Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (12): 2491-2509    DOI: 10.3866/PKU.WHXB201706132
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
ARTICLE     
Chemical Reactivity Description in Density-Functional and Information Theories
Roman F NALEWAJSKI*()
Download: HTML     PDF(1033KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In Quantum Information Theory (QIT) the classical measures of information content in probability distributions are replaced by the corresponding resultant entropic descriptors containing the nonclassical terms generated by the state phase or its gradient (electronic current). The classical Shannon (S[p]) and Fisher (I[p]) information terms probe the entropic content of incoherent local events of the particle localization, embodied in the probability distribution p, while their nonclassical phase-companions, S[φ] and I[φ], provide relevant coherence information supplements. Thermodynamic-like couplings between the entropic and energetic descriptors of molecular states are shown to be precluded by the principles of quantum mechanics. The maximum of resultant entropy determines the phase-equilibrium state, defined by "thermodynamic" phase related to electronic density, which can be used to describe reactants in hypothetical stages of a bimolecular chemical reaction. Information channels of molecular systems and their entropic bond indices are summarized, the complete-bridge propagations are examined, and sequential cascades involving the complete sets of the atomic-orbital intermediates are interpreted as Markov chains. The QIT description is applied to reactive systems R=A-B, composed of the Acidic (A) and Basic (B) reactants. The electronegativity equalization processes are investigated and implications of the concerted patterns of electronic flows in equilibrium states of the complementarily arranged substrates are investigated. Quantum communications between reactants are explored and the QIT descriptors of the A-B bond multiplicity/composition are extracted.



Key wordsDensity-functional theory      Donor-acceptor system      Electronegativity equalization and electron flows      Information theory      Markov chains      Phase-equilibria     
Received: 19 April 2017      Published: 13 June 2017
MSC2000:  O646  
Corresponding Authors: Roman F NALEWAJSKI     E-mail: nalewajs@chemia.uj.edu.pl
Cite this article:

Roman F NALEWAJSKI. Chemical Reactivity Description in Density-Functional and Information Theories. Acta Phys. -Chim. Sin., 2017, 33(12): 2491-2509.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706132     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2491

 
 
 
 
1 Fisher R. A Proc. Cambridge Phil. Soc 1925, 22, 700.
2 (a) Shannon, C. E. Bell System Tech. J. 1948, 27, 379, 623. doi: 10.1002/j.1538-7305.1948.tb01338.x (b) Abramson, N. Information Theory and Coding; McGraw-Hill: New York, 1963.
3 Nalewajski R. F Quantum Information Theory of Molecular States New York: Nova Science Publishers, 2016.
4 (a) Nalewajski, R. F. Ann. Phys. (Leipzig) 2013, 525, 256. doi: (b)Nalewajski,R.F.J.Math.Chem.2013,51,369.doi:10.1007/s10910-012-0088-5" target="_blank">10.1002/andp.201200230
4 (b)Nalewajski,R.F.J.Math.Chem.2013,51,369.doi:10.1007/s10910-012-0088-5
5 Nalewajski, R. F. J. Math. Chem. 2014, 52, 588, 1292, 1921. doi: 10.1007/s10910-013-0280-2; notenoalianjie; notenoalianjie
6 Nalewajski R. F Mol. Phys 2014, 112, 2587.
7 Nalewajski R. F. Int. J.Quantum Chem 2015, 115, 1274.
8 Nalewajski R. F. J.Math. Chem 2015, 53, 1126.
9 Nalewajski R. F. J.Math. Chem 2016, 54, 1777.
10 Hohenberg P. ; Kohn W Phys. Rev 1964, 136
11 Kohn W. ; Sham L. J Phys. Rev 1965, 140
12 Levy M. Proc. Natl. Acad. Sci. U. S. A 6062, 76, 6062.
13 Parr R. G. ; Yang W Density Functional Theory of Atoms and Molecules New York: Oxford University Press, 1989.
14 Nalewajski, R. F. ; Korchowiec, J. Charge Sensitivity Approach to Electronic Structure and Chemical Reactivity; World Scientific: Singapore, 1997.
15 Nalewajski R. F. ; Korchowiec J. ; Michalak A Topics in Current Chemistry 1996, 183, 25.
16 Nalewajski R. F Structure and Bonding 1993, 80, 115.
17 Geerlings P. ; de Proft F. ; Langenaeker W Chem. Rev. A 2003, 103, 1793.
18 Chattaraj P. K Chemical Reactivity Theory: A Density Functional View Taylor & Francis, Boca Raton: CRC Press, 2009.
19 (a) Mulliken, R. S. J. Chem. Phys. 1934, 2, 782. doi: J.Am.Chem.Soc.1961,83,3547.doi:10.1021/ja01478a001
20 Sanderson R. T. J.Am. Chem. Soc 1952, 74, 272.
21 Gyftopoulos E. P. ; Hatsopoulos G. N. Proc. Natl. Acad. Sci. U. S. A 1965, 60, 786.
22 Parr R. G. ; Donnelly R. A. ; Levy M. ; Palke W. E. J.Chem. Phys 1978, 69, 4431.
23 Perdew J. P. ; Parr R. G. ; Levy M. ; Balduz J. L Phys. Rev. Lett 1982, 49, 1691.
24 Pearson, R. G, Hard and Soft Acids and Bases; Dowden, Hatchinson, Ross: Stroudsburg, 1973.
25 Parr R. G. ; Pearson R. G. J.Am. Chem. Soc 1983, 105, 7512.
26 Parr R. G. ; Yang W. J.Am. Chem. Soc 1984, 106, 4049.
27 Liu, S. Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K. Ed. CRC/Taylor & Francis: Boca Raton, 2009; p. 179.
28 Baekelandt B. G. ; Janssens G. O. A. ; Toufar H. ; Mortier W. J. ; Schoonheydt R. A. ; Nalewajski R. F. J.Phys. Chem 1995, 99, 9784.
29 Nalewajski, R. F. Preceedings of the NATO ASI on Density Functional Theory; Dreizler, R. M. ; Gross, E. K. U. Eds. ; Plenum: New York, 1995; p 339.
30 Cohen M. H Topics in Current Chemistry 1996, 183, 143.
31 Nalewajski R. F Computers Chem 2000, 24, 243.
32 Nalewajski R. F Adv. Quant. Chem 2006, 51, 235.
33 Nalewajski R. F. ; B?a?ewicz D. ; Mrozek J. J.Math. Chem 2008, 44, 325.
34 Nalewajski R. F. J.Math. Chem 2010, 48, 752.
35 Nalewajski ; R. F. J. Math. Chem 2015, 53, 1.
36 Nalewajski, R. F. Information Theory of Molecular Systems; Elsevier: Amsterdam, 2006.
37 Nalewajski R. F Information Origins of the Chemical Bond New York: Nova Science Publishers, 2010.
38 Nalewajski, R. F. Perspectives in Electronic Structure Theory; Springer: Heidelberg, 2012.
39 Nalewajski R. F. Indian J.Chem. A 2014, 53, 1010.
40 Nalewajski, R. F. Phase Description of Reactive Systems. in Conceptual Density Functional Theory; Islam, N. Ed. , Apple Academic Press: Waretown, 2017, in press.
41 Nalewajski, R. F. Entropy Continuity, Electron Diffusion and Fragment Entanglement in Equilibrium States. In Advances in Mathematics Research; Nova Science Publishers: New York, 2017, in press.
42 Toro-Labbé, A. ; Gutiérez-Oliva, S. ; Politzer, P. ; Murray, J. S. Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K. Ed. ; CRC/Taylor & Francis: Boca Raton, 2009; p. 293.
43 López-Rosa S. ; Esquivel R. O. ; Angulo J. C. ; Antolín J. ; Dehesa J. S. ; Flores-Gallegos N. J.Chem. Theory Comput 2010, 6, 145.
44 López-Rosa, S. Information-Theoretic Measures of Atomic and Molecular Systems; Ph. D. Dissertation, University of Granada: Granada, 2010.
45 Nalewajski R. F. J.Math. Chem 2011, 49, 371.
46 Nalewajski R. F. J.Math. Chem 2011, 49, 546.
47 Nalewajski R. F. J.Math. Chem 2011, 49, 806.
48 Nalewajski R. F. ; Gurdek P. J.Math. Chem 2011, 49, 1226.
49 Nalewajski R. F. Int. J.Quantum Chem 2012, 112, 2355.
50 Nalewajski R. F. ; Gurdek P Struct. Chem 2012, 23, 1383.
51 Nalewajski R. F. J.Math. Chem 2011, 49, 2308.
52 Dirac, P. A. M. The Principles of Quantum Mechanics, 4th ed; Clarendon: Oxford, 1958.
53 Harriman J. E Phys. Rev. A 1981, 24, 680.
54 Zumbach, G. ; Maschke, K. Phys. Rev. A 1983, 28, 544. doi: Phys.Rev.A1984,29,1585.
55 von Weizs?cker C. F. Z Phys 1935, 96, 431.
56 Callen H. B Thermodynamics: an Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics New York: Wiley, 1960.
57 Kullback S. ; Leibler R. A Ann. Math. Stat 1951, 22, 79.
58 Kullback S Information Theory and Statistics New York: Wiley, 1959.
59 Nalewajski R. F Topics in Catalysis 2000, 11, 469.
60 Shaik S. ; Danovich D. ; Wu W. ; Hiberty P. C Nat. Chem 2009, 1, 443.
61 Heitler W. ; London F. Z Physik 1927, 44, 455.
62 Sveshnikov A. A Problems in Probability Theory, Mathematical Statistics and Theory of Random Functions New York: Dover, 1968.
63 Rozanov Y. A Probability Theory: A Concise Course New York: Dover, 1969.
64 Pfeifer P. E Concepts of Probability Theory New York: Dover, 1978.
65 Hirshfeld F. L Theoret. Chim. Acta (Berl.) 1977, 44, 129.
66 Chandra A. K. ; Michalak A. ; Nguyen M. T. ; Nalewajski R. F. J.Phys. Chem. A 1998, 102, 100182.
[1] Wenwu XU,Yi GAO. Thiolate-Protected Hollow Gold Nanospheres[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 770-775.
[2] László VON SZENTPÁLY. Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 675-682.
[3] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[4] Mojtaba ALIPOUR. Which Information Theoretic Quantity Should We Choose for Steric Analysis of Water Nanoclusters (H2O)n (n = 6, 32, 64)?[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 407-413.
[5] Manas GHARA,Pratim K. CHATTARAJ. Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 201-207.
[6] ZHANG Hua;CHEN Xiao-Hua;ZHANG Zhen-Hua;QIU Ming. Effect of Grafted Hydroxyl on the Electronic Structure of Finite-length Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2006, 22(09): 1101-1105.
[7] Bai Yu-Lin;Chen Xiang-Rong;Yang Xiang-Dong;Lu Peng-Fei. Structures of Small Sulfur Clusters Sn(n=2~8) from Langevin Molecular Dynamics Methods[J]. Acta Phys. -Chim. Sin., 2003, 19(12): 1102-1107.