Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (12): 2463-2471    DOI: 10.3866/PKU.WHXB201706193
ARTICLE     
Theoretical and Experimental Studies on the Crystal Morphology of Transition-Metal Carbohydrazide Perchlorate Complexes
Li YANG*(),Guo-Yng ZHANG,Ying LIU,Tong-Lai ZHANG
Download: HTML     PDF(2435KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The crystal growth morphologies of manganese carbohydrazide perchlorate, iron carbohydrazide perchlorate, cobalt carbohydrazide perchlorate, nickel carbohydrazide perchlorate and cadmium carbohydrazide perchlorate were investigated by Bravais-Freidel-Donnay-Harker (BFDH) and growth morphology method. The results show that the crystal morphologies of them are close to oblong block shapes, and the growth on (101)and (002) faces are the most important growth direction because of the minimum relative growth rates. According to the cleaved main growth faces, it can be inferred that crystal-control reagents with the active hydrogen atoms in the functional groups can effectively control the crystal morphology for them. In addition, the experimental morphologies of them were synthesized and observed by a coldfield-emission scanning electron microscope. It is concluded that AE model are nearer to experimental morphology, and more reliable to predict crystal morphologies for carbohydrazide perchlorates.



Key wordsCrystal morphology      Prediction      Attachment energy      Growth rate     
Received: 17 May 2017      Published: 19 June 2017
MSC2000:  O641  
Fund:  bythe State Key Laboratory of Explosion Science and Technology, China(YB2016-17);the National Natural Science Foundation of China(11672040)
Corresponding Authors: Li YANG     E-mail: yanglibit@bit.edu.cn
Cite this article:

Li YANG,Guo-Yng ZHANG,Ying LIU,Tong-Lai ZHANG. Theoretical and Experimental Studies on the Crystal Morphology of Transition-Metal Carbohydrazide Perchlorate Complexes. Acta Phys. -Chim. Sin., 2017, 33(12): 2463-2471.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706193     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2463

 
ComplexabcαβγV
[Mn(CHZ)3](ClO4)2Exp.10.1978.59321.41290.00100.86090.001842.6
Calc.10.4098.88822.12090.00103.48890.00-
[Fe(CHZ)3](ClO4)2Exp.10.0668.45821.19490.00100.69390.001773.1
Calc.10.5999.08927.45490.00100.53690.00-
[Co(CHZ)3](ClO4)2Exp.10.0498.53521.43090.00101.17090.001803.2
Calc.11.6639.37522.46590.00107.16690.00-
[Ni(CHZ)3](ClO4)2Exp.9.9748.55721.43390.00101.04090.001795.4
Calc.10.6599.33322.41390.00118.00090.00-
[Cd(CHZ)3](ClO4)2Exp.10.2818.61721.36090.00100.53090.001860.4
Calc.10.56710.12122.35990.00107.35090.00-
 
 
 
 
 
 
ComplexFaceBDFH/%AE/%Total facet areaEatt/(kcal·mol-1)Rij
[Mn(CHZ)3](ClO4)2(101)36.30844.74210643.860-23.0871.00
(002)27.23821.4725108.189-36.5151.58
(103)4.0783.206762.661-41.4551.80
(011)28.51530.4727249.124-42.2091.83
(111)2.7950.10825.754-49.4862.14
(112)1.066----
Sum10010023789.588-192.752
[Fe(CHZ)3](ClO4)2(002)30.63627.8018428.415-33.7601.00
(101)29.33627.8928456.229-35.7511.06
(011)30.59829.9159069.522-46.4861.38
(103)6.25610.9623323.425-41.0061.21
(111)1.6452.956896.303-55.1481.63
(112)1.5280.473143.506-57.7371.71
Sum10010030317.401-269.888
[Co(CHZ)3](ClO4)2(101)36.04834.5678644.242-27.3481.00
(002)28.67526.8476713.906-32.6431.19
(011)31.19622.6435662.429-45.9831.68
(101)0.9706.1461537.002-37.7731.38
(103)-0.36490.991-41.7321.53
(111)2.8519.1232281.353-46.4251.70
(110)0.260----
(112)-0.31077.645-51.8481.90
Sum10010025007.569-283.752
[Ni(CHZ)3](ClO4)2(101)36.03130.3757247.670-27.8281.00
(002)29.96019.6574690.440-33.2881.20
(011)30.71527.5706578.443-44.0851.58
(103)0.5285.6891357.419-38.6741.39
(101)-12.0832883.167-33.2961.20
(111)2.6354.2871022.946-48.2301.73
(112)0.1300.11627.720-51.7361.86
(110)-0.22353.194-50.6641.82
Sum10010023860.999-327.801
[Cd(CHZ)3](ClO4)2(002)25.07033.974786.511-7.9481.00
(101)24.05523.097534.700-10.6251.34
(011)34.22126.635616.606-13.1991.66
(103)11.6849.879228.703-12.1241.53
(112)4.2232.65961.565-16.0502.02
(111)0.7463.75086.824-15.4831.95
(113)-0.0050.116-16.6722.10
Sum1001002315.025-92.101
 
 
 
 
 
 
 
 
 
 
1 Duan X. ; Wei C. ; Liu Y. ; Pei C. J. Hazard. Mater. 2010, 174
2 Czerski H. ; Proud W. J. Appl. Phys. 2007, 102, 113515.
3 Taylor G. ; Thomas A. T. J. Cryst. Growth 1968, 3, 391.
4 Baer M. R. Thermochim. Acta 2002, 384, 351.
5 Fabbiani F. P. ; Pulham C. R. Chem. Soc. Rev. 2006, 35, 932.
6 Kr ber H. ; Teipel U. Propell. Explos. Pyrot. 2008, 33, 33.
7 Kishore K. Sunitha M. R. AIAA J. 1979, 17, 1118.
8 Akiyoshi M. ; Nakamura H. ; Hara Y. Propell. Explos. Pyrot. 2000, 25, 41.
9 Schoyer H. F. R. ; Welland-Veltmans W. H. M. ; Louwers J. ; Korting P. A. O. G. ; vander Heijden A. E. D. M. ; Keizers H. L. J. ; vanden Berg R. P. J. Propul. Power 2002, 18, 138.
10 Dutta R. L. ; Sarkar A. K. J. Inorg. Nucl. Chem. 1981, 43, 2557.
11 Mansour A. K. ; Eid M. M. ; Khalil N. S. Molecules 2003, 8, 744.
12 Akiyoshi M. ; Hirata N. ; Nakamura H. ; Hara Y. J. Jap. Explos. Soc. 1996, 57, 238.
13 Bustos C. ; Burckhardt O. ; Schrebler R. ; Carrillo D. ; Arif A. ; Cowley A. ; Nunn C. Inorg. Chem. 1990, 29, 3996.
14 Bushuyev O. S. ; Arguelles F. A. ; Brown P. ; Weeks B. L. ; Hope-Weeks L. J. ; Eur J. Inorg. Chem. 2011, 4622
15 Rahn P. C. ; Siggia S. Anal. Chem. 1973, 45, 2336.
16 Akiyoshi M. ; Hirata N. ; Nakamura H. ; Hara Y. J. Jap. Explos. Soc. 1997, 58, 68.
17 Akiyoshi M. ; Nakamura H. ; Hara Y. Propell. Explos. Pyrot. 2000, 25, 224.
18 Talawar M. B. ; Agrawal A. P. ; Chhabra J. S. ; Asthana S. N. J. Hazard. Mater. 2004, 113, 57.
19 Qi S. Y. ; Li Z. M. ; Zhang T. L. ; Zhou Z. N. ; Yang L. ; Zhang J. G. ; Qiao X.J. ; Yu K. B. Acta Chim. Sin. 2011, 69, 987.
20 Mi Z.H. ; Chen S. T. ; Jing Z. ; Yang L. ; Zhang T. L. ; Eur J. Inorg. Chem. 2016, 24, 3978.
21 Mi Z.H. ; Zhang T. L. ; Zhang J. G. ; Zhou Z. N. ; Yang L. RSC Adv. 2016, 6, 46828.
22 Joas M. ; Klapotke T. M. Propell. Explos. Pyrot. 2015, 40, 246.
23 Casewit C. J. ; Colwell K. S. ; Rappe A. K. J. Am. Chem. Soc. 1992, 114, 10035.
24 Casewit C. J. ; Colwell K. S. ; Rappe A. K. J. Am. Chem. Soc. 1992, 114, 10046.
25 Rappe A. K. ; Colwell K. S. ; Casewit C. J. Inorg. Chem. 1993, 32, 3438.
26 Kern A. ; Nather C. ; Studt F. ; Tuczek F. Inorg. Chem. 2004, 43, 5003.
27 Bureekaew S. ; Amirjalayer S. ; Tafipolsky M. ; Spickermann C. ; Roy T. K. ; Schmid R. Phys. Status Solidi B 2013, 250, 1128.
28 Ogawa T. ; Kurita N. ; Sekino H. ; Kitao O. ; Tanaka S. Chem. Phys. Lett. 2003, 374, 271.
29 Rappe A. K. ; Casewit C. J. ; Colwell K. S. ; Goddard W. A. ; Skiff W. M. J. Am. Chem. Soc. 1992, 114, 10024.
30 Fischer T. H. ; Almlof J. J. Phys. Chem. 1992, 96, 9768.
31 Perdew J. P. ; Chevary J. ; Vosko S. ; Jackson K. A. ; Pederson M. R. ; Singh D. ; Fiolhais C. Phys. Rev.B 1992, 46, 6671.
32 Perdew J. P. ; Wang Y. Phys. Rev. B 1992, 46, 12947.
33 Docherty R. ; Clydesdale G. ; Roberts K. J. ; Bennema P. J. Phys. D: Appl. Phys. 1991, 24, 89.
34 Hartman P. ; Perdok W. G. I. Acta Crystallogr. 1955, 8, 49.
35 Bennema P. ; Meekes H. ; Boerrigter S. ; Cuppen H. ; Deij M. ; Van Eupen J. ; Verwer P. ; Vlieg E. Cryst. Growth Des. 2004, 4, 905.
36 Berkovitch-Yellin Z. J. Am. Chem. Soc. 1985, 107, 8239.
37 Kawasaki T. ; Tanaka H. P. Natl. Acad. Sci. 2010, 107, 14036.
38 Chen J. X. ; Wang J. K. ; Zhang Y. ; Wu H. ; Chen W. ; Guo Z. C. J. Cryst. Growth 2004, 265, 266.
39 Givand J. C. ; Rousseau R. W. ; Ludovice P. J. J. Cryst. Growth 1998, 194, 228.
40 Lv C. H. ; Zhang T. L. ; Ren L. B. ; Yu K. B. ; Lu Z. ; Cai R. J. ; Chin J. Explos. Propell. 2000, 23, 31.
[1] Ulises OROZCO-VALENCIA,L. GÁZQUEZ José,Alberto VELA. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 692-698.
[2] . Investigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1140-1148.
[3] Yu-Ling DENG,Lu YU,Qiang HUANG. A Multi-Target Docking System of Human Kinome[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2355-2363.
[4] ZHANG Xiang-Xiong, CHEN Min. Influence of Homogeneous Electric Field on the Structure and Growth of Ice[J]. Acta Phys. -Chim. Sin., 2014, 30(7): 1208-1214.
[5] LI Yong, ZHOU Wei, DAI Zhi-Jun, CHEN Yuan, WANG Zhi-Ming, YUAN Zhe-Ming. Predicting the Protein Folding Rate Based on Sequence Feature Screening and Support Vector Regression[J]. Acta Phys. -Chim. Sin., 2014, 30(6): 1091-1098.
[6] ZHU Zhi-Chen, WANG Qiang, JIA Qing-Zhu, XIA Shu-Qian, MA Pei-Sheng. Structure-Property Relationship for the Pharmacological and Toxicological Activity of Heterocyclic Compounds[J]. Acta Phys. -Chim. Sin., 2014, 30(6): 1086-1090.
[7] LU Jun-Ran, LI Yi, YU Ji-Hong, LU Ying. Predicting Hypothetical Zeolite Frameworks Using Program FraGen[J]. Acta Phys. -Chim. Sin., 2013, 29(08): 1661-1665.
[8] ZHU Zhi-Chen, WANG Qiang, JIA Qing-Zhu, TANG Hong-Mei, MA Pei-Sheng. Quantitative Structure-Property Relationship of the Critical Micelle Concentration of Different Classes of Surfactants[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 30-34.
[9] SHI Jing-Jie, CHEN Li-Ping, CHEN Wang-Hua, SHI Ning, YANG Hui, XU Wei. Prediction of the Thermal Conductivity of Organic Compounds Using Heuristic and Support Vector Machine Methods[J]. Acta Phys. -Chim. Sin., 2012, 28(12): 2790-2796.
[10] WANG Pan-Wen, GONG Xin-Qi, LI Chun-Hua, CHEN Wei-Zu, WANG Cun-Xin. Division of Protein Surface Patches and Its Application in Protein Binding Site Prediction[J]. Acta Phys. -Chim. Sin., 2012, 28(11): 2729-2734.
[11] ZHANG Chang-Sheng, LAI Lu-Hua. Protein-Protein Interaction: Prediction, Design, and Modulation[J]. Acta Phys. -Chim. Sin., 2012, 28(10): 2363-2380.
[12] HUANG Yang-Yu, YANG Xiu-Feng, LI Hao-Tian, JI Xiao-Feng, CHENG Hong-Li, ZHAO Yun-Jie, GUO Da-Chuan, LI Lin, LIU Shi-Yong. Protein-RNA Interaction Interface Prediction and Design[J]. Acta Phys. -Chim. Sin., 2012, 28(10): 2390-2400.
[13] TIAN Ran, LIU Zhen-Ming, JIN Hong-Wei, ZHANG Liang-Ren, LIN Wen-Han. Target Identification of Isomalabaricane Terpenes Extracted from Sponges[J]. Acta Phys. -Chim. Sin., 2011, 27(05): 1214-1222.
[14] TAO Wan-Jun, LI Chen-Wen, YIN Zong-Ning. Design of Self-Emulsifying System Based on QSAR[J]. Acta Phys. -Chim. Sin., 2011, 27(01): 71-77.
[15] CHEN Yuan, YUAN Zhe-Ming, ZHOU Wei, XIONG Xing-Yao. A Novel QSAR Model Based on Geostatistics and Support Vector Regression[J]. Acta Phys. -Chim. Sin., 2009, 25(08): 1587-1592.