Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (12): 2438-2445    DOI: 10.3866/PKU.WHXB201706121
ARTICLE     
Methodology for Formulating Aviation Kerosene Surrogate Fuels and The Surrogate Fuel Model for HEF Kerosene
Dong ZHENG1,2,Bei-Jing ZHONG2,*(),Tong YAO3
1 School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
2 School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
3 Center for Combustion Energy, Department of Thermal Engineering, Tsinghua University, Beijing 100084, P. R. China
Download: HTML     PDF(873KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The methodology for formulating aviation kerosene surrogate fuels was developed based on enriching combustion chemical property parameters, and presenting accurate computational method for mixture fuel property parameters. Moreover, under the conditions of initial pressure of 0.1 MPa, initial temperatures of 420 K and 460 K, the laminar flame speeds of the real HEF kerosene were measured using the constant-volume combustion bomb experiment. Depending on the methodology, the HEF kerosene surrogate fuel model, consisting of 65% n-dodecane/10% n-tetradecane/25% decalin (mole fraction), was presented. Sufficiently validated results indicated that in both physical and combustion chemical properties, the surrogate fuel models have high similarity with the real HEF kerosene. The present surrogate fuel model and experimental data provide a foundation for the development and validation of the chemical mechanism.



Key wordsAviation kerosene      Surrogate fuel      High energy density fuel      Laminar flame speed      Reaction mechanism     
Received: 24 April 2017      Published: 12 June 2017
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(91441113);Fundamental Research Funds for the Central Universities(2682017CX035)
Corresponding Authors: Bei-Jing ZHONG     E-mail: zhongbj@tsinghua.edu.cn
Cite this article:

Dong ZHENG,Bei-Jing ZHONG,Tong YAO. Methodology for Formulating Aviation Kerosene Surrogate Fuels and The Surrogate Fuel Model for HEF Kerosene. Acta Physico-Chimica Sinca, 2017, 33(12): 2438-2445.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706121     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2438

Fig 1 Methodology for Formulating aviation kerosene surrogate fuel model
Fig 2 DCN of n-decane and toluene binary mixture as a function of toluene concentration13
Fig 3 Flame speed of iso-octane/ethanol binary mixture as a function of ethanol concentration23
Fig 4 Comparisons between experimental and calulated results for flame speed of ternary mixture of iso-octane/ethanol/n-heptane24
Fig 5 Experimental system sketch of constant volume combsution bomb
Fig 6 Measuring laminar flame speeds for decalin/air
Fig 7 Measuring laminar flame speeds for HEF kesosene/air
Fig 8 Molecular class compositions (mole fraction) of HEF kerosene
Fig 9 Carbon number profile for compositions of HEF kerosene
FormulaDensity/(g·cm-3)Viscosity/(mPa·s)H/C ratioMW/(g?mol-1)Boiling point/℃DCN
HEF keroseneC11.72H24.580.7912.502.10165.54170.0-249.570
RP-3 keroseneC10.57H21.990.7851.162.08148.83163.0-212.030-6028
Surrogate fuel modelC11.70H24.400.7842.682.09165.12195.8-254.072.6
Table 1 Analysis results for property parameters of HEF kerosene
CompoundFormulaDensity/(g·cm-3) aViscosity/(mPa·s) aH/C ratioMW/(g?mol-1) aBoiling point/℃ aDCN
n-tetradecaneC14H300.7642.122.14198.39254.095 29
n-dodecaneC12H260.7491.432.17170.33216.378.6 20
decalinC10H180.8983.381.80138.25195.834.6 20
Table 2 Property parameters of the representative species of HEF kerosene
Fig 10 Laminar flame speeds of HEF kerosene and present surrogate model
1 Chung H. ; Chen C. ; Kremer R. ; Boulton J. ; Burdette G. Energy Fuels 1999, 13 (3), 641.
2 Ma H. A. ; Xie M. Z. ; Zeng W. ; Chen X. X. J. Aerospace Power 2013, 28 (2), 297.
2 马洪安; 解茂昭; 曾文; 陈潇潇. 航空动力学报, 2013, 28 (2), 297.
3 Zheng D. ; Zhong B. J. Acta Phys. -Chim. Sin. 2012, 28 (9), 2029.
3 郑东; 钟北京. 物理化学学报, 2012, 28 (9), 2029.
4 Zhong B.-J. ; Zheng D. Fuel 2014, 128 (15), 458.
5 Pitz W. J. ; Mueller C. J. Prog. Energy Combust. Sci. 2011, 37 (3), 330.
6 Tim, E. USAF Supercritical Hydrocarbon Fuels Interests. Proceedings of 31st Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Reston, VA, USA, 1993.
7 Edwards T. ; Maurice L. Q. J. Propuls. Power 2001, 17 (2), 461.
8 Wood C. P. ; McDonell V. G. ; Smith R. A. ; Samuelsen G. S. J. Propuls. Power 1989, 5 (4), 399.
9 Violi A. ; Yan S. ; Eddings E. G. ; Sarofim A. F. ; Granata S. ; Faravelli T. ; Ranzi E. Combust. Sci. Technol. 2002, 174 (11-12), 399.
10 Fan X. J. ; Yu G. J. Propuls. Technol. 2006, 27 (2), 187.
10 范学军; 俞刚. 推进技术, 2006, 27 (2), 187.
11 Zeng W. ; Li H. X. ; Ma H.A. ; Liang S. ; Chen B. D. J. Propuls. Technol. 2014, 35 (8), 1139.
11 曾文; 李海霞; 马洪安; 梁双; 陈保东. 推进技术, 2014, 35 (8), 1139.
12 Pei X. Y. ; Hou L. Y. ; Mo C. K. ; Dong N. J. Aerospace Power 2015, 30 (9), 2122.
12 裴鑫岩; 侯凌云; 莫崇康; 董宁. 航空动力学报, 2015, 30 (9), 2122.
13 Dooley S. ; Won S. H. ; Chaos M. ; Heyne J. ; Ju Y. ; Dryer F. L. ; Kumar K. ; Sung C.-J. ; Wang H. ; Oehlschlaeger M. A. ; Santoro R. J. ; Litzinger T. A. Combust. Flame 2010, 157 (12), 2333.
14 Dooley S. ; Won S. H. ; Heyne J. ; Farouk T. I. ; Ju Y. ; Dryer F. L. ; Kumar K. ; Hui X. ; Sung C. -J. ; Wang H. ; Oehlschlaeger M. A. ; Iyer V. ; Iyer S. ; Litzinger T. A. ; Santoro R. J. ; Malewicki T. ; Brezinsky K. Combust. Flame 2012, 159 (4), 1444.
15 Zheng D. ; Yu W. M. ; Zhong B. J. Acta Phys. -Chim. Sin. 2015, 31 (4), 636.
15 郑东; 于维铭; 钟北京. 物理化学学报, 2015, 31 (4), 636.
16 Ahmed A. ; Goteng G. ; Shankar V. S. B. ; Al-Qurashi K. ; Roberts W. L. ; Sarathy S. M. Fuel 2015, 143 (1), 290.
17 NIST Standard Reference Database 4: NIST Thermophysical Properties of Hydrocarbon Mixtures Database. Available online: https://www.nist.gov/sites/default/files/documents/srd/Supertrapp.pdf (accssed on 8 June 2017).
18 Holley A. T. ; You X. Q. ; Dames E. ; Wang H. ; Egolfopoulos F. N. Proc. Combust. Inst. 2009, 32 (1), 1157.
19 Mueller C. J. ; Cannella W. J. ; Bruno T. J. ; Bunting B. ; Dettman H. D. ; Franz J. A. ; Huber M. L. ; Natarajan M. ; Pitz W. J. ; Ratcliff M. A. ; Wright K. Energy Fuels 2012, 26 (6), 3284.
20 Shrestha A. ; Zheng Z. ; Badawy T. ; Henein N. ; Schihl P. SAE Int. J.Fuels Lubr. 2014, 7 (1), 337.
21 Heyne J. S. ; Boehman A. L. ; Kirby S. Energy Fuels 2009, 23 (12), 5879.
22 Tang C. L. ; Jin C. ; He J. J. ; Huang Z. H. ; Wang J. H. J. Eng. Thermophys. 2009, 30 (6), 1075.
22 汤成龙; 金春; 何佳佳; 黄佐华; 王金华. 工程热物理学报, 2009, 30 (6), 1075.
23 Rau F. ; Hartl S. ; Voss S. ; Still M. ; Hasse C. ; Trimis D. Fuel 2015, 140 (15), 10.
24 Van Lipzig J. P. J. ; Nilsson E. J. K. ; De Goey L. P. H. ; Konnov A. A. Fuel 2011, 90 (8), 2773.
25 Kumar K. ; Sung C. -J. Combust. Flame 2007, 151 (1-2), 209.
26 Li B. ; Liu N. ; Zhao R. ; Zhang H. ; Egolfopoulos F. N. Proc. Combust. Inst. 2013, 34 (1), 727.
27 Chen Z. Combust. Flame 2015, 162 (6), 2442.
28 Dooley S. ; Won S. H. ; Jahangirian S. ; Ju Y. ; Dryer F. L. ; Wang H. ; Oehlschlaeger M. A. Combust. Flame 2012, 159 (10), 3014.
29 Ryan T. ; Stapper B. SAE Technical Paper 870586 1987.
30 Fang Y. M. ; Wang Q. D. ; Wang F. ; Li X. Y. Acta Phys. -Chim. Sin. 2012, 28 (11), 2536.
30 方亚梅; 王全德; 王繁; 李象远. 物理化学学报, 2012, 28 (11), 2536.
31 Mzéahmed A. ; Dagaut P. ; Dayma G. ; Diévart P. ; Hadjali K. Combust. Sci. Technol. 2014, 186 (4-5), 594.
32 He J. N. ; Li Y. L. ; Zhang C. H. ; Li P. ; Li X. Y. Acta Phys. -Chim. Sin. 2015, 31 (5), 836.
32 何九宁; 李有亮; 张昌华; 李萍; 李象远. 物理化学学报, 2015, 31 (5), 836.
[1] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1411-1420.
[2] WANG Zi-Min, ZHENG Mo, XIE Yong-Bing, LI Xiao-Xia, ZENG Ming, CAO Hong-Bin, GUO Li. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1399-1410.
[3] ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1085-1107.
[4] LI Shen-Hui, LI Jing, ZHENG An-Min, DENG Feng. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 270-282.
[5] Xiao-Fang BAI,Wei CHEN,Bai-Yin WANG,Guang-Hui FENG,Wei WEI,Zheng JIAO,Yu-Han SUN. Recent Progress on Electrochemical Reduction of Carbon Dioxide[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2388-2403.
[6] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 211-241.
[7] CHANG Ya-Chao, JIA Ming, FAN Wei-Wei, LI Yao-Peng, LIU Hong, XIE Mao-Zhao. Decoupling Methodology: An Effective Way for the Development of Reduced and Skeletal Mechanisms[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2209-2215.
[8] YANG Zhen, LIU Hai, HE Yuan-Hang. Molecular Dynamics Simulations of Femtosecond Laser Ablation of Energetic Materials[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1977-1982.
[9] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1866-1879.
[10] Xiao-Long LIU,Xiao-Xia LI,Song HAN,Xian-Jie QIAO,Bei-Jing ZHONG,Li GUO. Initial Reaction Mechanism of RP-3 High Temperature Oxidation Simulated with ReaxFF MD[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1424-1433.
[11] YANG Zhen, HE Yuan-Hang. Pyrolysis of Octanitrocubane via Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 921-928.
[12] XIAO Gan, ZHANG Yu-Sheng, JIANG Guang-Jun. Systematic Construction and Validation of the Reduced Chemical Kinetic Model of Gasoline Multi-Component Surrogate Fuel[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 879-892.
[13] ZHANG Tian-Lei, YANG Chen, FENG Xu-Kai, WANG Zhu-Qing, WANG Rui, LIU Qiu-Li, ZHANG Peng, WANG Wen-Liang. Theoretical Study on the Atmospheric Reaction of HS with HO2: Mechanism and Rate Constants of the Major Channel[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 701-710.
[14] ZHANG Pei-Zhi, YE Mei-Jun, HU Wei-Lian, WU Jun. Kinetics of Acid-Catalyzed Smiles Rearrangement of 2,6-Dimethoxy-2-pyrimidinyloxy-N-arylbenzylamine Derivatives[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 422-428.
[15] ZENG Xiao-Lan, WANG Yan. Mechanism and Regioselectivity of Addition Reactions of CH3OH to Germasilenes[J]. Acta Physico-Chimica Sinca, 2015, 31(9): 1699-1707.