Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(12)>> 2542-2549     doi: 10.3866/PKU.WHXB201706151         中文摘要
Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction
CAO Pengfei1, HU Yang1, ZHANG Youwei2, PENG Jing1, ZHAI Maolin1
1 Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China;
2 Aviation Key Laboratory of Science and Technology on Stealth Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, P. R. China
Full text: PDF (2021KB) HTML Export: BibTeX | EndNote (RIS)

Molybdenum sulfide is an efficient catalyst for the hydrogen evolution reaction (HER) and its synthesis has attracted significant attention in recent years. In this work, molybdenum sulfide/reduced graphite oxide (MoSx/RGO) was prepared by the γ-ray induced reduction of ammonium tetrathiomolybdate and graphite oxide. The composition, morphology, and structure of the MoSx/RGO composites were determined by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The results confirmed the formation of amorphous MoSx/RGO composites. Subsequently, the effects of the absorbed dose and precursor ratio on the performance of the composite material as the catalyst for HER were studied systematically. The resultant MoSx/RGO composites were found to show excellent catalytic activity towards HER. With a catalyst loading of 0.275 mg·cm-2, an onset overpotential of 110 mV, a Tafel slope of 46 mV·dec-1, and a current density of 10 mA·cm-2 at the overpotential of 160 mV can be achieved. These results can be considered as the proof of Volmer-Heyrovesy mechanism. In addition, the MoSx/RGO catalyst also showed an excellent long-time stability during the evaluation for HER.



Keywords: Molybdenum sulfide   Reduced graphene oxide   Radiation synthesis   Hydrogen evolution reaction   Volmer-Heyrovesy mechanism  
Received: 2017-05-03 Accepted: 2017-06-12 Publication Date (Web): 2017-06-15
Corresponding Authors: ZHAI Maolin Email: mlzhai@pku.edu.cn

Fund: The project was supported by the National Natural Science Foundation of China (11405168, 11505011).

Cite this article: CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017,33 (12): 2542-2549.    doi: 10.3866/PKU.WHXB201706151

(1) Chang, J. F.; Xiao, Y.; Luo, Z. Y.; Ge, J. J.; Liu, C. P.; Wei, X. Acta Phys. -Chim. Sin. 2016, 32 (7), 37. [常进法, 肖 瑶, 罗兆 艳, 葛君杰, 刘长鹏, 邢 巍. 物理化学学报, 2016, 32 (7), 1556. doi: 10.3866/PKU.WHXB201604291]
(2) Ding, Q.; Song, B.; Xu, P.; Jin, S. Chem 2016, 1 (5), 699. doi: 10.1016/j.chempr.2016.10.007
(3) Cao, X.; Tan, C.; Zhang, X.; Zhao, W.; Zhang, H. Adv. Mater. 2016, 28 (29), 6167. doi:10.1002/adma.201504833
(4) Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. J. Am. Chem. Soc. 2013, 135 (28), 10274. doi: 10.1021/ja404523s
(5) Morales-Guio, C. G.; Hu, X. Acc. Chem. Res. 2014, 47 (8), 2671. doi:10.1021/ar5002022
(6) Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Nat. Mater. 2013, 12 (3), 207. doi: 10.1038/nmat3505
(7) Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Nano Lett. 2011, 11 (12), 5111. doi: 10.1021/nl201874w
(8) Zeng, Z.; Sun, T.; Zhu, J.; Huang, X.; Yin, Z.; Lu, G.; Fan, Z.; Yan, Q.; Hng, H. H.; Zhang, H. Angew. Chem. Int. Ed. 2012, 51 (36), 9052. doi: 10.1002/anie.201204208
(9) Zhan, Y.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Small 2012, 8 (7), 966. doi: 10.1002/smll.201102654
(10) Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. Chem. Sci. 2011, 2 (7), 1262. doi: 10.1039/C1SC00117E
(11) Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. J. Am. Chem. Soc. 2011, 133 (19), 7296. doi: 10.1021/ja201269b .
(12) Yang, J.; Shin, H. S. J. Mater. Chem. A 2014, 2 (17), 5979. doi: 10.1039/C3TA14151A
(13) Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F. Nat. Mater. 2012, 11 (11), 963. doi: 10.1038/nmat3439
(14) Shi, Y.; Wang, J.; Wang, C.; Zhai, T. T.; Bao, W. J.; Xu, J. J.; Xia, X. H.; Chen, H. Y. J. Am. Chem. Soc. 2015, 137 (23), 7365. doi: 10.1021/jacs.5b01732
(15) Ting, L. R. L.; Deng, Y.; Ma, L.; Zhang, Y. J.; Peterson, A. A.; Yeo, B. S. ACS Catal. 2016, 6 (2), 861. doi: 10.1021/acscatal.5b02369
(16) Liao, L.; Zhu, J.; Bian, X.; Zhu, L.; Scanlon, M. D.; Girault, H. H.; Liu, B. Adv. Funct. Mater. 2013, 23 (42), 5326. doi: 10.1002/adfm.201300318
(17) Youn, D. H.; Han, S.; Kim, J. Y.; Kim, J. Y.; Park, H.; Choi, S. H.; Lee, J. S. ACS Nano 2014, 8 (5), 5164. doi: 10.1021/nn5012144.
(18) Zhu, H.; Du, M.; Zhang, M.; Zou, M.; Yang, T.; Wang, S.; Yao, J.; Guo, B. Chem. Commun. 2014, 50 (97), 15435. doi: 10.1039/C4CC06480A
(19) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442 (7100), 282. doi: 10.1038/nature04969
(20) Zheng, X.; Xu, J.; Yan, K.; Wang, H.; Wang, Z.; Yang, S. Chem. Mater. 2014, 26 (7), 2344. doi: 10.1021/cm500347r
(21) Fu, X.; Zhang, Y.; Cao, P.; Ma, H.; Liu, P.; He, L.; Peng, J.; Li, J.; Zhai, M. Radiat. Phys. Chem. 2016, 123, 79. doi: 10.1016/j.radphyschem.2016.02.016
(22) Yin, Y.; Xu, X.; Zhang, Z. Chem. Commun. 1998, (16), 1641. doi: 10.1039/A802910E
(23) Abedini, A.; Larki, F.; Saion, E. B.; Zakaria, A.; Hussein, M. Z. J. Radioanal. Nucl. Chem. 2012, 292 (1), 361. doi: 10.1007/s10967-011-1611-z
(24) Chu, G.; Bian, G.; Fu, Y.; Zhang, Z. Mater. Lett. 2000, 43 (3), 81. doi: 10.1016/S0167-577X(99)00235-9
(25) Cao, P.; Peng, J.; Li, J.; Zhai, M. J. Power Sources 2017, 347, 210. doi: 10.1016/j.jpowsour.2017.02.056
(26) Vrubel, H.; Hu, X. Vrubel, H.; Hu, X. ACS Catal. 2013, 3 (9), 2002. doi: 10.1021/cs400441u
(27) Benck, J. D.; Chen, Z.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. ACS Catal. 2012, 2 (9), 1916. doi: 10.1021/cs300451q
(28) Gu, H.; Yang, Y.; Tian, J. X.; Shi, G. Y. ACS Appl. Mater. Inter. 2013, 5 (14), 6762. doi: 10.1021/am401738k

1. ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang.Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. -Chim. Sin., 2017,33(10): 2035-2041
2. XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng.Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2015,31(5): 913-919
3. MA Hui-Ling, ZHANG Long, ZHANG You-Wei, LIU Di, SUN Chao, ZENG Xin-Miao, ZHAI Mao-Lin.γ-Ray Induced Reduction of Graphene Oxide in Aqueous Solution[J]. Acta Phys. -Chim. Sin., 2015,31(10): 2016-2022
4. WANG Jian-De, PENG Tong-Jiang, XIAN Hai-Yang, SUN Hong-Juan.Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite[J]. Acta Phys. -Chim. Sin., 2015,31(1): 90-98
5. WANG Li, MA Jun-Hong.Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2014,30(7): 1267-1273
6. YANG Yu-Wen, FENG Gang, LU Zhang-Hui, HU Na, ZHANG Fei, CHEN Xiang-Shu.In situ Synthesis of Reduced Graphene Oxide Supported Co Nanoparticles as Efficient Catalysts for Hydrogen Generation from NH3BH3[J]. Acta Phys. -Chim. Sin., 2014,30(6): 1180-1186
7. LONG Mei, CONG Ye, LI Xuan-Ke, CUI Zheng-Wei, DONG Zhi-Jun, YUAN Guan-Ming.Hydrothermal Synthesis and Photocatalytic Activity of Partially Reduced Graphene Oxide/TiO2 Composite[J]. Acta Phys. -Chim. Sin., 2013,29(06): 1344-1350
8. YANG Shi-Guo, CHEN Qing-De, SHI Jian-Feng, SHEN Xing-Hai.Controllable Radiolytic Reduction of Cu2+ in Aqueous Solution by β-Cyclodextrin[J]. Acta Phys. -Chim. Sin., 2010,26(04): 805-810
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top