Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (12): 2523-2531    DOI: 10.3866/PKU.WHXB201706091
ARTICLE     
Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor
Xiu-Mei WAN1,2,Li WANG1,2,Xiao-Qing GONG1,2,Dan-Feng LU1,Zhi-Mei QI1,*()
1 State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(3750KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Nanoporous TiO2 (NPT) films with a thickness of about 295 nm were prepared through the sol-gel copolymer-templating approach on a 40-nm-thick gold film sputtered on a glass substrate for optical waveguide resonance (OWR) sensing. Using the prism-coupled Kretschmann configuration, a single resonance dip was observed in the wavelength range from visible to near infrared, which was attributed to the second order transverse magnetic mode of the OWR chip based on the phase-match condition. By using a combination of Fresnel theory and Bruggeman equation to fit the measured resonance dip, the porosity of NPT films was determined to be about 0.4. After hydrophobilization of the NPT films, the OWR chips were used for both in-situ and ex-situ detections of benzo[a]pyrene (BaP) in water. The experimental results indicate that the ex-situ detection sensitivity to BaP is 2 times higher than the in-situ detection sensitivity. The lowest concentration of BaP detectable with the hydrophobilized OWR chip is ca. 100 nmol·L-1. The experimental comparisons reveal that both the nanoporous structure and hydrophobilization of the OWR chip enable to enhance the sensor's sensitivity to BaP. The work demonstrated that the NPT thin-film OWR sensing chips are stable and robust with good reusability.



Key wordsBenzo (a) pyrene      Optical waveguide resonance sensor      Nanoporous TiO2 thin films      Hydrophobilization      Sensitivity enhancement     
Received: 18 May 2017      Published: 09 June 2017
MSC2000:  O647  
Fund:  the National Key Basic Research Program of China (973)(2015CB352100);National Natural Science Foundation of China(61377064);National Natural Science Foundation of China(61675203);Research Equipment Development Project of Chinese Academy of Sciences(YZ201508)
Corresponding Authors: Zhi-Mei QI     E-mail: zhimei-qi@mail.ie.ac.cn
Cite this article:

Xiu-Mei WAN,Li WANG,Xiao-Qing GONG,Dan-Feng LU,Zhi-Mei QI. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor. Acta Physico-Chimica Sinca, 2017, 33(12): 2523-2531.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706091     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2523

Fig 1 Schematic diagram of experimental setup.
Fig 2 (a) UV-Vis absorption spectra measured with different concentrations of BaP in water; (b) relationship between the absorbance and the BaP concentration.
Fig 3 Scanning electron microscope (SEM) images of (a) surface morphology of the nanoporous TiO2 film and (b) cross-section morphology of the OWR sensor chip.
Fig 4 Water contact angles for nanoporous TiO2 film before (a) and after (b) hydrophobilization.
Fig 5 (a) Reflected light intensity spectrum measured with the NPT film in air and the corresponding calculated reflectance spectrum with the air clad (θ = -20°); (b) the calculated effective RI dispersions N(λ) for the TM1 and TM2 modes with the water clad and those with air clads; (c) reflected light intensity spectrum measured with the NPT film in water and the corresponding calculated reflectance spectrum with the water clad (θ = 5°).
Fig 6 (a) Reflected light intensity measured with different concentrations of BaP solutions; (b) the resonance-wavelength shifts (?λR) versus the BaP concentrations; (c) the calculated relationship between ?λR and the volume fraction of adsorbed BaP molecules.
Fig 7 (a) In-situ and (b) ex-situ responses to BaP for the OWR sensor with the hydrophobilized NPT film.
Fig 8 Comparison of four data of ?λR obtained with the same OWR chip and the same solution sample.
Fig 9 Comparison of the responses to BaP for the OWR chip before and (b) after hydrophobilization.
Fig 10 (a) In-situ and (b) ex-situ detection of benzo (a) pyrene using the hydrophobic dense film (Ta2O5) based plasmon waveguide sensing chip.
1 Shamsuddin A. K. M. ; Sinopoli N. T. ; Hemminki K. ; Boesch R. R. ; Harris C. C. Cancer Res 1985, 45 (1), 66.
2 Miura N. ; Sasaki M. ; Gobi K. V. ; Kataoka C. ; Shoyama Y. Biosens. Bioelectron 2003, 18 (7), 953.
3 Jin J. ; Li Y. ; Zhang Z. ; Su F. ; Qi P. ; Lu X. ; Chen. J. J.Chromatogr. A 2011, 1218 (51), 9149.
4 Fu S. ; Guo X. ; Wang H. ; Yang T. ; Wen Y. ; Yang H. Sens. Actuator B-Chem 2015, 212, 200.
5 Du C. ; Hu Y. ; Li Y. ; Fan L. ; Li X. Talanta 2015, 138, 46.
6 Xie Y. F. ; Wang X. ; Ruan W. D ; Song W. ; Zhao B. Spectrosc. Spect. Anal 2011, 31 (9), 2319.
6 谢云飞; 王旭; 阮伟东; 宋薇; 赵冰. 光谱学与光谱分析, 2011, 31 (9), 2319.
7 Bahrami F. ; Maisonneuve M. ; Meunier M. ; Aitchison J. S. ; Mojahedi M. Biomed. Opt. Express 2014, 5 (8), 2481.
8 Zhou Y. ; Zhang P. ; He Y. ; Xu Z. ; Liu L. ; Ji Y. ; Ma H. Appl. Opt 2014, 53 (28), 6344.
9 Abbas A. ; Linman M. J. ; Cheng Q. Sens. Actuator B-Chem 2011, 156 (1), 169.
10 Alves I. ; Kurylo I. ; Coffinier Y. ; Siriwardena A. ; Zaitsev V. ; Harté E. ; Boukherroub R. ; Szunerits S. Anal. Chim. Acta 2015, 873, 71.
11 Yamaguchi A. ; Hotta K. ; Teramae N. Anal. Chem 2009, 81 (1), 105.
12 Hotta K. ; Yamaguchi A. ; Teramae N. J.Phys. Chem. C 2012, 116 (44), 23533.
13 Jiao Y. ; Weiss S. M. Biosens. Bioelectron 2010, 25 (6), 1535.
14 Rong G. ; Ryckman J. D. ; Mernaugh R. L. ; Weiss S. M. Appl. Phys. Lett 2008, 93, 161109.
15 Qi Z. M. ; Honma I. ; Zhou H. Appl. Phys. Lett 2007, 90, 011102.
16 Cameron P. J. ; Jenkins A. T. A. ; Knoll W. ; Marken F. ; Milson E. V. ; Williams T. L. J.Mater. Chem 2008, 18, 4304.
17 Zhang Z. ; Lu D. F. ; Qi Z. M. J.Phys. Chem. C 2012, 116 (5), 3342.
18 Wan X. M. ; Chen C. ; Fan Z. B. ; Lu D. F. ; Gao R. ; Qi Z. M. Acta Phys. Sin 2016, 65 (13), 137801.
18 万秀美; 陈晨; 范智博; 逯丹凤; 高然; 祁志美. 物理学报, 2016, 65 (13), 137801.
19 Zhang Z. ; Qi Z. M. Chinese Janal. Chem 2010, 38 (11), 1538.
19 张喆; 祁志美. 分析化学, 2010, 38 (11), 1538.
20 Wang X. ; Hao W. ; Zhang H. ; Pan Y. ; Kang Y. ; Zhang X. ; Zou M. ; Tong P. ; Du Y. Spectrochim. Acta Part A 2015, 139, 214.
21 Bao L. ; Sheng P. ; Li J. ; Wu S. ; Cai Q. ; Yao S. Analyst 2012, 137, 4010.
22 Fu S. ; Guo X. ; Wang H. ; Yang T. ; Wen Y. Sens. Actuator B-Chem 2015, 212, 200.
23 Fan Z. B. ; Gong X. Q. ; Lu D. F. ; Gao R. ; Qi Z. M. Acta Phys. -Chim. Sin 2017, 33 (5), 1001.
23 范智博; 龚晓庆; 逯丹凤; 高然; 祁志美. 物理化学学报, 2017, 33 (5), 1001.
24 Gong X. ; Wang L. ; Wan X. ; Lu D.F. ; Qi Z. M. Proc. SPIE 2017, 10250, 1025028.
25 Wang L. ; Lu D. F. ; Gao R. ; Cheng J. ; Zhang Z. ; Qi Z. M. Acta Phys. -Chim. Sin 2017, 33 (6), 1223.
25 王丽; 逯丹凤; 高然; 程进; 张喆; 祁志美. 物理化学学报, 2017, 33 (6), 1223.
26 Feng A. ; Duan J. M. ; Du J. J. ; Jing C. Y. Environ. Chem 2014, 1, 47.
26 冯艾; 段晋明; 杜晶晶; 景传勇. 环境化学, 2014, 1, 47.
27 Hu Y. ; Liu S. ; Huang S. ; Pan W. Rare Metal Mat. Eng 2011, 40 (Suppl1), 469.
27 胡亚微; 刘珊; 黄思雅; 潘伟. 稀有金属材料与工程, 2011, 40, 469.
28 Alberius P. C. A. ; Frindell K. L. ; Hayward R. C. ; Kramer E. J. ; Stucky G. D. ; Chmelka B. F. Chem. Mater 2002, 14 (8), 3284.
29 Zourob M. ; Goddard N. J. Biosens. Bioelectron 2005, 20 (9), 1718.
30 Zhang Z. ; Liu J. ; Lu D. F. ; Qi Z. M. Acta Phys. -Chim. Sin 2014, 30 (9), 1771.
30 张喆; 刘杰; 逯丹凤; 祁志美. 物理化学学报, 2014, 30 (9), 1771.
31 Qi Z. M. ; Honma I. ; Zhou H. Anal. Chem 2006, 78 (4), 1034.
32 http://www.chemspider.com/Chemical-Structure.2246.html
[1] WANG Xinyi, XIE Lei, DING Yuanqi, YAO Xinyi, ZHANG Chi, KONG Huihui, WANG Likun, XU Wei. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[2] LEE Jordan, LI Yong, TANG Jianing, CUI Xiaoli. Synthesis of Hydrogen Substituted Graphyne through Mechanochemistry and Its Electrocatalytic Properties[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[3] SHEN Xiangyan, HE Jianjiang, WANG Ning, HUANG Changshui. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[4] Wentao LI,Jiale YONG,Qing YANG,Feng CHEN,Yao FANG,Xun HOU. Oil-Water Separation Based on the Materials with Special Wettability[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 456-475.
[5] ZHAO Yeliang, WANG Bing. Effect of Substrate on the Electron Spin Resonance Spectra of N@C60 Molecules[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[6] DUAN Yuan, CHEN Mingshu, WAN Huilin. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[7] SUN Chengzhen, BAI Bofeng. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[8] HUANG Zhijuan, YU Zhinong, LI Yan, WANG Jizheng. ZnO Ultraviolet Photodetector Modified with Graphdiyne[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[9] Yi-Ran SUN,Fei YU,Jie MA. Research Progress of Nanoconfined Water[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2173-2183.
[10] Gui-Xia LI,Yong-Chao JIANG,Peng LI,Wei PAN,Yong-Ping LI,Yun-Jie LIU. Helium Separation Performance of the Rhombic-Graphyne Monolayer Membrane: Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2219-2226.
[11] Ji-Chong LIU,Feng TANG,Feng-Ye YE,Qi CHEN,Li-Wei CHEN. Visualization of Energy Band Alignment in Thin-Film Optoelectronic Devices with Scanning Kelvin Probe Microscopy[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 1934-1943.
[12] Qian WU,Wei-Zheng WENG,Chun-Li LIU,Chuan-Jing HUANG,Wen-Sheng XIA,Hui-Lin WAN. Effect of Preparation Methods on Photo-Induced Formation of Peroxide Species on Nd2O3[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2064-2071.
[13] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1898-1904.
[14] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1846-1854.
[15] WANG Xiao-Qiang, LIU Jiang, XIE Yong-Min, CAI Wei-Zi, ZHANG Ya-Peng, ZHOU Qian, YU Fang-Yong, LIU Mei-Lin. A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1614-1620.