Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (12): 2532-2541    DOI: 10.3866/PKU.WHXB201706153
ARTICLE     
Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process
Download: HTML     PDF(1891KB) Export: BibTeX | EndNote (RIS)      

Abstract  

H2O2 is industrially produced by the anthraquinone method, in which energy consumption is high because it involves multistep hydrogenation and oxidation reactions. Photocatalytic production of H2O2 has received increasing attention as a sustainable and eco-friendly alternative to conventional anthraquinone-based and electrochemical production processes. Herein, we report a novel molten salt-assisted microwave process for the synthesis of a g-C3N4-coated MgO-Al2O3-Fe2O3 (MAFO) heterojunction photocatalyst with outstanding H2O2 production ability. The addition of a molten salt during synthesis changes the morphology of the as-prepared catalysts and influences the degree of polycondensation of melamine, leading to a change in the band gap energy. The cladding structure forms the maximum area of the heterojunction, leading to strong electronic coupling between the two components. This strong electronic coupling results in a more effective separation of the photogenerated electron-hole pairs and a faster interfacial charge transfer, leading to higher H2O2 formation rate. The equilibrium concentration and formation rate of H2O2 over the as-prepared heterojunction catalyst were 6.3 mmol·L-1 and 1.42 mmol·L-1·h-1, which are much higher than that reported for g-C3N4 and MAFO individually. In addition, the H2O2 decomposition rate also decreases over the as-prepared heterojunction catalysts. A possible mechanism and the electron transfer routes have been proposed based on a free radical trapping experiment.



Key wordsg-C3N4      Cladding structure      Heterojunction      H2O2 production      Molten salt-assisted microwave process     
Received: 09 May 2017      Published: 15 June 2017
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(41571464);Education Department of Liaoning Province, China(L2014145);Natural Science Foundation of Liaoning Province, China(201602467)
Cite this article:

. Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process. Acta Phys. -Chim. Sin., 2017, 33(12): 2532-2541.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706153     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2532

 
MAFO--31.514.114.739.7
B-CN3957---4
MV-CN38.557---4.5
MV-MS-CN38.957.2---3.9
MV-CN/MAFO23.434.212.65.65.918.3
MV-MS-CN/MAFO23.634.512.55.55.818.1
 
 
 
 
CatalystMg:Al:Fe aMelamine:MAFO b
10:2:15:2:11:1:11:2:54:12: 11:2
[H2O2] (mmol/L)4.26.33.72.82.96.34.1
 
CatalystH2O2 concentration/(mmol?L-1)kf/(mmol?L-1?h-1)kd/h-1
MAFO0.460.200.22
B-CN0.690.370.35
MV-CN0.720.380.35
MV-MS-CN0.920.440.36
MV-CN/MAFO3.90.920.27
MV-MS-CN/MAFO6.31.420.26
 
 
 
 
1 Campos-Martin J. M. ; Blanco-Brieva G. ; Fierro J. L. G. Angew. Chem. Int. Ed 2006, 45, 6962.
2 Samanta C. Appl. Catal. A 2008, 350, 133.
3 Yamazaki S. ; Siroma Z. ; Senoh H. ; Ioroi T ; Fujiwara N. ; Yasuda K. J.Power Source 2008, 178, 20.
4 Shaegh S. A. M. ; Nguyen N. T. ; Ehteshami S. M. M. ; Chan S. H. Energy Environ. Sci 2012, 5, 8225.
5 Yamada Y. ; Fukunishi Y. ; Yamazaki S. ; Fukuzumi S. Chem. Commun 2010, 46, 7334.
6 Yamada Y. ; Yoshida S. ; Honda T. ; Fukuzumi S. Energy Environ. Sci 2011, 4, 2822.
7 Kato S. ; Jung J. ; Suenobua T. ; Fukuzumi S. Energy Environ. Sci 2013, 6, 3756.
8 Tsukamoto D. ; Shiro A. ; Shiraishi Y. ; Sugano Y. ; Ichikawa S. ; Tanaka S. ; Hirai T. ACS Catal 2012, 2, 599.
9 Diesen V. ; Jonsson M. J. Phys. Chem. C 2014, 118, 10083.
10 Li S. ; Dong G. H. ; Hailili R. ; Yang L. P. ; Li Y. X. ; Wang F. ; Zeng Y. B. ; Wang C. Y. Appl. Catal. B: Environ 2016, 190, 26.
11 Kong H. J. ; Won D. H. ; Kim J. ; Woo S. I. Chem. Mater 2016, 28, 1318.
12 Wang Z. ; Guan W. ; Sun Y. ; Dong F. ; Zhou Y. ; Ho W. K. Nanoscale 2015, 7, 2471.
13 Yang P. ; Zhao J. ; Qiao W. ; Li L. ; Zhu Z. Nanoscale 2015, 7, 18887.
14 Kang Y. ; Yang Y. ; Yin L. C. ; Kang X. ; Liu G. ; Cheng H. M. Adv. Mater 2015, 27, 4572.
15 Hu S. Z. ; Chen X. ; Li Q. ; Li F. Y. ; Fan Z. P. ; Wang H. ; Wang Y. J. ; Zheng B.H. ; Wu G. Appl. Catal. B: Environ 2017, 201, 58.
16 Fan X. ; Zhang L. ; Wang M. ; Huang W. ; Zhou Y. ; Li M. ; Cheng R. ; Shi J. Appl. Catal. B: Environ 2016, 182, 68.
17 Zhang Q. ; Hu S. Z. ; Fan Z. P. ; Liu D. S. ; Zhao Y. F. ; Ma H. F. ; Li F. Y. Dalton Trans 2016, 45, 3497.
18 Zhu Z. ; Lu Z. ; Wang D. ; Tang X. ; Yan Y. ; Shi W. ; Wang Y. ; Gao N. ; Yao X. ; Dong H. Appl. Catal. B: Environ 2016, 182, 115.
19 Hu S. Z. ; Li Y. M. ; Li F. Y. ; Fan Z. P. ; Ma H. F. ; Li W. ; Kang X. X. ACS Sus. Chem. Eng 2016, 4, 2269.
20 Nie Q. ; Yuan Q. ; Wang Q. J.Mater. Sci 2004, 39, 5611.
21 Fu X. L. ; Wang X. X. ; Chen Z. X. ; Zhang Z. Z. ; Li Z. H. ; Leung D. Y. C. ; Wu L. ; Fu X. Z. Appl. Catal. B: Environ 2010, 95, 393.
22 Chen J. ; Shen S. H. ; Guo P. H. ; Wu P. ; Guo L. J. J.Mater. Chem. A 2014, 2, 4605.
23 Lan M. ; Fan G. L. ; Yang L. ; Li F. RSC Adv 2015, 5, 5725.
24 Bojdys M. J. ; Muller J. ; Antonietti M. ; Thomas A. Chem. Eur. J 2008, 14, 8177.
25 Wirnhier E. ; Doblinger M. ; Gunzelmann D. ; Senker J. ; Lotsch B. V. ; Schnick W. Chem. Eur. J 2011, 17, 3213.
26 Zhao J. N. ; Ma L. ; Wang H. Y. ; Zhao Y. F. ; Zhang J. ; Hu S. Z. Appl. Surf. Sci 2015, 332, 625.
27 Li S. J. ; Chen X. ; Hu S. Z. ; Li Q. ; Bai J. ; Wang F. RSC Adv 2016, 6, 45931.
28 Babu G. A. ; Ravi G. ; Mahalingam T. ; Kumaresavanji M. ; Hayakawa Y. Dalton Trans 2015, 44, 4485.
29 Schwenke A. M. ; Hoeppener S. ; Schubert U. S. J.Mater. Chem. A 2015, 3, 23778.
30 Dom R. ; Subasri R. ; Hebalkar N. Y. ; Chary A. S. ; Borse P. H. RSC Adv 2012, 2, 12782.
31 Yuan Y. P. ; Yin L. S. ; Cao S. W. ; Gu L. N. ; Xu G. S. ; Du P. ; Chai H. ; Liao Y. S. ; Xue C. Green Chem 2014, 16, 4663.
32 Ding Y. ; Zhao W. ; Hu H. ; Ma B. C. Green Chem 2008, 10, 910.
33 Saha M. ; Das M. ; Nasani R. ; Choudhuri I. ; Yousufuddin M. ; Nayek H. P. ; Shaikh M. M. ; Pathak B. ; Mukhopadhyay S. Dalton Trans 2015, 44, 20154.
34 Choi J. ; Zhang S. H. ; Hill J. M. Catal. Sci. Technol 2012, 2, 179.
35 Ding Y. D. ; Song G. ; Zhu X. ; Chen R. ; Liao Q. RSC Adv 2015, 5, 30929.
36 Gu Z. H. ; Li K. Z. ; Qing S. ; Zhu X. ; Wei Y. G. ; Li Y. T. ; Wang H. RSC Adv 2014, 4, 47191.
37 Kim Y. I. ; Atherton S. J. ; Brigham E. S. ; Mallouk T. E. J.Phys. Chem 1993, 97, 11802.
38 Kannapu H. P. R. ; Neeli C. K. P. ; Rao K. S. R. ; Kalevaru V. N. ; Martin A. ; Burri D. R. Catal. Sci. Technol 2016, 6, 5494.
39 Lee S. W. ; Heo J. ; Gordon R. G. Nanoscale 2013, 5, 8940.
40 Zhou X. S. ; Jin B. ; Chen R. Q. ; Peng F. ; Fang Y. P. Mater. Res. Bull 2013, 48, 1447.
41 Xu H. ; Yan J. ; She X. J. ; Xu L. ; Xia J. X. ; Xu Y. G. ; Song Y. H. ; Huang L. Y. ; Li H. M. Nanoscale 2014, 6, 1406.
42 Li K. X. ; Yan L. S. ; Zeng Z. X. ; Luo S. L. ; Luo; X. B ; Liu X. M. ; Guo H. Q. ; Guo Y. H. Appl. Catal. B: Environ 2014, 156, 141.
43 Niu P. ; Yang Y. Q. ; Yu J. C. ; Liu G. ; Cheng H. M. Chem. Commun 2014, 50, 10837.
44 Ge L. ; Han C. Appl. Catal. B: Environ 2012, 117, 268.
45 Zhang Y. W. ; Liu J. H. ; Wu G. ; Chen W. Nanoscale 2012, 4, 5300.
46 Xu Y. ; Xu H. ; Wang L. ; Yan J. ; Li H. ; Song Y. ; Huang L. ; Cai G. Dalton Trans 2013, 42, 7604.
47 He B. L. ; Dong B. ; Li H. L. Electrochem. Commun 2007, 9, 425.
48 Huang Q. W. ; Tian S. Q. ; Zeng D. W. ; Wang X. X. ; Song W. L. ; Li Y. Y. ; Xiao W. ; Xie C. S. ACS Catal 2013, 3, 1477.
49 Teranishi M. ; Naya S. ; Tada H. J.Am. Chem. Soc 2010, 132, 7850.
50 Maurino V. ; Minero C. ; Mariella G. ; Pelizzetti E. Chem. Commun 2005, 36, 2627.
51 Liu G. ; Niu P. ; Yin L. C. ; Cheng H. M. J.Am. Chem. Soc 2012, 134, 9070.
52 Kim H. ; Kwon O. S. ; Kim S. ; Choi W. ; Kim J. H. Energy Environ. Sci 2016, 9, 1063.
[1] Chang HE,Jianhui HOU. Advances in Solution-Processed All-Small-Molecule Organic Solar Cells with Non-Fullerene Electron Acceptors[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1202-1210.
[2] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1492-1498.
[3] Bo-Cai CHEN,Yang SHEN,Jian-Hong WEI,Rui XIONG,Jing SHI. Research Progress on g-C3N4-Based Z-Scheme Photocatalytic System[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1371-1382.
[4] Wei TANG,Jing WANG. Enhanced Gas Sensing Mechanisms of Metal Oxide Heterojunction Gas Sensors[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1087-1104.
[5] Yan-Juan WANG,Jia-Yao SUN,Rui-Jiang FENG,Jian ZHANG. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 728-736.
[6] Xu-Qiang HAO,Hao YANG,Zhi-Liang JIN,Jing XU,Shi-Xiong MIN,Gong-Xuan Lü. Quantum Confinement Effect of Graphene-Like C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production fromWater Splitting[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2581-2592.
[7] Lin ZHU,Xin-Guo MA,Na LIU,Guo-Wang XU,Chu-Yun HUANG. Band Structure Modulation and Carrier Transport Process of g-C3N4 Doped with Alkali Metals[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2488-2494.
[8] QIAO Zhi, XIE Xin-Jian, XUE Jun-Ming, LIU Hui, LIANG Li-Min, HAO Qiu-Yan, LIU Cai-Chi. Optimization of Intrinsic Silicon Passivation Layers in nc-Si:H/c-Si Silicon Heterojunction Solar Cells[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1207-1214.
[9] LI Xian-Hua, ZHANG Lei-Gang, WANG Xue-Xue, YU Qing-Bo. PANI/g-C3N4 Composites Synthesized by Interfacial Polymerization and Their Thermal Stability and Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 764-770.
[10] YU Jian-Hua, FAN Min-Guang, LI Bin, DONG Li-Hui, ZHANG Fei-Yue. Preparation and Photocatalytic Activity of Mixed Phase TiO2-Graphene Composites[J]. Acta Phys. -Chim. Sin., 2015, 31(3): 519-526.
[11] WANG Li-Guo, ZHANG Xiao-Dan, WANG Feng-You, WANG Ning, JIANG Yuan-Jian, HAO Qiu-Yan, XU Sheng-Zhi, WEI Chang-Chun, ZHAO Ying. Influence of Different Pyramidal Structural Morphologies of Crystalline Silicon Wafers for Surface Passivation and Heterojunction Solar Cells[J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1758-1763.
[12] ZHANG Jian-Fang, WANG Yan, SHEN Tian-Kuo, SHU Xia, CUI Jie-Wu, CHEN Zhong, WU Yu-Cheng. Visible Light Photocatalytic Performance of Cu2O/TiO2 Nanotube Heterojunction Composites Prepared by Pulse Deposition[J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1535-1542.
[13] ZHAO Wei-Rong, SHI Qiao-Meng, LIU Ying. Performance, Deactivation and Regeneration of SnO2/TiO2 Nanotube Composite Photocatalysts[J]. Acta Phys. -Chim. Sin., 2014, 30(7): 1318-1324.
[14] TANG Wei, WANG Jing, YAO Peng-Jun, DU Hai-Ying, SUN Yan-Hui. Preparation, Characterization and Gas Sensing Mechanism of ZnO-Doped SnO2 Nanofibers[J]. Acta Phys. -Chim. Sin., 2014, 30(4): 781-788.
[15] ZHAO Wei-Rong, ZENG Wan-Yun, XI Hai-Ping, YU Xian-Xian. Photocatalytic Degradation of Gas-Phase Toluene over CuO Loaded BiVO4 Hollow Nanospheres under Visible-light Irradiation[J]. Acta Phys. -Chim. Sin., 2014, 30(4): 761-767.