Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (12): 2472-2479    DOI: 10.3866/PKU.WHXB201706222
ARTICLE     
ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording
Qing-Kang LIU*(),Wen-Ping SONG*(),Qi-Tao HUANG,Guang-Yu ZHANG,Zhen-Xiu HOU
Download: HTML     PDF(1364KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Heat-assisted magnetic recording (HAMR) is one of the promising ways to extend the magnetic recording area density to 1 Tb·in-2 in hard disk drives (HDDs).High temperature induced by laser heating can cause carbon overcoat (COC) oxidation.Reactive molecular dynamics (MD) simulations are performed to investigate the oxidation process of silicon-doped amorphous carbon (a-C:Si) films for HAMR application.The atomic details of the structure evolution and oxidation process are investigated, and, the oxidation mechanism of the a-C:Si film is clarified.The effect of the duration of laser irradiation on the oxidation of the a-C:Si film is investigated.The oxidation occurs during heating and the beginning of cooling process.Both volume expansion during heating process and cluster of carbon atoms during cooling process increase the rate of sp2 carbon.Because of the decrease in the amount of unsaturated silicon atoms and low diffusion coefficient of atomic oxygen, the oxidation rate of the a-C:Si film decreases with laser irradiation cycles.The molecular oxygen is the oxidant due to surface defect of a-C:Si film.The atomic strains break the O-O bonds in Si-O-O-Si linkages and rearrange the surface oxide layers, and process the oxidation of the a-C:Si film.



Key wordsHeat-assisted magnetic recording      Silicon-doped amorphous carbon      Oxidation      ReaxFF      Molecular dynamics simulations     
Received: 03 May 2017      Published: 22 June 2017
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(51405103);China Post-doctoral Science Foundation(2014M551230);China Post-doctoral Science Foundation(2015T80335)
Corresponding Authors: Qing-Kang LIU,Wen-Ping SONG     E-mail: qingkangliu86@gmail.com;songwenping@hit.edu.cn
Cite this article:

Qing-Kang LIU,Wen-Ping SONG,Qi-Tao HUANG,Guang-Yu ZHANG,Zhen-Xiu HOU. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording. Acta Phys. -Chim. Sin., 2017, 33(12): 2472-2479.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706222     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2472

 
 
 
 
 
 
Cluster sizeNBefore-300KN800KNAfter-300K
116111398
2321520
3101811
4653
5232
6541
7511
8421
9320
10300
11200
12300
14001
15110
18100
25200
43100
58100
60010
98010
122010
178100
271010
625001
 
 
 
 
1 Kryder M. H. ; Gage E. C. ; Mcdaniel T. W. ; Challener W. A. ; Rottmayer R. E. ; Ju G. P. ; Hsia Y. T. ; Erden M. F. P. IEEE 2008, 96 (11), 1810.
2 Weller D. ; Moser A. IEEE Trans. Magn. 1999, 35 (6), 4423.
3 Ma Y. S. ; Chen X. Y. ; Liu B. Tribol. Lett. 2012, 48 (3), 337.
4 Pathem B. K. ; Guo X. C. ; Rose F. ; Marchon B. IEEE Trans. Magn. 2013, 49 (7), 3721.
5 Liu Q. K. ; Li L. Q. ; Zhang H. T. ; Huang Q. T. ; Zhang G. Y. ; Hou Z. X. IEEE Trans. Magn. 2017, 53 (3), 3301007.
6 Jones P. M. ; Ahner J. ; Platt C. L. ; Tang H. ; Hohlfeld J. IEEE Trans. Magn. 2014, 50 (3), 144.
7 Wang N. ; Komvopoulos K. IEEE Trans. Magn. 2011, 47 (9), 2277.
8 Ma Y. S. ; Ji R. ; Man Y. J. ; Shakerzadeh M. ; Zheng R. Y. ; Seet H. L. ; Hu J. F. IEEE Trans. Magn. 2016, 52 (2), 3300606.
9 Wu W. J. ; Hon M. H. Surf. Coat. Technol. 1999, 111 (2-3), 134.
10 Khriachtchev L. ; Vainonen-Ahlgren E. ; Sajavaara T. ; Ahlgren T. ; Keinonen J. J. Appl. Phys. 2000, 88 (4), 2118.
11 Er K. H. ; So M. G. J. Ceram. Process. Res. 2013, 14 (1), 134.
12 Hatada R. ; Baba K. ; Flege S. ; Ensinger W. Surf. Coat. Technol. 2016, 305, 93.
13 Kim J. W. ; Hong B. X. ; Lim D. C. ; Lee D. B. Surf. Coat. Technol. 2005, 193 (1), 288.
14 Newsome D. A. ; Sengupta D. ; Foroutan H. ; Russo M. F. ; van Duin A. C. T. J. Phys. Chem. C 2012, 116 (30), 16111.
15 Newsome D. A. ; Sengupta D. ; van Duin A. C. J. Phys. Chem. C 2013, 117 (10), 5014.
16 Sun Y. ; Liu Y. J. ; Xu F. Chin. Phys. B 2015, 24 (9), 096203.
17 Shen X. ; Tuttle B. R. ; Pantelides S. T. J. Appl. Phys. 2013, 114, 033522.
18 van Duin A. C. T. ; Dasgupta S. ; Lorant F. ; Goddard W. A. J. Phys. Chem. A 2001, 105 (41), 9396.
19 Chenoweth K. ; van Duin A. C. T. ; Goddard W. A. J. Phys. Chem. A 2008, 112 (5), 1040.
20 van Duin A. C. T. ; Strachan A. ; Stewman S. ; Zhang Q. S. ; Xu X. ; Goddard W. A. J. Phys. Chem. A 2003, 107 (19), 3803.
21 Liu X. L. ; Li X. X. ; Han S. ; Qiao X. J. ; Zhong B. J. ; Guo L. Acta Phys. -Chim. Sin. 2016, 32 (6), 1424.
21 刘晓龙; 李晓霞; 韩嵩; 乔显杰; 钟北京; 郭力. 物理化学学报, 2016, 32 (6), 1424.
22 Diao Z. J. ; Zhao Y. M. ; Chen B. ; Duan C. L. Acta Chim. Sin. 2012, 70, 2037.
22 刁智俊; 赵跃民; 陈博; 段晨龙. 化学学报, 2012, 70, 2037.
23 Wang Z. M. ; Zheng M. ; Xie Y. B. ; Li X. X. ; Zeng M. ; Cao H. B. ; Guo L. Acta Phys. -Chim. Sin. 2017, 33 (7), 1399.
23 王子民; 郑默; 谢勇冰; 李晓霞; 曾鸣; 曹宏斌; 郭力. 物理化学学报, 2017, 33 (7), 1399.
24 Yang Z. ; He Y. Acta Phys. -Chim. Sin. 2016, 32 (4), 921.
24 杨镇; 何远航. 物理化学学报, 2016, 32 (4), 921.
25 Li L. Q. ; Xu M. ; Song W. P. ; Ovcharenko A. ; Zhang G. Y. ; Jia D. Appl. Surf. Sci. 2013, 286, 287.
26 Stukowski A. Model. Simul. Mater. Sci. Eng. 2010, 18, 1.
27 Bai L. C. ; Srikanth N. ; Wu H. ; Liu Y. ; Liu B. ; Zh ou ; K. J. Non-Cryst. Solids. 2016, 443 (8)
28 Namilae S. ; Radhakrishnan B. ; Sarma G. Compos. Sci. Technol. 2007, 67, 1302.
29 Shimizu F. ; Ogata S. ; Li J. Mater. Trans. 2007, 48 (11), 2923.
30 Tang C. ; Wong C. H. Intermetallics 2016, 70, 61.
31 Kageshima H. ; Shiraishi K. Phys. Rev. Lett. 1998, 81 (26), 5936.
32 Kelires P. C. Phys. Rev. B 2000, 62 (23), 15686.
33 Li Y. Y. ; Xiao W. ; Li H. L. J. Nucl. Mater. 2016, 480, 75.
34 Pamungkas M. A. ; Joe M. ; Kim B. H. ; Lee K. R. J. Appl. Phys. 2011, 110, 053513.
35 Kao D. B. ; Mcvittie J. P. ; Nix W. D. ; Saraswat C. K. IEEE Trans. Electron Devices 1988, 35 (1), 25.
36 Liu H. I. ; Biegelsen D. K. ; Johnson N. M. ; Ponce F. A. ; Pease R. F. W. J. Vac. Sci. Technol. B 1993, 11 (6), 2532.
37 Khalilov U. ; Pourtois G. ; Bogaerts A. ; van Duin A. C. T. ; Neytsa E. C. Nanoscale 2013, 5, 719.
[1] Mingming YUAN,Difan LI,Xiuge ZHAO,Wenbao MA,Kang KONG,Wenxiu NI,Qingwen GU,Zhenshan HOU. Selective Oxidation of Glycerol with Hydrogen Peroxide Using Silica-Encapsulated Heteropolyacid Catalyst[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 886-895.
[2] Chunxing REN,Xiaoxia LI,Li GUO. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1151-1162.
[3] Zhi-Dan FU,Jia-Xin ZANG,Qing YE,Shui-Yuan CHENG,Tian-Fang KANG. Cu-Doped Octahedral Layered Birnessites Catalysts for the Catalytic Oxidation of CO and Ethyl Acetate[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1855-1864.
[4] Ling-Xiao HU,Lian WANG,Fei WANG,Chang-Bin ZHANG,Hong HE. Catalytic Oxidation of o-Xylene over Pd/γ-Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1681-1688.
[5] Fang-Fang ZHENG,Qian LI,Hong ZHANG,Wei-Zheng WENG,Xiao-Dong YI,Yan-Ping ZHENG,Chuan-Jing HUANG,Hui-Lin WAN. Preparation and Characterization of Sinter-Resistant Rh-Sm2O3/SiO2 Catalyst and Its Performance for Partial Oxidation of Methane to Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1689-1698.
[6] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[7] Xue-Hui HUANG,Xiao-Hui SHANG,Peng-Ju NIU. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1462-1473.
[8] Jing-Wei LIU,Na-Ting YANG,Yan ZHU. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1453-1461.
[9] Zi-Min WANG,Mo ZHENG,Yong-Bing XIE,Xiao-Xia LI,Ming ZENG,Hong-Bin CAO,Li GUO. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1399-1410.
[10] . Investigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1140-1148.
[11] . Effects of CeO2 Addition on Improved NO Oxidation Activities of Pt/SiO2-Al2O3 Diesel Oxidation Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1242-1252.
[12] Ting-Ting ZHOU,Hua-Jie SONG,Feng-Lei HUANG. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 949-959.
[13] Li-Juan PENG,Qian YAO,Jing-Bo WANG,Ze-Rong LI,Quan ZHU,Xiang-Yuan LI. Pyrolysis of RDX and Its Derivatives via Reactive Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 745-754.
[14] Ming-Hui HUANG,Bi-Yao JIN,Lian-Hua ZHAO,Shi-Gang SUN. Preparation and Characterization of Pt-Ni-SnO2/C for Ethanol Oxidation Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 563-572.
[15] Ming CHEN,Lin WANG,Tian TAN,Xue-Cai LUO,Zai ZHENG,Ruo-Chun YIN,Ji-Hu SU,Jiang-Feng DU. Radical Mechanism of Laccase-Catalyzed Catechol Ring-Opening[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 620-626.