Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (12): 2388-2403    DOI: 10.3866/PKU.WHXB201706131
REVIEW     
Recent Progress on Electrochemical Reduction of Carbon Dioxide
Xiao-Fang BAI1,2,Wei CHEN2,*(),Bai-Yin WANG1,2,Guang-Hui FENG1,2,Wei WEI2,Zheng JIAO1,Yu-Han SUN2,*()
1 Shool of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
2 CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
Download: HTML     PDF(4654KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Conversion of carbon dioxide (CO2) to value-added chemicals and fuels driven by low-grade renewable electricity is of significant interest since it serves the dual purpose of reducing atmospheric content of CO2 by utilizing it as a feedstock and storing it in the form of high-energy-density fuels. In this regard, there are an increasing number of interesting developments taking place in the popular research focus area of electrochemical reduction of CO2. This review first introduces the general principles of CO2 electroreduction. Next, the latest progress relating to electrocatalytic materials and experimental and theoretical studies of the reaction mechanism has been discussed. Finally, the challenges and prospects for further development of CO2 electroreduction have been presented.



Key wordsCarbon dioxide      Renewable energy      Electrochemical reduction      Electrocatalyst      Reaction mechanism     
Received: 10 April 2017      Published: 13 June 2017
MSC2000:  O646  
Fund:  the Ministry of Science and Technology, China(2016YFA0202800);the Hundred Talents Program of Chinese Academy of Sciences, China
Corresponding Authors: Wei CHEN,Yu-Han SUN     E-mail: chenw@sari.ac.cn;sunyh@sari.ac.cn
Cite this article:

Xiao-Fang BAI,Wei CHEN,Bai-Yin WANG,Guang-Hui FENG,Wei WEI,Zheng JIAO,Yu-Han SUN. Recent Progress on Electrochemical Reduction of Carbon Dioxide. Acta Phys. -Chim. Sin., 2017, 33(12): 2388-2403.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706131     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2388

Electrochemical thermodynamic half-reactions Electrode potential/V (vs RHE)
CO2 + H2O + 2e- → CO + 2OH- -0.10
CO2 + 2H2O + 2e- → HCOOH + 2OH- -0.20 (pH < 4); -0.20 + 0.059 (pH > 4)
CO2 + 3H2O + 4e- → HCHO + 4OH- -0.07
CO2 + 5H2O + 6e- → CH3OH + 6OH- 0.02
CO2+6H2O+8e- → CH4 + 8OH- 0.17
2CO2 + 8H2O + 12e- → C2H4 + 12OH- 0.08
2CO2 + 9H2O + 12e- → CH3CH2OH + 12OH- 0.09
Table 1 Half reactions and potentials of CO2 electrochemical reduction reactions7.
Fig 1 Characterization and Tafel analysis of np-Ag11. (a) A schematic diagram of a nanopore of the silver electrocatalyst with highly curved internal surface. (b) Scanning electron micrograph (scale bar, 500?nm). (c) High-resolution transmission electron micrograph (scale bar, 2?nm). (d) Tafel slope analyses.
Fig 2 Characterization and Electrocatalytic performance of Au NPs39. TEM images of (a) the 8 nm Au NPs and (b) the C-Au NPs. (c) CO FEs. (d) Current densities for CO formation.
Fig 3 Characterization and Electrocatalytic performance of Pd NPs40. TEM image and HRTEM images of (a) 3.7, (b) 6.2, and (c) 10.3 nm Pd, (d) Faradaic efficiencies and (e) current densities for CO production.
Fig 4 Characterizations for the partially oxidized Co 4-atom-thick layers obtained at 220 ℃ for 3 h 50. (a) High-resolution TEM image. (b, c) Enlarged high-resolution TEM images. (d, e) The related schematic atomic models. (F–h) Elemental mapping. (i) Faradaic efficiency of formate.
Fig 5 (a) SEM image of a polycrystalline Cu foil annealed at 500 ℃ for 12 h after CO2 reduction electrocatalysis at ?0.5 V (vs RHE). (b) Faradaic efficiencies for the production of CO and HCOOH29.
Fig 6 Morphological and chemical analysis of plasma-activated Cu foils55. EDS elemental maps of Cu foils treated with O2 plasma for before and after reaction, (a) 20 W 2 min; (b) 100 W 2 min; and (c) 100 W 2 min + H2 plasma. (d) Faradaic efficiency of C2H4.
Fig 7 Space-filling structural models and electrochemical performance of cobalt porphyrin‐based 2D covalent organic frameworks60. (a) structural models, (b) Cyclic voltammograms, (c) Tafel plots.
Fig 8 Proposed mechanistic scheme and FE of carbon dioxide reduction on Co protoporphyrin30. (a) Proposed mechanistic scheme, (b) FE of CH4, (c) FE of CO.
Fig 9 Formation process and characterizations of the Sn quantum sheets confined in grapheme78. (a) Scheme illustration for the formation of Sn quantum sheets confined in graphene, (b) TEM image, (c) HRTEM image, (d) AFM image, (e) electrocatalytic performances of the composites at different potentials.
Fig 10 (a) Current densities at different potentials, (b) Tafel plots of the products87.
Fig 11 Comparison of ATR-IR spectra for MPA modified Au90.
Fig 12 Possible reaction pathways for the electrocatalytic reduction of CO2 to products on transition metals and molecular catalysts7. (a) pathways from CO2 to CO, CH4, CH3OH, and HCOO-; (b) pathways from CO2 to ethylene and ethanol; (c) pathway of CO2 insertion into a metal–H bond yielding formate.
1 Goeppert A. ; Czaun M. ; Jones J. P. ; Surya Prakash G. K. ; Olah G. A. Chem. Soc. Rev. 2014, 46, 7995.
2 Windle C. D. ; Reisner E. Chimia 2015, 69, 435.
3 Pakhare D. ; Spivey J. Chem. Soc. Rev. 2014, 43, 7813.
4 Kondratenko E. V. ; Mul G. ; Baltrusaitis J. ; Larrazábal G. O. ; Pérezramírez J. Energy Environ. Sci. 2013, 6, 3112.
5 Hanc-Scherer F. A. ; Montiel M. A. ; Montiel V. ; Herrero E. ; Sánchez-Sánchez C. M. Phys. Chem. Chem. Phys. 2015, 17, 23909.
6 http://djfj.renewable.org.cn (accessed March 31, 2017).
7 Kortlever R. ; Shen J. ; Schouten K. J. P. ; Calle-Vallejo F. ; Koper M. T. M. J. Phys. Chem. Lett. 2015, 6, 4073.
8 Zhang X. ; Wu Z. S. ; Zhang X. ; Li L. W. ; Li Y. Y. ; Xu H. M. ; Li X. X. ; Yu X. L. ; Zhang Z. S. ; Liang Y. Y. ; Wang H. L. Nat. Commun. 2017, 8, 14675.
9 Appel A. M. ; Bercaw J. E. ; Bocarsly A. B. ; Dobbek H. ; Dubois D. L. ; Dupuis M. ; Ferry J. G. ; Fujita E. ; Hille R. ; Kenis P. J. A. Chem. Rev. 2013, 113, 6621.
10 Lu Q ; Rosen J ; Jiao F. Chemcatchem 2015, 46, 2.
11 Lu Q. ; Rosen J. ; Zhou Y. ; Hutchings G. S. ; Kimmel Y. C. ; Chen J. G. ; Jiao F. Nat. Commun. 2014, 5, 3242.
12 Rosen J. ; Hutchings G. S. ; Lu Q. ; Rivera S. ; Zhou Y. ; Vlachos D. G. ; Jiao F. ACS Catal. 2015, 5, 4293.
13 Wang Q. Q. ; Chen C. Z. ; Zhong J. H. ; Zhang B. ; Cheng Z. M. Aust. J. Chem. 2016, 3, 293.
14 Ma S. ; Lan Y. ; Perez G. M. J. ; Moniri S. ; Kenis P. J. A. Chemsuschem 2014, 7, 866.
15 Hsieh Y. C. ; Senanayake S. D. ; Zhang Y. ; Xu W. ; Polyansky D. E. ACS Catal. 2015, 46, 2584.
16 Kim D. ; Resasco J. ; Yu Y. ; Asiri A. M. ; Yang P. Nat. Commun. 2014, 5, 4948.
17 Kortlever R. ; Peters I. ; Koper S. ; Koper M. T. M. ACS Catal. 2015, 5, 3916.
18 Rasul S. ; Anjum D. H. ; Jedidi A. ; Minenkov Y. ; Cavallo L. ; Takanabe K. Angew. Chem., Int. Ed. 2014, 127, 2174.
19 Liu Y. ; Chen S. ; Quan X. ; Yu H. J. Am. Chem. Soc. 2016, 137, 11631.
20 Varela A. S. ; Ranjbar ; Sahraie N. ; Steinberg J. ; Ju W. ; Oh H. S. ; Strasser P. Angew. Chem., Int. Ed. 2015, 127, 10908.
21 Asadi M. ; Kumar B. ; Behranginia A. ; Rosen B. A. ; Baskin A. ; Repnin N. ; Pisasale D. ; Phillips P. ; Zhu W. ; Haasch R. Nat. Commun. 2014, 5, 4470.
22 Nakata K. ; Ozaki T. ; Terashima C. ; Fujishima A. ; Einaga Y. Angew. Chem. 2014, 126, 890.
23 Hoang T. H. ; Ma S. ; Gold J. I. ; Kenis P. J. A. ; Gewirth A. A. ACS Catal. 2017, 7, 3313.
24 Rosen J. ; Hutchings G. S. ; Lu Q. ; Forest R. V. ; Moore A. ; Jiao F. ACS Catal. 2015, 5, 4586.
25 Kuhl K. P. ; Hatsukade T. ; Cave E. R. ; Abram D. N. ; Kibsgaard J. ; Jaramillo T. F. J. Am. Chem. Soc. 2014, 136, 14107.
26 Lum Y. ; Kwon Y. ; Lobaccaro P. ; Chen L. ; Clark E. L. ; Bell A. T. ; Ager J. W. ACS Catal. 2015, 202.
27 Zhang S. ; Kang P. ; Bakir M. ; Lapides A. M. ; Dares C. J. ; Meyer T. J. Proc. Natl. Acad. Sci. 2015, 112, 15809.
28 Li F. ; Zhao S. F. ; Chen L. ; Khan A. ; Macfarlane D. R. ; Zhang J. Energy Environ. Sci. 2015, 9, 216.
29 Li C. W. ; Kanan M. W. J. Am. Chem. Soc. 2012, 134, 7231.
30 Shen J. ; Kortlever R. ; Kas R. ; Birdja Y. Y. ; Diaz-Morales O. ; Kwon Y. ; Ledezma-Yanez I. ; Schouten K. J. P. ; Mul G. ; Koper M. T. M. Nat. Commun. 2015, 6, 8177.
31 Zhu W. ; Michalsky R. ; Metin ?. ; Lv H. ; Guo S. ; Wright C. J. ; Sun X. ; Peterson A. A. ; Sun S. J. Am. Chem. Soc. 2013, 135, 16833.
32 Costentin C. ; Robert M. ; Saveant J. M. Chem. Soc. Rev. 2012, 42, 2423.
33 Qu Y. ; Duan X. Chem. Soc. Rev. 2013, 42, 2568.
34 Qiao J. ; Liu Y. ; Hong F. ; Zhang J. Chem. Soc. Rev. 2013, 43, 631.
35 Back S. ; Yeom M. S. ; Jung Y. ACS Catal. 2015, 5, 5089.
36 Baturina O. A. ; Lu Q. ; Padilla M. A. ; Xin L. ; Li W. ; Serov A. ; Artyushkova K. ; Atanassov P. ; Xu F. ; Epshteyn A. ; Brintlinger T. ; Schuette M. ; Collins G. E. ACS Catal. 2014, 4, 3682.
37 Zhu W. ; Zhang Y. J. ; Zhang H. ; Lv H. ; Li Q. ; Michalsky R. ; Peterson A. A. ; Sun S. J. Am. Chem. Soc. 2014, 136, 16132- 16135.
38 Li Q. ; Sun S. Nano Energy. 2016, 29, 178- 197.
39 Zhu W. ; Michalsky R. ; Lv H. ; Guo S. ; Wright C. J. ; Sun X. ; Peterson A. A. ; Sun S. J. Am. Chem. Soc. 2013, 135, 16833.
40 Gao D. ; Zhou H. ; Wang J. ; Miao S. ; Yang F. ; Wang G. ; Wang J. ; Bao X. J. Am. Chem. Soc. 2015, 137, 4288.
41 Peterson A. A. ; N?rskov J. K. J. Phys. Chem. Lett. 2012, 3, 251.
42 Hansen H. A. ; Varley J. B. ; Peterson A. A. ; N?rskov J. K. J. Phys. Chem. Lett. 2013, 4, 388.
43 Luc W. ; Collins C. ; Wang S. ; Xin H. ; He K. ; Kang Y. ; Jiao F. J. Am. Chem. Soc. 2017, 139, 1885.
44 Zhong H. ; Qiu Y. ; Zhang T. ; Li X. ; Zhang H. ; Chen X. J. Mater. Chem. A 2016, 4, 13746.
45 Lv W. ; Zhou J. ; Bei J. ; Zhang R. ; Wang L. ; Xu Q. ; Wang W. Appl. Surf. Sci. 2017, 393, 191.
46 Chen Y. ; Li C. W. ; Kanan M. W. J. Am. Chem. Soc. 2012, 134, 19969.
47 Li C. W. ; Ciston J. ; Kanan M. W. Nature 2014, 508, 504.
48 Chen Y. ; Kanan M. W. J. Am. Chem. Soc. 2012, 134, 1986.
49 Sun Y. ; Gao S. ; Lei F. ; Xiao C. ; Xie Y. Acc. Chem. Res. 2015, 48, 3.
50 Gao S. ; Lin Y. ; Jiao X. ; Sun Y. ; Luo Q. ; Zhang W. ; Li D. ; Yang J. ; Xie Y. Nature 2016, 529, 68.
51 Zhang S. ; Kang P. ; Meyer T. J. J. Am. Chem. Soc. 2014, 136, 1734.
52 Gu J. ; Wuttig A. ; Krizan J. W. ; Hu Y. ; Detweiler Z. M. ; Cava R. J. ; Bocarsly A. B. J. Phys. Chem. C 2013, 117, 12415.
53 Watkins J. D. ; Bocarsly A. B. ChemSusChem. 2014, 7, 284.
54 Gao S. ; Sun Z. ; Liu W. ; Jiao X. ; Zu X. ; Hu Q. ; Sun Y. ; Yao T. ; Zhang W. ; Wei S. ; Xie Y. Nat. Commun. 2017, 8, 14503.
55 Mistry H. ; Varela A. S. ; Bonifacio C. S. ; Zegkinoglou I. ; Sinev I. ; Choi Y. W. ; Kisslinger K. ; Stach E. A. ; Yang J. C. ; Strasser P. ; Cuenya B. R. Nat. Commun. 2016, 7, 12123.
56 Chen L. ; Guo Z. ; Wei X. G. ; Gallenkamp C. ; Bonin J. ; Anxolabéhère-Mallart E. ; Lau K. C. ; Lau T. C. ; Robert M. J. Am. Chem. Soc. 2015, 137, 10918.
57 Costentin C. ; Savéant J. M. Science 2012, 338, 90.
58 Yao S. A. ; Ruther R. E. ; Zhang L. ; Franking R. A. ; Hamers R. J. ; Berry J. F. J. Am. Chem. Soc. 2017, 134, 15632.
59 Tornow C. E. ; Thorson M. R. ; Ma S. ; Gewirth A. A. ; Kenis P. J. J. Am. Chem. Soc. 2012, 134, 19520.
60 Lin S. ; Diercks C. S. ; Zhang Y. B. ; Kornienko N. ; Nichols E. M. ; Zhao Y. ; Paris A. R. ; Kim D. ; Yang P. ; Yaghi O. M. Science 2015, 349, 1208.
61 Hod I. ; Farha O. K. ; Hupp J. T. Nat. Mater. 2015, 14, 1192.
62 Kornienko N. ; Zhao Y. ; Kley C. S. ; Zhu C. ; Kim D. ; Lin S. ; Chang C. J. ; Yaghi O. M. ; Yang P. J. Am. Chem. Soc. 2015, 137, 14129.
63 Hod I. ; Sampson M. D. ; Deria P. ; Kubiak C. P. ; Farha O. K. ; Hupp J. T. Acs Catal. 2015, 5, 6302.
64 Hinogami R. ; Yotsuhashi S. ; Deguchi M. ; Zenitani Y. ; Hashiba H. ; Yamada Y. ECS Electrochem. Lett. 2012, 1, 17.
65 Senthil K. R. ; Senthil Kumar S. ; Anbu Kulandainathan M. Electrochem. Commun. 2012, 25, 70.
66 Kang X. ; Zhu Q. ; Sun X. ; Hu J. ; Zhang J. ; Liu Z. ; Han B. Chem. Sci. 2016, 7, 266.
67 Roberts F. S. ; Kuhl K. P. ; Nilsson A. Angew. Chem.Int. Ed. 2015, 54, 5179.
68 Kas R. ; Kortlever R. ; Milbrat A. ; Koper M. T. M. ; Mul G. ; Baltrusaitis J. Phys. Chem. Chem. Phys. 2014, 16, 12194.
69 Kuhl K. P. ; Cave E. R. ; Abram D. N. ; Jaramillo T. F. Energ.Environ. Sci. 2012, 5, 7050.
70 Zhang Z. ; Qi Z. M. ; Zhang R. J. Acta Phys. -Chim. Sin. 2012, 28, 1163.
70 张喆; 祁志美; 张蓉君. 物理化学学报, 2012, 28, 1163.
71 Zuo K. ; Liang S. ; Liang P. ; Zhou X. ; Sun D. ; Zhang X. ; Huang X. Bioresour. Technol. 2015, 185, 426.
72 Katuri K. P. ; Werner C. M. ; Jimenez-Sandoval R. J. ; Chen W. ; Jeon S. ; Logan B. E. ; Lai Z. ; Amy G. L. ; Saikaly P. E. Environ. Sci. Technol. 2014, 48, 12833.
73 Kas R. ; Hummadi K. K. ; Kortlever R. ; de Wit P. ; Milbrat A. ; Luiten-Olieman M. W. J. ; Benes N. E. ; Koper M. T. M. ; Mul G. Nat. Commun. 2016, 7, 10748.
74 Chen S. ; Duan J. ; Ran J. ; Jaroniec M. ; Qiao S. Z. Energy Environ. Sci. 2013, 6, 3693.
75 Gao S. ; Jiao X. ; Sun Z. ; Zhang W. ; Sun Y. ; Wang C. ; Hu Q. ; Zu X. ; Yang F. ; Yang S. Angew. Chem. Int. Ed. 2016, 128, 708.
76 Liang L. ; Lei F. ; Gao S. ; Sun Y. ; Jiao X. ; Wu J. ; Qamar S. ; Xie Y. Angew. Chem. Int. Ed. 2015, 54, 13971.
77 Deng J. ; Ren P. ; Deng D. ; Bao X. Angew.Chem. Int. Ed. 2015, 54, 2100.
78 Lei F. ; Liu W. ; Sun Y. ; Xu J. ; Liu K. ; Liang L. ; Yao T. ; Pan B. ; Wei S. ; Xie Y. Nat. Commun. 2016, 7, 12697.
79 Wu J. ; Yadav R. M. ; Liu M. ; Sharma P. P. ; Tiwary C. S. ; Ma L. ; Zou X. ; Zhou X-D ; Yakobson B. I. ; Lou J. ; Ajayan P. M. ACS Nano 2015, 9, 5364.
80 Wu J. ; Liu M. ; Sharma P. P. ; Yadav R. M. ; Ma L. ; Yang Y. ; Zou X. ; Zhou X-D ; Vajtai R. ; Yakobson B. I. ; Lou J. ; Ajayan P. M. Nano Lett. 2016, 16, 466.
81 Kumar B. ; Asadi M. ; Pisasale D. ; Sinha-Ray S. ; Rosen B. A. ; Haasch R. ; Abiade J. ; Yarin A. L. ; Salehi-Khojin A. Nat. Commun. 2013, 4, 2819.
82 Zhang S. ; Kang P. ; Ubnoske S. ; Brennaman M. K. ; Song N. ; House R. L. ; Glass J. T. ; Meyer T. J. J. Am. Chem. Soc. 2014, 136, 7845.
83 Sreekanth N. ; Nazrulla M. A. ; Vineesh T. V. ; Sailaja K. ; Phani K. L. Chem. Commun. 2015, 51, 16061.
84 Wu J. ; Ma S. ; Sun J. ; Gold J. I. ; Tiwary C. ; Kim B. ; Zhu L. ; Chopra N. ; Odeh I. N. ; Vajtai R. ; Yu A. Z. ; Luo R. ; Lou J. ; Ding G. ; Kenis P. J. A. ; Ajayan P. M. Nat. Commun. 2016, 7, 13869.
85 Prakash G. K. S. ; Viva F. A. ; Olah G. A. J. Power Sources 2013, 223, 68.
86 Se ok ; Ki K. ; Yin-Jia Z. ; Helen B. ; Ronald M. ; Andrew P. ACS Catal. 2016, 6, 2003.
87 Hatsukade T. ; Kuhl K. P. ; Cave E. R. ; Abram D. N. ; Jaramillo T. F. Phys. Chem. Chem. Phys. 2014, 16, 13814.
88 Alves D. C. B. ; Silva R. ; Voiry D. ; Asefa T. ; Chhowalla M. Mater. Renew. Sustain. Energy 2015, 4, 2.
89 Baruch M. F. ; Pander J. E. ; White J. L. ; Bocarsly A. B. ACS Catal. 2015, 5, 3148.
90 Fang Y. ; Flake J. C. J. Am. Chem. Soc. 2017, 139, 3399.
91 Morais J. P. ; Rosa M. F. ; De S. F. M. S. ; Nascimento L. D. ; do Nascimento D. M. ; Cassales A. R. Carbohydr. Polym. 2013, 91, 229.
92 Shi L. ; Liu Q. ; Guo X. ; Wu W. ; Liu Z. Fuel Process. Technol. 2013, 108, 125.
93 Puthiyapura V. K. ; Dan J. L. B. ; Russell A. E. ; Lin W. F. ; Hardacre C. ACS Appl. Mater. Interfaces. 2016, 8, 12859.
94 Calle-Vallejo F. ; Koper M. T. M. Electrochim. Acta 2012, 84, 3.
95 Wu Z. ; Lv Y. ; Xia Y. ; Webley P. A. ; Zhao D. J. Am. Chem. Soc. 2012, 134, 2236.
96 Kong B. ; Selomulya C. ; Zheng G. ; Zhao D. Chem. Soc. Rev. 2015, 44, 7997.
97 Tang J. ; Liu J. ; Torad N. L. ; Kimura T. ; Yamauchi Y. Nano Today 2014, 9, 305.
98 Malgras V. ; Ataee-Esfahani H. ; Wang H. ; Jiang B. ; Li C. ; Wu K. C. W. ; Kim J. H. ; Yamauchi Y. Adv Mater. 2016, 28, 993.
99 Hall A. S. ; Yoon Y. ; Wuttig A. ; Surendranath Y. J. Am. Chem. Soc. 2015, 137, 14834.
100 Jones J. P. ; Prakash G. K. S. ; Olah G. A. Isr. J. Chem. 2014, 54, 1451.
101 Liu Y. ; Chen S. ; Quan X. ; Yu H. J. Am. Chem. Soc. 2015, 137, 11631.
[1] Yujing ZHANG,Xingchao DAI,Hongli WANG,Feng SHI. Catalytic Synthesis of Formamides with Carbon Dioxide and Amines[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 845-857.
[2] Zhihua ZHOU,Shumei XIA,Liangnian HE. Green Catalysis for Three-Component Reaction of Carbon Dioxide, Propargylic Alcohols and Nucleophiles[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 838-844.
[3] Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958.
[4] Chunxing REN,Xiaoxia LI,Li GUO. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1151-1162.
[5] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[6] Zi-Min WANG,Mo ZHENG,Yong-Bing XIE,Xiao-Xia LI,Ming ZENG,Hong-Bin CAO,Li GUO. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1399-1410.
[7] Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1085-1107.
[8] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[9] Yang Lü,Yu-Jiang SONG,Hui-Yuan LIU,Huan-Qiao LI. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294.
[10] Shen-Hui LI,Jing LI,An-Min ZHENG,Feng DENG. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 270-282.
[11] Dong ZHENG,Bei-Jing ZHONG,Tong YAO. Methodology for Formulating Aviation Kerosene Surrogate Fuels and The Surrogate Fuel Model for HEF Kerosene[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2438-2445.
[12] Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 211-241.
[13] Han XU,Ye-Xiang TONG,Gao-Ren LI. Controllable Synthesis of Pd Nanocrystals for Applications in Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2171-2184.
[14] Zhen YANG,Hai LIU,Yuan-Hang HE. Molecular Dynamics Simulations of Femtosecond Laser Ablation of Energetic Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1977-1982.
[15] Ai-Ming WU,Guo-Feng XIA,Shui-Yun SHEN,Jie-Wei YIN,Ya MAO,Qing-You BAI,Jing-Ying XIE,Jun-Liang ZHANG. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1866-1879.