Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (12): 2517-2522    DOI: 10.3866/PKU.WHXB201706162
ARTICLE     
AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries
Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU*()
Download: HTML     PDF(1288KB) Export: BibTeX | EndNote (RIS)      

Abstract  

AlN-Fe nanocomposite thin films with different AlN-Fe ratio were prepared by pulsed laser deposition (PLD).They were investigated as new anode materials for lithium ion batteries for the first time.The AlN-Fe nanocomposite films with an AlN/Fe ratio of 2:1 show the best electrochemical performance.They exhibit a specific capacity of 510 mA·g-1 after 100 cycles at a rate of 500 mA·g-1.Further, the study of the electrochemical reaction mechanism of the AlN-Fe nanocomposite thin films with lithium reveals that AlN decomposes during the discharge process to form the LiAl alloy and Li3N.During recharge, a part of Li3N reacts with Fe to form Fe3N, and the rest reacts with Al to form AlN.In subsequent cycles, all of Fe3N, AlN, and Al react with Li reversibly, contributing to the reversible charge-discharge processes and to the superior electrochemical performance of AlN-Fe nanocomposite thin films.Thus, this study provides a new perspective to design advanced electrode materials for lithium-ion batteries.



Key wordsLithium-ion battery      Anode material      Aluminium nitride      Thin film      Pulsed laser Deposition     
Received: 15 May 2017      Published: 16 June 2017
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(51502039)
Corresponding Authors: Yong-Ning ZHOU     E-mail: ynzhou@fudan.edu.cn
Cite this article:

Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706162     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2517

Fig 1 The first charge/discharge curves(a), cycling performance (b) and the first CV curves (c) of pure AlN thin film and AlN-Fe nanocomposite thin film with different AlN/Fe ratio (3:1, 2:1, 1:1, 1:2).
Fig 2 TEM images (a, b) and SAED pattern (c) of the as-deposited AlN-Fe (2:1) nanocomposite thin film.
our results (nm)
as-deposited
d(AlN)/nm
(P63mc)
d(Fe)/nm
(Im3m)
0.2470.247 (002)
0.2080.207 (110)
0.1570.157 (110)
0.1190.119 (211)
our results (nm)
discharged
d(Li3N)/nm
(P63/mmc)
d(Fe)/nm
(Im3m)
d(LiAl)/nm
(Fd3m)
0.2760.276 (101)
0.2070.207 (110)
0.1470.146 (331)
0.1190.119 (211)
0.0920.092 (444)
our results (nm)
recharged
d(AlN)/nm
(P63mc)
d(Al)/nm
(Fm3m)
d(Fe3N)/nm
(P6322)
0.2690.269 (100)
0.1990.202 (200)
0.1410.143 (220)
0.1190.119 (203)
0.1030.103 (222)
Table 1 d-spacing derived from SAED analysis of AlN-Fe (2:1) nanocomposite thin film.
Fig 3 Charge/discharge curves (a), CV curves (b) and rate performance of AlN-Fe (2:1) nanocomposite thin film.
Fig 4 Cycling performance of AlN-Fe (2:1) nanocomposite thin film at 1C rate.
Fig 5 HRTEM (a, b) images and SAED patterns (c, d) of AlN-Fe (2:1) nanocomposite thin film discharged to 0.01 V and recharged to 3.0 V, respectively.
1 Armand M. ; Tarascon J. M. Nature 2008, 451, 652.
2 Liu C. ; Xue F. ; Huang H. ; Yu X. ; Xie C. ; Shi M. ; Cao G. ; Jung Y. ; Dong X. Electrochim. Acta 2014, 129, 93.
3 Zhang W. J.Power Sources 2011, 196, 13.
4 Zhang H. ; Sun X. ; Zhang X. ; Lin H. ; Wang K. ; Ma Y. J.Alloy. Compd. 2015, 622, 783.
5 Jiang Y. ; Zhang D. ; Li Y. ; Yuan T. ; Bahlawane N. ; Liang C. ; Sun W. ; Lu Y. ; Yan M. Nano Energy 2014, 4, 23.
6 Chen G. ; Rodriguez R. ; Fei L. ; Xu Y. ; Deng S. ; Smirnov S. ; Luo H. J.Power Sources 2014, 259, 227.
7 Lai L. ; Zhu J. ; Li B. ; Zhen Y. ; Shen Z. ; Yan Q. ; Lin J. Electrochim. Acta 2014, 134, 28.
8 Mahmood N. ; Zhang C. ; Hou Y. Small 2013, 9, 1321.
9 Su L. ; Zhou Z. ; Shen P. J. Phys. Chem. C 2012, 116 (42), 23974.
10 An G. ; Ahn H. J.Power Sources 2014, 272, 828.
11 Wang Z. ; Wang Z. ; Liu W. ; Xiao W. ; Lou X. W. D. Energy Environ. Sci. 2013, 6 (1), 87.
12 Kundu D. ; Krumeich F. ; Fotedar R. ; Nesper R. J.Power Sources 2015, 278, 608.
13 Fu Z. W. ; Wang Y. ; Yue X. L. ; Zhao A. S. ; Qin Q. Z. J.Phys. Chem. B 2004, 108, 2236.
14 Sun Q. ; Fu Z. Electrochem. Solid-State Lett. 2007, 10 (8), A189.
15 de Guzman R. C. ; Yang J. ; Cheng M. M. ; Salley S. O. ; Ng K. Y. S. J. Mater. Chem. A 2014, 2 (35), 14577.
16 Pereira N. ; Dupont L. ; Tarascon J. M. ; Klein L. C. ; Amatucci G. G. J.Electrochem. Soc. 2003, 150 (9), A1273.
17 Pereira N. ; Klein L. C. ; Amatucci G. G. J. Electrochem. Soc. 2002, 149 (3), A262.
18 Lu X. ; Wang G. ; Zhai T. ; Yu M. ; Xie S. ; Ling Y. ; Liang C. ; Tong Y. ; Li Y. Nano Lett. 2012, 12 (10), 5376.
19 Balogun M. ; Zeng Y. ; Qiu W. ; Luo Y. ; Onasanya A. ; Olaniyi T. K. ; Tong Y. J. Mater. Chem. A 2016, 4 (25), 9844.
20 Nandi D. K. ; Sen U. K. ; Sinha S. ; Dhara A. ; Mitra S. ; Sarkar S. K. Phys. Chem. Chem. Phys. 2015, 17 (26), 17445.
21 Dong S. ; Chen X. ; Gu L. ; Zhou X. ; Xu H. ; Wang H. ; Liu Z. ; Han P. ; Yao J. ; Wang L. ; Cui G. ; Chen L. ACS Appl. Mater. Inter. 2011, 3 (1), 93.
22 Caicedo J. C. ; Zambrano G. ; Aperador W. ; Escobar-Alarcon L. ; Camps E. Appl. Surf. Sci. 2011, 258 (1), 312.
23 Zhou Y. N. ; Liu C. ; Chen H. J. ; Zhang L. ; Li W. J. ; Fu Z. W. Electrochim. Acta 2011, 56, 5532.
24 Balogun M. ; Wu Z. ; Luo Y. ; Qiu W. ; Fan X. ; Long B. ; Huang M. ; Liu P. ; Tong Y. J.Power Sources 2016, 308, 7.
25 Balogun M. ; Qiu W. ; Jian J. ; Huang Y. ; Luo Y. ; Yang H. ; Liang C. ; Lu X. ; Tong Y. ACS Appl. Mater. Inter. 2015, 7 (41), 23205.
26 Huang H. ; Gao S. ; Wu A. ; Cheng K. ; Li X. ; Gao X. ; Zhao J. ; Dong X. ; Cao G. Nano Energy 2017, 31, 74.
27 Anaraki-Ardakani H. Phys. Lett. A. 2017, 381 (11), 1041.
28 Zhou Y. N. ; Wu C. L. ; Zhang H. ; Wu X. J. ; Fu Z. W. Acta Phys. -Chim. Sin. 2006, 22, 1111.
28 周永宁; 吴长亮; 张华; 吴晓京; 傅正文. 物理化学学报, 2006, 22, 111.
[1] ZHAO Mingyu, ZHU Lin, FU Bowen, JIANG Suhua, ZHOU Yongning, SONG Yun. Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 193-199.
[2] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[3] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[4] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[5] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1533-1547.
[6] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428.
[7] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[8] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[9] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 845-852.
[10] Qing-Hua YI,Jie ZHAO,Yan-Hui LOU,Gui-Fu ZOU,Zhong-Fan LIU. Design and Growth of High-Quality Multifunctional Thin Films by Polymer-Assisted Deposition[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 314-328.
[11] Hai-Fei WU,Yao CHEN,Shan-Hu XU,Yong-Hong YAN,Jian-Xiao SI,Yong-Sheng TAN. Molecular Beam Epitaxy Growth and Surface Structural Characteristics of PbTe(111) Thin Film[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 419-425.
[12] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[13] Xiu-Mei WAN,Li WANG,Xiao-Qing GONG,Dan-Feng LU,Zhi-Mei QI. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2523-2531.
[14] Bo PENG,Yao-Lin XU,Fokko M. MULDER. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2127-2132.
[15] Er-Long SONG,Lin-Feng LAN,Zhen-Guo LIN,Sheng SUN,Wei SONG,Yu-Zhi LI,Pei-Xiong GAO,Peng ZHANG,Jun-Biao PENG. Preparation of Indium-Zinc-Oxide Thin Film Transistors by Hot-Pressing Sintering Target[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2092-2098.