. H. ; Liu F. D. ; He H. ; Liu K. RSC Adv. 2015, 5, 37675.
119 Schuster M. E. ; H?vecker M. ; Arrigo R. ; Blume R. ; Knauer M. ; Ivleva N. P. ; Su D. S. ; Niessner R. ; Schl?gl R. J. Phys. Chem. A 2011, 115, 2568.
120 http://www.honestjohn.co.uk/faq/diesel-particulate-filters/ (Available online:6 December 2013).
121 Xiao P. ; Zhong L. Y. ; Zhu J. J. ; Hong J. P. ; Li J. ; Li H. L. ; Zhu Y. J. Catal. Today 2015, 258, 660.
122 Cheng Y. ; Liu J. ; Zhao Z. ; Wei Y. C. ; Song W. Y. ; Xu C. M. Environ. Sci. Nano 2017, 4, 1168.
[1] Jingyuan ZHOU,Jin ZHANG,Zhongfan LIU. Advanced Progress in the Synthesis of Graphdiyne[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 977-991.
[2] Teng XUE,Lilu DONG,Ying ZHANG,Haihong WU. Green and Cost-Effective Preparation of Small-Sized ZSM-5[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 920-926.
[3] Yang ZHOU,Zhimin LI,Kai ZHENG,Gao LI. Controlled Synthesis of Au36(SR)24 (SR = SPh, SC6H4CH3, SCH(CH3)Ph, and SC10H7) Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 786-791.
[4] Hengwei WANG,Junling LU. Atomic Layer Deposition: A Gas Phase Route to Bottom-up Precise Synthesis of Heterogeneous Catalyst[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1334-1357.
[5] Ping HE,Fanglong YUAN,Zifei WANG,Zhanao TAN,Louzhen FAN. Growing Carbon Quantum Dots for Optoelectronic Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1250-1263.
[6] Jin-Long LIU,Liang-Zhen LIN,Jin-Feng HU,Ming-Jie BAI,Liang-Xian CHEN,Jun-Jun WEI,Li-Fu HEI,Cheng-Ming LI. Reaction Process and Luminescence Mechanism of Carbon Nanodots Prepared by Microwave Synthesis[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 92-98.
[7] Hong-Yan NING,Qi-Lei YANG,Xiao YANG,Ying-Xia LI,Zhao-Yu SONG,Yi-Ren LU,Li-Hong ZHANG,Yuan LIU. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1865-1874.
[8] Pei-Yi LIAO,Chen ZHANG,Li-Jun ZHANG,Yan-Zhang YANG,Liang-Shu ZHONG,Xiao-Ya GUO,Hui WANG,Yu-Han SUN. Influences of Cu Content on the Cu/Co/Mn/Al Catalysts Derived from Hydrotalcite-Like Precursors for Higher Alcohols Synthesis via Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1672-1680.
[9] Xiao-Qiang. WANG,Jiang. LIU,Yong-Min. XIE,Wei-Zi. CAI,Ya-Peng. ZHANG,Qian. ZHOU,Fang-Yong. YU,Mei-Lin. LIU. A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1614-1620.
[10] Qi-Tang FAN,Jun-Fa ZHU. Controlling the Topology of Low-Dimensional Organic Nanostructures with Surface Templates[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1288-1296.
[11] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428.
[12] Xue-Jiao HU,Guan-Bin GAO,Ming-Xi ZHANG. Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1324-1337.
[13] . Synthesis, Characterization, Spectroscopic Properties, and Luminescence Quenching Mechanism of a Pt(Ⅱ) Complex Decorated with a π-Conjugated TEMPO-Terpyridine Ligand System[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1390-1398.
[14] Mao-Mao RUAN,Le-Xin SONG,Qing-Shan WANG,Juan XIA,Zun YANG,Yue TENG,Zhe-Yuan XU. Facile Green Synthesis of Highly Monodisperse Bismuth Subcarbonate Micropompons Self-assembled by Nanosheets: Improved Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1033-1042.
[15] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.