Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (12): 2542-2549    DOI: 10.3866/PKU.WHXB201706151
ARTICLE     
Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction
Pengfei CAO1,Yang HU1,Youwei ZHANG2,Jing PENG1,Maolin ZHAI1,*()
1 Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
2 Aviation Key Laboratory of Science and Technology on Stealth Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, P. R. China
Download: HTML     PDF(2021KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Molybdenum sulfide is an efficient catalyst for the hydrogen evolution reaction (HER) and its synthesis has attracted significant attention in recent years. In this work, molybdenum sulfide/reduced graphite oxide (MoSx/RGO) was prepared by the γ-ray induced reduction of ammonium tetrathiomolybdate and graphite oxide. The composition, morphology, and structure of the MoSx/RGO composites were determined by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The results confirmed the formation of amorphous MoSx/RGO composites. Subsequently, the effects of the absorbed dose and precursor ratio on the performance of the composite material as the catalyst for HER were studied systematically. The resultant MoSx/RGO composites were found to show excellent catalytic activity towards HER. With a catalyst loading of 0.275 mg·cm-2, an onset overpotential of 110 mV, a Tafel slope of 46 mV·dec-1, and a current density of 10 mA·cm-2 at the overpotential of 160 mV can be achieved. These results can be considered as the proof of Volmer-Heyrovesy mechanism. In addition, the MoSx/RGO catalyst also showed an excellent long-time stability during the evaluation for HER.



Key wordsMolybdenum sulfide      Reduced graphene oxide      Radiation synthesis      Hydrogen evolution reaction      Volmer-Heyrovesy mechanism     
Received: 03 May 2017      Published: 15 June 2017
MSC2000:  O644  
Fund:  the National Natural Science Foundation of China(11405168);the National Natural Science Foundation of China(11505011)
Corresponding Authors: Maolin ZHAI     E-mail: mlzhai@pku.edu.cn
Cite this article:

Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction. Acta Physico-Chimica Sinca, 2017, 33(12): 2542-2549.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706151     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2542

Namem(GO)/
mg
m((NH4)2MoS4)/
mg
m(EG)/
mL
Absorbed dose/kGy a
MoSx-2020300
MoSx /RGO-1402020100
MoSx /RGO-2402020300
MoSx /RGO-34020201000
MoSx /RGO-440220300
MoSx /RGO-540820300
MoSx /RGO-6404020300
Table 1 Sample abbreviations and corresponding preparation conditions.
Fig 1 High resolution XPS of GO, pure MoS2, MoSx/ RGO-1, MoSx/RGO-2 and MoSx/RGO-3. Shigher represents S atoms of apical S2- and/or bridging S22-; Slower represents S atoms of unsaturated S2- and terminal S22-.
Fig 2 XRD patterns of RGO, MoSx, MoSx/RGO-1, MoSx/RGO-2 and MoSx/RGO-3.
Fig 3 TEM images of different samples. (a) RGO; (b) MoSx; (c) HRTEM of MoSx; (d) MoSx/RGO-1; (e) MoSx/RGO-2; (f) MoSx/RGO-3.
Fig 4 Catalytic activity analysis of different samples prepared with different absorbed dose. (a) Linear sweep voltammograms of RGO, MoSx/RGO-1, MoSx/RGO-2, MoSx/RGO-3 and MoSx; (b) Corresponding Tafel curves.
CatalystOnset η/mVη/mV at j = 10 mA?cm-2Tafel slope/(mV?dec-1)Reference
1T MoS2/187544
MoS21302305013
MoS2/rGO1001554111
MoS2/rGO1401804120
MoS2/Au1202607114
MoSx1502006027
MoSx/RGO11016046This work
Table 2 Comparison of HER performance for MoSx/RGO with other HER electrocatalysts.
Fig 5 Linear sweep voltammograms of different samples prepared with different precursor ratio.
Fig 6 Linear sweep voltammograms of MoSx/RGO-2 of initial and after 10000 CV cycles.
1 Chang J. F. ; Xiao Y. ; Luo Z. Y. ; Ge J. J. ; Liu C. P. ; Wei X. Acta Phys. -Chim. Sin 2016, 32 (7), 37.
1 常进法; 肖瑶; 罗兆艳; 葛君杰; 刘长鹏; 邢巍. 物理化学学报, 2016, 32 (7), 1556.
2 Ding Q. ; Song B. ; Xu P. ; Jin S. Chem 2016, 1 (5), 699.
3 Cao X. ; Tan C. ; Zhang X. ; Zhao W. ; Zhang H. Adv. Mater 2016, 28 (29), 6167.
4 Lukowski M. A. ; Daniel A. S. ; Meng F. ; Forticaux A. ; Li L. ; Jin S. J.Am. Chem. Soc 2013, 135 (28), 10274.
5 Morales-Guio C. G. ; Hu X. Acc. Chem. Res 2014, 47 (8), 2671.
6 Mak K. F. ; He K. L. ; Lee C. ; Lee G. H. ; Hone J. ; Heinz T. F. ; Shan J. Nat. Mater 2013, 12 (3), 207.
7 Eda G. ; Yamaguchi H. ; Voiry D. ; Fujita T. ; Chen M. W. ; Chhowalla M. Nano Lett 2011, 11 (12), 5111.
8 Zeng Z. ; Sun T. ; Zhu J. ; Huang X. ; Yin Z. ; Lu G. ; Fan Z. ; Yan Q. ; Hng H. H. ; Zhang H. Angew. Chem. Int. Ed 2012, 51 (36), 9052.
9 Zhan Y. ; Liu Z. ; Najmaei S. ; Ajayan P. M. ; Lou J. Small 2012, 8 (7), 966.
10 Merki D. ; Fierro S. ; Vrubel H. ; Hu X. Chem. Sci 2011, 2 (7), 1262.
11 Li Y. ; Wang H. ; Xie L. ; Liang Y. ; Hong G. ; Dai H. J.Am. Chem. Soc 2011, 133 (19), 7296.
12 Yang J. ; Shin H. S. J.Mater. Chem. A 2014, 2 (17), 5979.
13 Kibsgaard J. ; Chen Z. ; Reinecke B. N. ; Jaramillo T. F. Nat. Mater 2012, 11 (11), 963.
14 Shi Y. ; Wang J. ; Wang C. ; Zhai T. T. ; Bao W. J. ; Xu J. J. ; Xia X. H. ; Chen H. Y. J.Am. Chem. Soc 2015, 137 (23), 7365.
15 Ting L. R. L. ; Deng Y. ; Ma L. ; Zhang Y. J. ; Peterson A. A. ; Yeo B. S. ACS Catal 2016, 6 (2), 861.
16 Liao L. ; Zhu J. ; Bian X. ; Zhu L. ; Scanlon M. D. ; Girault H. H. ; Liu B. Adv. Funct. Mater 2013, 23 (42), 5326.
17 Youn D. H. ; Han S. ; Kim J. Y. ; Kim J. Y. ; Park H. ; Choi S. H. ; Lee J. S. ACS Nano 2014, 8 (5), 5164.
18 Zhu H. ; Du M. ; Zhang M. ; Zou M. ; Yang T. ; Wang S. ; Yao J. ; Guo B. Chem. Commun 2014, 50 (97), 15435.
19 Stankovich S. ; Dikin D. A. ; Dommett G. H. B. ; Kohlhaas K. M. ; Zimney E. J. ; Stach E. A. ; Piner R. D. ; Nguyen S. T. ; Ruoff R. S. Nature 2006, 442 (7100), 282.
20 Zheng X. ; Xu J. ; Yan K. ; Wang H. ; Wang Z. ; Yang S. Chem. Mater 2014, 26 (7), 2344.
21 Fu X. ; Zhang Y. ; Cao P. ; Ma H. ; Liu P. ; He L. ; Peng J. ; Li J. ; Zhai M. Radiat. Phys. Chem 2016, 123, 79.
22 Yin Y. ; Xu X. ; Zhang Z. Chem. Commun 1998, (16), 1641.
23 Abedini A. ; Larki F. ; Saion E. B. ; Zakaria A. ; Hussein M. Z. J.Radioanal. Nucl. Chem 2012, 292 (1), 361.
24 Chu G. ; Bian G. ; Fu Y. ; Zhang Z. Mater. Lett 2000, 43 (3), 81.
25 Cao P. ; Peng J. ; Li J. ; Zhai M. J. Power Sources 2017, 347, 210.
26 Vrubel H. ; Hu X. ; Vrubel H. ; Hu X. ACS Catal 2013, 3 (9), 2002.
27 Benck J. D. ; Chen Z. ; Kuritzky L. Y. ; Forman A. J. ; Jaramillo T. F. ACS Catal 2012, 2 (9), 1916.
28 Gu H. ; Yang Y. ; Tian J. X. ; Shi G. Y. ACS Appl. Mater. Inter 2013, 5 (14), 6762.
[1] LING Chong-Yi, WANG Jin-Lan. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 869-885.
[2] Shao-Zheng ZHANG,Jia LIU,Yan XIE,Yin-Ji LU,Lin LI,Liang LÜ,Jian-Hui YANG,Shi-Hao WEI. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2022-2028.
[3] Xiang-Dong ZENG,Xiao-Yu ZHAO,Hui-Ge WEI,Yan-Fei WANG,Na TANG,Zuo-Liang SHA. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2035-2041.
[4] XUAN Cui-Juan, WANG Jie, ZHU Jing, WANG De-Li. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 149-164.
[5] CHANG Jin-Fa, XIAO Yao, LUO Zhao-Yan, GE Jun-Jie, LIU Chang-Peng, XING Wei. Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1556-1592.
[6] WU Yu, LUO Jian. In situ Growth of a Pd/Ni(OH)2/NF Composite Catalyst for the Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2745-2752.
[7] XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng. Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(5): 913-919.
[8] WANG Jian-De, PENG Tong-Jiang, XIAN Hai-Yang, SUN Hong-Juan. Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite[J]. Acta Physico-Chimica Sinca, 2015, 31(1): 90-98.
[9] WANG Li, MA Jun-Hong. Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2014, 30(7): 1267-1273.
[10] YANG Yu-Wen, FENG Gang, LU Zhang-Hui, HU Na, ZHANG Fei, CHEN Xiang-Shu. In situ Synthesis of Reduced Graphene Oxide Supported Co Nanoparticles as Efficient Catalysts for Hydrogen Generation from NH3BH3[J]. Acta Physico-Chimica Sinca, 2014, 30(6): 1180-1186.
[11] LI Le, HE Yun-Qiu, CHU Xiao-Fei, LI Yi-Ming, SUN Fang-Fang, HUANG He-Zhou. Hydrothermal Synthesis of Partially Reduced Graphene Oxide-K2Mn4O8 Nanocomposites as Supercapacitors[J]. Acta Physico-Chimica Sinca, 2013, 29(08): 1681-1690.
[12] CAO Yin-Liang, LI Zhi-Lin, WANG Feng, LIU Jing-Jun, JI Jing, WANG Jian-Jun, ZHANG Liang-Hu, QIN Shi-Yong. Electrochemical Preparation of Ni-Sn Active Cathode and Its Electrocatalytic Hydrogen Evolution Reaction Mechanisms in Alkaline Solution[J]. Acta Physico-Chimica Sinca, 2013, 29(07): 1479-1486.
[13] LONG Mei, CONG Ye, LI Xuan-Ke, CUI Zheng-Wei, DONG Zhi-Jun, YUAN Guan-Ming. Hydrothermal Synthesis and Photocatalytic Activity of Partially Reduced Graphene Oxide/TiO2 Composite[J]. Acta Physico-Chimica Sinca, 2013, 29(06): 1344-1350.
[14] DUAN Qian-Hua, WANG Sen-Lin, WANG Li-Pin. Electro-Deposition of the Porous Composite Ni-P/LaNi5 Electrode and Its Electro-Catalytic Performance toward Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2013, 29(01): 123-130.
[15] WANG Sen-Lin, ZHANG Yi. Preparation and Electrocatalytic Performance of Ni-Mo/LaNi5 Porous Composite Electrode toward Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2011, 27(06): 1417-1423.