Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (12): 2388-2403    DOI: 10.3866/PKU.WHXB201706131
REVIEW     
Recent Progress on Electrochemical Reduction of Carbon Dioxide
Xiao-Fang BAI1,2,Wei CHEN2,*(),Bai-Yin WANG1,2,Guang-Hui FENG1,2,Wei WEI2,Zheng JIAO1,Yu-Han SUN2,*()
1 Shool of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
2 CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
Download: HTML     PDF(4654KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Conversion of carbon dioxide (CO2) to value-added chemicals and fuels driven by low-grade renewable electricity is of significant interest since it serves the dual purpose of reducing atmospheric content of CO2 by utilizing it as a feedstock and storing it in the form of high-energy-density fuels. In this regard, there are an increasing number of interesting developments taking place in the popular research focus area of electrochemical reduction of CO2. This review first introduces the general principles of CO2 electroreduction. Next, the latest progress relating to electrocatalytic materials and experimental and theoretical studies of the reaction mechanism has been discussed. Finally, the challenges and prospects for further development of CO2 electroreduction have been presented.



Key wordsCarbon dioxide      Renewable energy      Electrochemical reduction      Electrocatalyst      Reaction mechanism     
Received: 10 April 2017      Published: 13 June 2017
MSC2000:  O646  
Fund:  the Ministry of Science and Technology, China(2016YFA0202800);the Hundred Talents Program of Chinese Academy of Sciences, China
Corresponding Authors: Wei CHEN,Yu-Han SUN     E-mail: chenw@sari.ac.cn;sunyh@sari.ac.cn
Cite this article:

Xiao-Fang BAI,Wei CHEN,Bai-Yin WANG,Guang-Hui FENG,Wei WEI,Zheng JIAO,Yu-Han SUN. Recent Progress on Electrochemical Reduction of Carbon Dioxide. Acta Physico-Chimica Sinca, 2017, 33(12): 2388-2403.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706131     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2388

Electrochemical thermodynamic half-reactions Electrode potential/V (vs RHE)
CO2 + H2O + 2e- → CO + 2OH- -0.10
CO2 + 2H2O + 2e- → HCOOH + 2OH- -0.20 (pH < 4); -0.20 + 0.059 (pH > 4)
CO2 + 3H2O + 4e- → HCHO + 4OH- -0.07
CO2 + 5H2O + 6e- → CH3OH + 6OH- 0.02
CO2+6H2O+8e- → CH4 + 8OH- 0.17
2CO2 + 8H2O + 12e- → C2H4 + 12OH- 0.08
2CO2 + 9H2O + 12e- → CH3CH2OH + 12OH- 0.09
Table 1 Half reactions and potentials of CO2 electrochemical reduction reactions7.
Fig 1 Characterization and Tafel analysis of np-Ag11. (a) A schematic diagram of a nanopore of the silver electrocatalyst with highly curved internal surface. (b) Scanning electron micrograph (scale bar, 500?nm). (c) High-resolution transmission electron micrograph (scale bar, 2?nm). (d) Tafel slope analyses.
Fig 2 Characterization and Electrocatalytic performance of Au NPs39. TEM images of (a) the 8 nm Au NPs and (b) the C-Au NPs. (c) CO FEs. (d) Current densities for CO formation.
Fig 3 Characterization and Electrocatalytic performance of Pd NPs40. TEM image and HRTEM images of (a) 3.7, (b) 6.2, and (c) 10.3 nm Pd, (d) Faradaic efficiencies and (e) current densities for CO production.
Fig 4 Characterizations for the partially oxidized Co 4-atom-thick layers obtained at 220 ℃ for 3 h 50. (a) High-resolution TEM image. (b, c) Enlarged high-resolution TEM images. (d, e) The related schematic atomic models. (F–h) Elemental mapping. (i) Faradaic efficiency of formate.
Fig 5 (a) SEM image of a polycrystalline Cu foil annealed at 500 ℃ for 12 h after CO2 reduction electrocatalysis at ?0.5 V (vs RHE). (b) Faradaic efficiencies for the production of CO and HCOOH29.
Fig 6 Morphological and chemical analysis of plasma-activated Cu foils55. EDS elemental maps of Cu foils treated with O2 plasma for before and after reaction, (a) 20 W 2 min; (b) 100 W 2 min; and (c) 100 W 2 min + H2 plasma. (d) Faradaic efficiency of C2H4.
Fig 7 Space-filling structural models and electrochemical performance of cobalt porphyrin‐based 2D covalent organic frameworks60. (a) structural models, (b) Cyclic voltammograms, (c) Tafel plots.
Fig 8 Proposed mechanistic scheme and FE of carbon dioxide reduction on Co protoporphyrin30. (a) Proposed mechanistic scheme, (b) FE of CH4, (c) FE of CO.
Fig 9 Formation process and characterizations of the Sn quantum sheets confined in grapheme78. (a) Scheme illustration for the formation of Sn quantum sheets confined in graphene, (b) TEM image, (c) HRTEM image, (d) AFM image, (e) electrocatalytic performances of the composites at different potentials.
Fig 10 (a) Current densities at different potentials, (b) Tafel plots of the products87.
Fig 11 Comparison of ATR-IR spectra for MPA modified Au90.
Fig 12 Possible reaction pathways for the electrocatalytic reduction of CO2 to products on transition metals and molecular catalysts7. (a) pathways from CO2 to CO, CH4, CH3OH, and HCOO-; (b) pathways from CO2 to ethylene and ethanol; (c) pathway of CO2 insertion into a metal–H bond yielding formate.
1 Goeppert A. ; Czaun M. ; Jones J. P. ; Surya Prakash G. K. ; Olah G. A. Chem. Soc. Rev. 2014, 46, 7995.
2 Windle C. D. ; Reisner E. Chimia 2015, 69, 435.
3 Pakhare D. ; Spivey J. Chem. Soc. Rev. 2014, 43, 7813.
4 Kondratenko E. V. ; Mul G. ; Baltrusaitis J. ; Larrazábal G. O. ; Pérezramírez J. Energy Environ. Sci. 2013, 6, 3112.
5 Hanc-Scherer F. A. ; Montiel M. A. ; Montiel V. ; Herrero E. ; Sánchez-Sánchez C. M. Phys. Chem. Chem. Phys. 2015, 17, 23909.
6 http://djfj.renewable.org.cn (accessed March 31, 2017).
7 Kortlever R. ; Shen J. ; Schouten K. J. P. ; Calle-Vallejo F. ; Koper M. T. M. J. Phys. Chem. Lett. 2015, 6, 4073.
8 Zhang X. ; Wu Z. S. ; Zhang X. ; Li L. W. ; Li Y. Y. ; Xu H. M. ; Li X. X. ; Yu X. L. ; Zhang Z. S. ; Liang Y. Y. ; Wang H. L. Nat. Commun. 2017, 8, 14675.
9 Appel A. M. ; Bercaw J. E. ; Bocarsly A. B. ; Dobbek H. ; Dubois D. L. ; Dupuis M. ; Ferry J. G. ; Fujita E. ; Hille R. ; Kenis P. J. A. Chem. Rev. 2013, 113, 6621.
10 Lu Q ; Rosen J ; Jiao F. Chemcatchem 2015, 46, 2.
11 Lu Q. ; Rosen J. ; Zhou Y. ; Hutchings G. S. ; Kimmel Y. C. ; Chen J. G. ; Jiao F. Nat. Commun. 2014, 5, 3242.
12 Rosen J. ; Hutchings G. S. ; Lu Q. ; Rivera S. ; Zhou Y. ; Vlachos D. G. ; Jiao F. ACS Catal. 2015, 5, 4293.
13 Wang Q. Q. ; Chen C. Z. ; Zhong J. H. ; Zhang B. ; Cheng Z. M. Aust. J. Chem. 2016, 3, 293.
14 Ma S. ; Lan Y. ; Perez G. M. J. ; Moniri S. ; Kenis P. J. A. Chemsuschem 2014, 7, 866.
15 Hsieh Y. C. ; Senanayake S. D. ; Zhang Y. ; Xu W. ; Polyansky D. E. ACS Catal. 2015, 46, 2584.
16 Kim D. ; Resasco J. ; Yu Y. ; Asiri A. M. ; Yang P. Nat. Commun. 2014, 5, 4948.
17 Kortlever R. ; Peters I. ; Koper S. ; Koper M. T. M. ACS Catal. 2015, 5, 3916.
18 Rasul S. ; Anjum D. H. ; Jedidi A. ; Minenkov Y. ; Cavallo L. ; Takanabe K. Angew. Chem., Int. Ed. 2014, 127, 2174.
19 Liu Y. ; Chen S. ; Quan X. ; Yu H. J. Am. Chem. Soc. 2016, 137, 11631.
20 Varela A. S. ; Ranjbar ; Sahraie N. ; Steinberg J. ; Ju W. ; Oh H. S. ; Strasser P. Angew. Chem., Int. Ed. 2015, 127, 10908.
21 Asadi M. ; Kumar B. ; Behranginia A. ; Rosen B. A. ; Baskin A. ; Repnin N. ; Pisasale D. ; Phillips P. ; Zhu W. ; Haasch R. Nat. Commun. 2014, 5, 4470.
22 Nakata K. ; Ozaki T. ; Terashima C. ; Fujishima A. ; Einaga Y. Angew. Chem. 2014, 126, 890.
23 Hoang T. H. ; Ma S. ; Gold J. I. ; Kenis P. J. A. ; Gewirth A. A. ACS Catal. 2017, 7, 3313.
24 Rosen J. ; Hutchings G. S. ; Lu Q. ; Forest R. V. ; Moore A. ; Jiao F. ACS Catal. 2015, 5, 4586.
25 Kuhl K. P. ; Hatsukade T. ; Cave E. R. ; Abram D. N. ; Kibsgaard J. ; Jaramillo T. F. J. Am. Chem. Soc. 2014, 136, 14107.
26 Lum Y. ; Kwon Y. ; Lobaccaro P. ; Chen L. ; Clark E. L. ; Bell A. T. ; Ager J. W. ACS Catal. 2015, 202.
27 Zhang S. ; Kang P. ; Bakir M. ; Lapides A. M. ; Dares C. J. ; Meyer T. J. Proc. Natl. Acad. Sci. 2015, 112, 15809.
28 Li F. ; Zhao S. F. ; Chen L. ; Khan A. ; Macfarlane D. R. ; Zhang J. Energy Environ. Sci. 2015, 9, 216.
29 Li C. W. ; Kanan M. W. J. Am. Chem. Soc. 2012, 134, 7231.
30 Shen J. ; Kortlever R. ; Kas R. ; Birdja Y. Y. ; Diaz-Morales O. ; Kwon Y. ; Ledezma-Yanez I. ; Schouten K. J. P. ; Mul G. ; Koper M. T. M. Nat. Commun. 2015, 6, 8177.
31 Zhu W. ; Michalsky R. ; Metin ?. ; Lv H. ; Guo S. ; Wright C. J. ; Sun X. ; Peterson A. A. ; Sun S. J. Am. Chem. Soc. 2013, 135, 16833.
32 Costentin C. ; Robert M. ; Saveant J. M. Chem. Soc. Rev. 2012, 42, 2423.
33 Qu Y. ; Duan X. Chem. Soc. Rev. 2013, 42, 2568.
34 Qiao J. ; Liu Y. ; Hong F. ; Zhang J. Chem. Soc. Rev. 2013, 43, 631.
35 Back S. ; Yeom M. S. ; Jung Y. ACS Catal. 2015, 5, 5089.
36 Baturina O. A. ; Lu Q. ; Padilla M. A. ; Xin L. ; Li W. ; Serov A. ; Artyushkova K. ; Atanassov P. ; Xu F. ; Epshteyn A. ; Brintlinger T. ; Schuette M. ; Collins G. E. ACS Catal. 2014, 4, 3682.
37 Zhu W. ; Zhang Y. J. ; Zhang H. ; Lv H. ; Li Q. ; Michalsky R. ; Peterson A. A. ; Sun S. J. Am. Chem. Soc. 2014, 136, 16132- 16135.
38 Li Q. ; Sun S. Nano Energy. 2016, 29, 178- 197.
39 Zhu W. ; Michalsky R. ; Lv H. ; Guo S. ; Wright C. J. ; Sun X. ; Peterson A. A. ; Sun S. J. Am. Chem. Soc. 2013, 135, 16833.
40 Gao D. ; Zhou H. ; Wang J. ; Miao S. ; Yang F. ; Wang G. ; Wang J. ; Bao X. J. Am. Chem. Soc. 2015, 137, 4288.
41 Peterson A. A. ; N?rskov J. K. J. Phys. Chem. Lett. 2012, 3, 251.
42 Hansen H. A. ; Varley J. B. ; Peterson A. A. ; N?rskov J. K. J. Phys. Chem. Lett. 2013, 4, 388.
43 Luc W. ; Collins C. ; Wang S. ; Xin H. ; He K. ; Kang Y. ; Jiao F. J. Am. Chem. Soc. 2017, 139, 1885.
44 Zhong H. ; Qiu Y. ; Zhang T. ; Li X. ; Zhang H. ; Chen X. J. Mater. Chem. A 2016, 4, 13746.
45 Lv W. ; Zhou J. ; Bei J. ; Zhang R. ; Wang L. ; Xu Q. ; Wang W. Appl. Surf. Sci. 2017, 393, 191.
46 Chen Y. ; Li C. W. ; Kanan M. W. J. Am. Chem. Soc. 2012, 134, 19969.
47 Li C. W. ; Ciston J. ; Kanan M. W. Nature 2014, 508, 504.
48 Chen Y. ; Kanan M. W. J. Am. Chem. Soc. 2012, 134, 1986.
49 Sun Y. ; Gao S. ; Lei F. ; Xiao C. ; Xie Y. Acc. Chem. Res. 2015, 48, 3.
50 Gao S. ; Lin Y. ; Jiao X. ; Sun Y. ; Luo Q. ; Zhang W. ; Li D. ; Yang J. ; Xie Y. Nature 2016, 529, 68.
51 Zhang S. ; Kang P. ; Meyer T. J. J. Am. Chem. Soc. 2014, 136, 1734.
52 Gu J. ; Wuttig A. ; Krizan J. W. ; Hu Y. ; Detweiler Z. M. ; Cava R. J. ; Bocarsly A. B. J. Phys. Chem. C 2013, 117, 12415.
53 Watkins J. D. ; Bocarsly A. B. ChemSusChem. 2014, 7, 284.
54 Gao S. ; Sun Z. ; Liu W. ; Jiao X. ; Zu X. ; Hu Q. ; Sun Y. ; Yao T. ; Zhang W. ; Wei S. ; Xie Y. Nat. Commun. 2017, 8, 14503.
55 Mistry H. ; Varela A. S. ; Bonifacio C. S. ; Zegkinoglou I. ; Sinev I. ; Choi Y. W. ; Kisslinger K. ; Stach E. A. ; Yang J. C. ; Strasser P. ; Cuenya B. R. Nat. Commun. 2016, 7, 12123.
56 Chen L. ; Guo Z. ; Wei X. G. ; Gallenkamp C. ; Bonin J. ; Anxolabéhère-Mallart E. ; Lau K. C. ; Lau T. C. ; Robert M. J. Am. Chem. Soc. 2015, 137, 10918.
57 Costentin C. ; Savéant J. M. Science 2012, 338, 90.
58 Yao S. A. ; Ruther R. E. ; Zhang L. ; Franking R. A. ; Hamers R. J. ; Berry J. F. J. Am. Chem. Soc. 2017, 134, 15632.
59 Tornow C. E. ; Thorson M. R. ; Ma S. ; Gewirth A. A. ; Kenis P. J. J. Am. Chem. Soc. 2012, 134, 19520.
60 Lin S. ; Diercks C. S. ; Zhang Y. B. ; Kornienko N. ; Nichols E. M. ; Zhao Y. ; Paris A. R. ; Kim D. ; Yang P. ; Yaghi O. M. Science 2015, 349, 1208.
61 Hod I. ; Farha O. K. ; Hupp J. T. Nat. Mater. 2015, 14, 1192.
62 Kornienko N. ; Zhao Y. ; Kley C. S. ; Zhu C. ; Kim D. ; Lin S. ; Chang C. J. ; Yaghi O. M. ; Yang P. J. Am. Chem. Soc. 2015, 137, 14129.
63 Hod I. ; Sampson M. D. ; Deria P. ; Kubiak C. P. ; Farha O. K. ; Hupp J. T. Acs Catal. 2015, 5, 6302.
64 Hinogami R. ; Yotsuhashi S. ; Deguchi M. ; Zenitani Y. ; Hashiba H. ; Yamada Y. ECS Electrochem. Lett. 2012, 1, 17.
65 Senthil K. R. ; Senthil Kumar S. ; Anbu Kulandainathan M. Electrochem. Commun. 2012, 25, 70.
66 Kang X. ; Zhu Q. ; Sun X. ; Hu J. ; Zhang J. ; Liu Z. ; Han B. Chem. Sci. 2016, 7, 266.
67 Roberts F. S. ; Kuhl K. P. ; Nilsson A. Angew. Chem.Int. Ed. 2015, 54, 5179.
68 Kas R. ; Kortlever R. ; Milbrat A. ; Koper M. T. M. ; Mul G. ; Baltrusaitis J. Phys. Chem. Chem. Phys. 2014, 16, 12194.
69 Kuhl K. P. ; Cave E. R. ; Abram D. N. ; Jaramillo T. F. Energ.Environ. Sci. 2012, 5, 7050.
70 Zhang Z. ; Qi Z. M. ; Zhang R. J. Acta Phys. -Chim. Sin. 2012, 28, 1163.
70 张喆; 祁志美; 张蓉君. 物理化学学报, 2012, 28, 1163.
71 Zuo K. ; Liang S. ; Liang P. ; Zhou X. ; Sun D. ; Zhang X. ; Huang X. Bioresour. Technol. 2015, 185, 426.
72 Katuri K. P. ; Werner C. M. ; Jimenez-Sandoval R. J. ; Chen W. ; Jeon S. ; Logan B. E. ; Lai Z. ; Amy G. L. ; Saikaly P. E. Environ. Sci. Technol. 2014, 48, 12833.
73 Kas R. ; Hummadi K. K. ; Kortlever R. ; de Wit P. ; Milbrat A. ; Luiten-Olieman M. W. J. ; Benes N. E. ; Koper M. T. M. ; Mul G. Nat. Commun. 2016, 7, 10748.
74 Chen S. ; Duan J. ; Ran J. ; Jaroniec M. ; Qiao S. Z. Energy Environ. Sci. 2013, 6, 3693.
75 Gao S. ; Jiao X. ; Sun Z. ; Zhang W. ; Sun Y. ; Wang C. ; Hu Q. ; Zu X. ; Yang F. ; Yang S. Angew. Chem. Int. Ed. 2016, 128, 708.
76 Liang L. ; Lei F. ; Gao S. ; Sun Y. ; Jiao X. ; Wu J. ; Qamar S. ; Xie Y. Angew. Chem. Int. Ed. 2015, 54, 13971.
77 Deng J. ; Ren P. ; Deng D. ; Bao X. Angew.Chem. Int. Ed. 2015, 54, 2100.
78 Lei F. ; Liu W. ; Sun Y. ; Xu J. ; Liu K. ; Liang L. ; Yao T. ; Pan B. ; Wei S. ; Xie Y. Nat. Commun. 2016, 7, 12697.
79 Wu J. ; Yadav R. M. ; Liu M. ; Sharma P. P. ; Tiwary C. S. ; Ma L. ; Zou X. ; Zhou X-D ; Yakobson B. I. ; Lou J. ; Ajayan P. M. ACS Nano 2015, 9, 5364.
80 Wu J. ; Liu M. ; Sharma P. P. ; Yadav R. M. ; Ma L. ; Yang Y. ; Zou X. ; Zhou X-D ; Vajtai R. ; Yakobson B. I. ; Lou J. ; Ajayan P. M. Nano Lett. 2016, 16, 466.
81 Kumar B. ; Asadi M. ; Pisasale D. ; Sinha-Ray S. ; Rosen B. A. ; Haasch R. ; Abiade J. ; Yarin A. L. ; Salehi-Khojin A. Nat. Commun. 2013, 4, 2819.
82 Zhang S. ; Kang P. ; Ubnoske S. ; Brennaman M. K. ; Song N. ; House R. L. ; Glass J. T. ; Meyer T. J. J. Am. Chem. Soc. 2014, 136, 7845.
83 Sreekanth N. ; Nazrulla M. A. ; Vineesh T. V. ; Sailaja K. ; Phani K. L. Chem. Commun. 2015, 51, 16061.
84 Wu J. ; Ma S. ; Sun J. ; Gold J. I. ; Tiwary C. ; Kim B. ; Zhu L. ; Chopra N. ; Odeh I. N. ; Vajtai R. ; Yu A. Z. ; Luo R. ; Lou J. ; Ding G. ; Kenis P. J. A. ; Ajayan P. M. Nat. Commun. 2016, 7, 13869.
85 Prakash G. K. S. ; Viva F. A. ; Olah G. A. J. Power Sources 2013, 223, 68.
86 Se ok ; Ki K. ; Yin-Jia Z. ; Helen B. ; Ronald M. ; Andrew P. ACS Catal. 2016, 6, 2003.
87 Hatsukade T. ; Kuhl K. P. ; Cave E. R. ; Abram D. N. ; Jaramillo T. F. Phys. Chem. Chem. Phys. 2014, 16, 13814.
88 Alves D. C. B. ; Silva R. ; Voiry D. ; Asefa T. ; Chhowalla M. Mater. Renew. Sustain. Energy 2015, 4, 2.
89 Baruch M. F. ; Pander J. E. ; White J. L. ; Bocarsly A. B. ACS Catal. 2015, 5, 3148.
90 Fang Y. ; Flake J. C. J. Am. Chem. Soc. 2017, 139, 3399.
91 Morais J. P. ; Rosa M. F. ; De S. F. M. S. ; Nascimento L. D. ; do Nascimento D. M. ; Cassales A. R. Carbohydr. Polym. 2013, 91, 229.
92 Shi L. ; Liu Q. ; Guo X. ; Wu W. ; Liu Z. Fuel Process. Technol. 2013, 108, 125.
93 Puthiyapura V. K. ; Dan J. L. B. ; Russell A. E. ; Lin W. F. ; Hardacre C. ACS Appl. Mater. Interfaces. 2016, 8, 12859.
94 Calle-Vallejo F. ; Koper M. T. M. Electrochim. Acta 2012, 84, 3.
95 Wu Z. ; Lv Y. ; Xia Y. ; Webley P. A. ; Zhao D. J. Am. Chem. Soc. 2012, 134, 2236.
96 Kong B. ; Selomulya C. ; Zheng G. ; Zhao D. Chem. Soc. Rev. 2015, 44, 7997.
97 Tang J. ; Liu J. ; Torad N. L. ; Kimura T. ; Yamauchi Y. Nano Today 2014, 9, 305.
98 Malgras V. ; Ataee-Esfahani H. ; Wang H. ; Jiang B. ; Li C. ; Wu K. C. W. ; Kim J. H. ; Yamauchi Y. Adv Mater. 2016, 28, 993.
99 Hall A. S. ; Yoon Y. ; Wuttig A. ; Surendranath Y. J. Am. Chem. Soc. 2015, 137, 14834.
100 Jones J. P. ; Prakash G. K. S. ; Olah G. A. Isr. J. Chem. 2014, 54, 1451.
101 Liu Y. ; Chen S. ; Quan X. ; Yu H. J. Am. Chem. Soc. 2015, 137, 11631.
[1] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1411-1420.
[2] WANG Zi-Min, ZHENG Mo, XIE Yong-Bing, LI Xiao-Xia, ZENG Ming, CAO Hong-Bin, GUO Li. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1399-1410.
[3] ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1085-1107.
[4] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 554-562.
[5] Lü Yang, SONG Yu-Jiang, LIU Hui-Yuan, LI Huan-Qiao. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 283-294.
[6] LI Shen-Hui, LI Jing, ZHENG An-Min, DENG Feng. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 270-282.
[7] Dong ZHENG,Bei-Jing ZHONG,Tong YAO. Methodology for Formulating Aviation Kerosene Surrogate Fuels and The Surrogate Fuel Model for HEF Kerosene[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2438-2445.
[8] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 211-241.
[9] XU Han, TONG Ye-Xiang, LI Gao-Ren. Controllable Synthesis of Pd Nanocrystals for Applications in Fuel Cells[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2171-2184.
[10] YANG Zhen, LIU Hai, HE Yuan-Hang. Molecular Dynamics Simulations of Femtosecond Laser Ablation of Energetic Materials[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1977-1982.
[11] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1866-1879.
[12] Xiao-Long LIU,Xiao-Xia LI,Song HAN,Xian-Jie QIAO,Bei-Jing ZHONG,Li GUO. Initial Reaction Mechanism of RP-3 High Temperature Oxidation Simulated with ReaxFF MD[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1424-1433.
[13] YANG Zhen, HE Yuan-Hang. Pyrolysis of Octanitrocubane via Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 921-928.
[14] ZHANG Tian-Lei, YANG Chen, FENG Xu-Kai, WANG Zhu-Qing, WANG Rui, LIU Qiu-Li, ZHANG Peng, WANG Wen-Liang. Theoretical Study on the Atmospheric Reaction of HS with HO2: Mechanism and Rate Constants of the Major Channel[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 701-710.
[15] ZHANG Pei-Zhi, YE Mei-Jun, HU Wei-Lian, WU Jun. Kinetics of Acid-Catalyzed Smiles Rearrangement of 2,6-Dimethoxy-2-pyrimidinyloxy-N-arylbenzylamine Derivatives[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 422-428.