Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (12): 2480-2490    DOI: 10.3866/PKU.WHXB201706122
ARTICLE     
Supramolecular Helical Chirality of Schiff Base Copper(Ⅱ) Complexes and Their Chiroptical Spectroscopy
Shi CAO,Li-Li ZENG,Jing XIE,Shi-Gang WAN,Dan Li,Hui ZHANG*()
Download: HTML     PDF(1386KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Three pairs of N2O2-type Schiff base ligands were synthesized by condensing dehydroacetic acid (dha) with chiral 1, 2-diaminopropane (pn), trans-1, 2-diaminocyclohexane (chxn), and 1, 2-diphenylethylenediamine (dpen). These chiral ligands were used to coordinate copper(Ⅱ) ions to produce the corresponding Schiff base Cu(Ⅱ) complexes:[Cu(dha-R/S-pn)] (1a and 1b), [Cu(dha-R, R/S, S-chxn)] (2a and 2b), and[Cu(dha-R, R/S, S-dpen)] (3a and 3b). Detailed analyses using electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectroscopies reveal that these Schiff base Cu(Ⅱ) complexes retain the main coordination modes and the absolute configurations of the metal centers, both in solution and the solid state. In addition, according to the crystal structures, the central Cu(Ⅱ) ions of 2a/2b and 3a/3b were found to not only coordinate to the chiral dha-en ligands, but were also axially coordinated to the carbonyl groups of the contiguous lactonic rings, providing one-dimensional supramolecular helical chains through self-assembly. In this work, we deeply studied the relationship between the chiral coordination units and the supramolecular helical structures of 2a/2b and 3a/3b. By comparing our experiment VCD spectroscopic data with related VCD spectral features reported in the literature, a specific correlation between the VCD spectral properties and absolute configurations was investigated, which provided fingerprint characteristics for chiral coordination structure.



Key wordsSchiff base Cu(Ⅱ) complex      Electronic circular dichroism      Vibrational circular dichroism      Single-crystal structure      Supramolecular chiral assembly     
Received: 05 May 2017      Published: 12 June 2017
MSC2000:  O641  
Fund:  the National Natural Science Foundation of China(21273175)
Corresponding Authors: Hui ZHANG     E-mail: huizhang@xmu.edu.cn
Cite this article:

Shi CAO,Li-Li ZENG,Jing XIE,Shi-Gang WAN,Dan Li,Hui ZHANG. Supramolecular Helical Chirality of Schiff Base Copper(Ⅱ) Complexes and Their Chiroptical Spectroscopy. Acta Physico-Chimica Sinca, 2017, 33(12): 2480-2490.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706122     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2480

Fig 1 Structures and abbreviations of chiral Schiff base Cu(Ⅱ) complexes
Fig 2 Three shells of the inner sphere in mononuclear chiral [M(dha-chxn)] complexes
ComplexColorYeld/%MS(calcd) [M + H]+
[Cu(dha-R-pn)] (1a)purple73436.1 (436.05)
[Cu(dha-S-pn)] (1b)purple70436.1 (436.05)
[Cu(dha-R, R-chxn)] (2a)purple67476.1 (476.08)
[Cu(dha-S, S-chxn)] (2b)purple69476.1 (476.08)
[Cu(dha-R, R-dpen)] (3a)purple79574.2 (574.09)
[Cu(dha-S, S-dpen)] (3b)purple79574.2 (574.09)
Table 1 Color, yield, and MS analysis of chiral Schiff base Cu(Ⅱ) complexes
ItemValue
Crystal form2a2b3a3b
Empirical formulaC22H24CuN2O6C22H24CuN2O6C30H26CuN2O6, C1H4OC30H26CuN2O6
Formula weight475.97475.97606.11574.07
SolventCH3OHCH3OHCH3OHCH3OH
T/K293(2)293(2)203(2)293(2)
Crystal systemOrthorhombicOrthorhombicOrthorhombicOrthorhombic
Space groupP21212P21212P21212P21212
Wavelength/nm0.0710730.0710730.0710730.071073
Unit cell dimensions
a/nm1.08446(10)1.08461(13)1.2198(2)1.22615(6)
b/nm2.4195(3)2.42690(19)1.3929(2)1.39623(8)
c/nm0.75091(8)0.75087(7)1.6318(3)1.63697(8)
β/(°)90909090
Volume/nm31.9703(3)1.9765(3)0.27725(8)2.8025(3)
Z4444
Calculated density/(g·cm-3)1.6051.6001.4520.653
F(000)98898812601188
Final R indices [I > 2σ(I)]R = 0.0581R = 0.0649R = 0.0454R = 0.0874
Flack parameter-0.01(2)-0.01(3)0.019(15)0.03(3)
CCDC No.1059507105950810595091522855
Table 2 Crystallographic and structural refinement parameters
Fig 3 Tetrahedral distortion and nomenclatures of the absolute configurations for [M(salen)] complexes7
Fig 4 Coordination-polyhedron units of the salen-Ni (Ⅱ) complex and its one-dimensional supramolecular helix30
Fig 5 Chiral supramolecular helical structures (top) of complexes 2a and 2b and the coordination unit of 2a (bottom)
complexθ/(°)
[Cu(dha-R, R-chxn)] (2a)18.53
[Cu(dha-S, S-chxn)] (2b)18.47
[Cu(dha-R, R-dpen)] (3a)13.41
[Cu(dha-S, S-dpen)] (3b)13.48
Table 3 θ value of chiral [Cu(dha-en)] complexes
Fig 6 Chiral supramolecular helical structures (top) of complexes 3a and 3b and the coordination unit of 3a (bottom)
Fig 7 Solution (left) and solid-state (right) ECD spectra of chiral [Cu(dha-pn)] complexes
Fig 8 Solution (left) and solid-state (right) ECD spectra of chiral [Cu(dha-chxn)] complexes
Fig 9 Solution (left) and solid-state (right) ECD spectra of chiral [Cu(dha-dpen)] complexes
Fig 10 Solution VCD spectra of chiral [Cu(dha-chxn)] complexes
Fig 11 Solution VCD spectra of chiral [Cu(dha-dpen)] complexes
1 Zhang W. ; Loebach J. L. ; Wilson S. R. ; Jacobsen E. N. J. Am. Chem. Soc. 1990, 112 (7), 2801.
2 Jacobsen E. N. ; Zhang W. ; Muci A. R. ; Ecker J. R. ; Deng L. J. Am. Chem. Soc. 1991, 113 (18), 7063.
3 Larrow J. F. ; Jacobsen E. N. ; Gao Y. ; Hong Y. P. ; Nie X. Y. ; Zepp C. M. J. Org. Chem. 1994, 59 (7), 1939.
4 Kureshy R. I. ; Khan N. H. ; Abdi S. H. R. ; Bhatt A. K. J. Mol. Catal. A: Chem. 1996, 110 (1), 33.
5 Kureshy R. I. ; Khan N. H. ; Abdi S. H. R. ; Patel S. T. ; Iyer P. ; Suresh E. ; Dastidar P. J. Mol. Catal. A: Chem. 2000, 160 (2), 217.
6 Pasini A. ; Gullotti M. ; Ugo R. J. Chem. Soc., Dalton Trans. 1977, (No. 4), 346.
7 Zhang H. ; Zeng L. L. ; Wang Y. K. ; Cao S. ; Guo D. ; Li D. ; Fang X. M. ; Lin L. R. Acta Phys. -Chim. Sin. 2015, 31 (12), 2229.
7 章慧; 曾丽丽; 王越奎; 曹石; 郭栋; 李丹; 方雪明; 林丽榕. 物理化学学报, 2015, 31 (12), 2229.
8 Sato H. ; Mori Y. ; Yamagishi A. Dalton Trans. 2013, 42 (19), 6873.
9 Ru J. ; Gao F. ; Yao M. X. ; Wu T. ; Zuo J. L. Dalton Trans. 2014, 43 (48), 18047.
10 Wang Y. B ; Fu H. B ; Shen F. G ; Sheng X. H ; Peng A. D ; Gu Z. J ; Ma H. W ; Ma J. S ; Yao J. N Inorg.Chem. 2007, 46 (9), 3548.
11 Dezhahang Z. ; Poopari M. R. ; Cheramy J. ; Xu Y. Inorg. Chem. 2015, 54 (9), 4539.
12 Chamayou A. C. ; Luedeke S. ; Brecht V. ; Freedman T. B. ; Nafie L. A. ; Janiak C. Inorg.Chem. 2011, 50 (22), 11363.
13 Enamullah M. ; Uddin A. K. M. R. ; Pescitelli G. ; Berardozzi R. ; Makhloufi G. ; Vasylyeva V. ; Chamayou A. C. ; Janiak C. Dalton Trans. 2014, 43 (8), 3313.
14 Chamayou A. C. ; Makhloufi G. ; Nafie L. A. ; Janiak C. ; Lüdeke S. Inorg. Chem. 2015, 54 (5), 2193.
15 Bhattacharyya A. ; Ghosh B. N. ; Rissanen K. ; Jiménez-Aparicio R. ; Chattopadhyay S. Dalton Trans. 2015, 44 (2), 493.
16 Li, L. Synthesis, Characterization and Solid CD Spectra of Chiral Schiff Base Complexes. Master Dissertation, Xiamen University, Xiamen, 2005.
16 李丽.手性席夫碱金属配合物的合成、表征及其固体CD光谱研究[D].厦门:厦门大学, 2005.
17 Zhang H. ; Chen Y. C. ; Wang F. ; Qiu X. M. ; Li L. ; Chen J. G. Acta Phys. -Chim. Sin. 2006, 22 (6), 666.
17 章慧; 陈渊川; 王芳; 邱晓明; 李丽; 陈坚固. 物理化学学报, 2006, 22 (6), 666.
18 Wang F. ; Zhang H. ; Li L. ; Hao H. Q. ; Wang X. Y. ; Chen J. G. Tetrahedron: Asymmetry. 2006, 17 (14), 2059.
19 Wang, F. Synthesis, Characterizations and Properties of Chiral Unsymmetric Schiff base and Cu-Ln Complexes. Master Dissertation, Xiamen University, Xiamen, 2007.
19 王芳.非对称手性席夫碱配合物与手性双核(Cu-Ln)席夫碱配合物的合成、表征及性能研究[D].厦门:厦门大学, 2007.
20 Ding L. ; Wang F. ; Chen L. ; Zhang H. ; Zhao Y. Tetrahedron: Asymmetry 2008, 19 (23), 2653.
21 Zeng, L. L. Correlation between ECD Spectra and Absolute Configuration of Chiral N2O2-Type Schiff Base Metal Complexes. MasterDissertation, Xiamen University, Xiamen, 2015.
21 曾丽丽.手性N2O2型席夫碱金属络合物的ECD光谱及其绝对构型关联[D].厦门:厦门大学, 2015.
22 Downing R. S. ; Urbach F. L. J. Am. Chem. Soc. 1969, 91 (22), 5977.
23 Barwiolek M. ; Szlyk E. ; Muziol T. M. ; Lis T. Dalton Trans. 2011, 40 (41), 11012.
24 Zhang H Coordination Chemistry, Principles and Applications Chemical Industry Press: Beijing, 2008, Chapter 6.
24 章慧. 配位化学—原理与应用, 北京: 化学工业出版社, 2009.
25 Zhang H. ; Yan J. X. ; Wu S. T. ; Li D. ; Wan S. G. ; Ding L. ; Lin L. R. Acta Phys. -Chim.Sin. 2013, 29 (12), 2481.
25 章慧; 颜建新; 吴舒婷; 李丹; 万仕刚; 丁雷; 林丽榕. 物理化学学报, 2013, 29 (12), 2481.
26 Storr T. ; Verma P. ; Pratt R. C. ; Wasinger E. C. ; Shimazaki Y. ; Stack T. D. P. J. Am.Chem. Soc. 2008, 130 (46), 15448.
27 Bunce S. ; Cross R. J. ; Farrugia L. J. ; Kunchandy S. ; Meason L. L. ; Muir K. W. ; O'Donnell M. ; Peacock R. D. ; Stirling D. ; Teat S. J. Polyhedron. 1998, 17 (23-24), 4179.
28 Rusere L. N. ; Shalumova T. ; Tanski J. M. ; Tyler L. A. Polyhedron. 2009, 28 (17), 3804.
29 Bernardo K. ; Leppard S. ; Robert A. ; Commenges G. ; Dahan F. ; Meunier B. Inorg. Chem. 1996, 35 (2), 387.
30 Scheurer A. ; Maid H. ; Hampel F. ; Saalfrank R. W. ; Toupet L. ; Mosset P. ; Puchta R. ; van Eikema Hommes N. J. R. Eur. J. Org. Chem. 2005.
31 Holm R. H. J. Am.Chem. Soc. 1967, 89 (24), 6104.
32 Zolezzi S. ; Decinti A. ; Spodine E. Polyhedron 1999, 18 (6), 897.
33 Yamazaki A. ; Akitsu T. RSC Advances. 2012, 2 (7), 2975.
34 Shan X. F. ; Wu L. Z. ; Liu X. Y. ; Zhang L. P. ; Tung C. H. Eur. J. Inorg. Chem. 2007, (21), 3315.
35 Shan X. F. ; Wang D. H. ; Tung C. H. ; Wu L. Z. Chin. Sci. Bull. 2007, 52 (11), 1581.
36 Shan X. F. ; Wang D. H. ; Tung C. H. ; Wu L. Z. Tetrahedron 2008, 64 (23), 5577.
[1] GUO Dong, SONG Jia-Xi, LI Dan, CHEN Jia-Mei, LIN Li-Rong, LU Tong-Bu, ZHANG Hui. Determination and Correlation of the Absolute Configurations of Chiral Nimodipine[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2241-2254.
[2] ZHANG Hui, ZENG Li-Li, WANG Yue-Kui, CAO Shi, GUO Dong, LI Dan, FANG Xue-Ming, LIN Li-Rong. Correlation between ECD Spectra and the Absolute Configurations of Chiral Salen-Ni(Ⅱ) Complexes: a Fingerprint Role of the First ECD Band in the Visible Region[J]. Acta Physico-Chimica Sinca, 2015, 31(12): 2229-2250.