Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (12): 2472-2479    DOI: 10.3866/PKU.WHXB201706222
ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording
LIU Qing-Kang, SONG Wen-Ping, HUANG Qi-Tao, ZHANG Guang-Yu, HOU Zhen-Xiu
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
Download:   PDF(1364KB) Export: BibTeX | EndNote (RIS)      


Heat-assisted magnetic recording (HAMR) is one of the promising ways to extend the magnetic recording area density to 1 Tb·in-2 in hard disk drives (HDDs).High temperature induced by laser heating can cause carbon overcoat (COC) oxidation.Reactive molecular dynamics (MD) simulations are performed to investigate the oxidation process of silicon-doped amorphous carbon (a-C:Si) films for HAMR application.The atomic details of the structure evolution and oxidation process are investigated,and,the oxidation mechanism of the a-C:Si film is clarified.The effect of the duration of laser irradiation on the oxidation of the a-C:Si film is investigated.The oxidation occurs during heating and the beginning of cooling process.Both volume expansion during heating process and cluster of carbon atoms during cooling process increase the rate of sp2 carbon.Because of the decrease in the amount of unsaturated silicon atoms and low diffusion coefficient of atomic oxygen,the oxidation rate of the a-C:Si film decreases with laser irradiation cycles.The molecular oxygen is the oxidant due to surface defect of a-C:Si film.The atomic strains break the O-O bonds in Si-O-O-Si linkages and rearrange the surface oxide layers,and process the oxidation of the a-C:Si film.

Key wordsHeat-assisted magnetic recording      Silicon-doped amorphous carbon      Oxidation      ReaxFF      Molecular dynamics simulations     
Received: 03 May 2017      Published: 22 June 2017

The project was supported by the National Natural Science Foundation of China (51405103), China Post-doctoral Science Foundation (2014M551230, 2015T80335)

Corresponding Authors: LIU Qing-Kang, SONG Wen-Ping     E-mail:;
Cite this article:

LIU Qing-Kang, SONG Wen-Ping, HUANG Qi-Tao, ZHANG Guang-Yu, HOU Zhen-Xiu. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording. Acta Phys. -Chim. Sin., 2017, 33(12): 2472-2479.

URL:     OR

(1) Kryder, M. H.; Gage, E. C.; Mcdaniel, T. W.; Challener, W. A.; Rottmayer, R. E.; Ju, G. P.; Hsia, Y. T.; Erden, M. F. P. IEEE 2008, 96 (11), 1810. doi: 10.1109/JPROC.2008.2004315
(2) Weller, D.; Moser, A. IEEE Trans. Magn. 1999, 35 (6), 4423. doi: 10.1109/20.809134
(3) Ma, Y. S.; Chen, X. Y.; Liu, B. Tribol. Lett. 2012, 48 (3), 337. doi: 10.1007/s11249-012-0032-7
(4) Pathem, B. K.; Guo, X. C.; Rose, F.; Marchon, B. IEEE Trans. Magn. 2013, 49 (7), 3721. doi: 10.1109/TMAG.2012.2236645
(5) Liu, Q. K.; Li, L. Q.; Zhang, H. T.; Huang, Q. T.; Zhang, G. Y.; Hou, Z. X. IEEE Trans. Magn. 2017, 53 (3), 3301007. doi: 10.1109/TMAG.2016.2626344
(6) Jones, P. M.; Ahner, J.; Platt, C. L.; Tang, H.; Hohlfeld, J. IEEE Trans. Magn. 2014, 50 (3), 144. doi: 10.1109/TMAG.2013.2285599
(7) Wang, N.; Komvopoulos, K. IEEE Trans. Magn. 2011, 47 (9), 2277. doi: 10.1109/TMAG.2011.2139221
(8) Ma, Y. S.; Ji, R.; Man, Y. J.; Shakerzadeh, M.; Zheng, R. Y.; Seet, H. L.; Hu, J. F. IEEE Trans. Magn. 2016, 52 (2), 3300606. doi: 10.1109/TMAG.2015.2494857
(9) Wu, W. J.; Hon, M. H. Surf. Coat. Technol. 1999, 111 (2–3), 134. doi: 10.1016/S0257-8972(98)00719-1
(10) Khriachtchev, L.; Vainonen-Ahlgren, E.; Sajavaara, T.; Ahlgren, T.; Keinonen, J. J. Appl. Phys. 2000, 88 (4), 2118. doi: 10.1063/1.1305831
(11) Er, K. H.; So, M. G. J. Ceram. Process. Res. 2013, 14 (1), 134.
(12) Hatada, R.; Baba, K.; Flege, S.; Ensinger, W. Surf. Coat. Technol. 2016, 305, 93. doi: 10.1016/j.surfcoat.2016.08.011
(13) Kim, J. W.; Hong, B. X.; Lim, D. C.; Lee, D. B. Surf. Coat. Technol. 2005, 193 (1), 288. doi: 10.1016/j.surfcoat.2004.08.168
(14) Newsome, D. A.; Sengupta, D.; Foroutan, H.; Russo, M. F.; van Duin, A. C. T. J. Phys. Chem. C 2012, 116 (30), 16111. doi: 10.1021/jp306391p
(15) Newsome, D. A.; Sengupta, D.; van Duin, A. C. J. Phys. Chem. C 2013, 117 (10), 5014. doi: 10.1021/jp307680t
(16) Sun, Y.; Liu, Y. J.; Xu, F. Chin. Phys. B 2015, 24 (9), 096203. doi: 10.1088/1674-1056/24/9/096203
(17) Shen, X.; Tuttle, B. R.; Pantelides, S. T. J. Appl. Phys. 2013, 114, 033522. doi: 10.1063/1.4815962
(18) van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A. J. Phys. Chem. A 2001, 105 (41), 9396. doi: 10.1021/jp004368u
(19) Chenoweth, K.; van Duin, A. C. T.; Goddard, W. A. J. Phys. Chem. A 2008, 112 (5), 1040. doi: 10.1021/jp709896w
(20) van Duin, A. C. T.; Strachan, A.; Stewman, S.; Zhang, Q. S.; Xu, X.; Goddard, W. A. J. Phys. Chem. A 2003, 107 (19), 3803. doi: 10.1021/jp0276303
(21) Liu, X. L.; Li, X. X.; Han, S.; Qiao, X. J.; Zhong, B. J.; Guo, L. Acta Phys. -Chim. Sin. 2016, 32 (6), 1424. [刘晓龙, 李晓霞, 韩 嵩, 乔显杰, 钟北京, 郭 力. 物理化学学报, 2016, 32 (6), 1424.] doi: 10.3866/PKU.WHXB201603233
(22) Diao, Z. J.; Zhao, Y. M.; Chen, B.; Duan, C. L. Acta Chim. Sin. 2012, 70, 2037. [刁智俊, 赵跃民, 陈 博, 段晨龙. 化学学 报, 2012, 70, 2037.] doi: 10.6023/A12070451
(23) Wang, Z. M.; Zheng, M.; Xie, Y. B.; Li, X. X.; Zeng, M.; Cao, H. B.; Guo, L. Acta Phys. -Chim. Sin. 2017, 33 (7), 1399. [王 子民, 郑 默, 谢勇冰, 李晓霞, 曾 鸣, 曹宏斌, 郭 力. 物理化学学报, 2017, 33 (7), 1399.] doi: 10.3866/PKU.WHXB201704132
(24) Yang, Z.; He, Y. Acta Phys. -Chim. Sin. 2016, 32 (4), 921. [杨 镇, 何远航. 物理化学学报, 2016, 32 (4), 921.] doi: 10.3866/PKU.WHXB201512251
(25) Li, L. Q.; Xu, M.; Song, W. P.; Ovcharenko, A.; Zhang, G. Y.; Jia, D. Appl. Surf. Sci. 2013, 286, 287. doi: 10.1016/j.apsusc.2013.09.073
(26) Stukowski, A. Model. Simul. Mater. Sci. Eng. 2010, 18, 1. doi: 10.1088/0965-0393/18/1/015012
(27) Bai, L. C.; Srikanth, N.; Wu, H.; Liu, Y.; Liu, B.; Zhou, K. J. Non-Cryst. Solids 2016, 443, 8. doi: 10.1016/j.jnoncrysol.2016.03.025
(28) Namilae, S.; Radhakrishnan, B.; Sarma, G. Compos. Sci. Technol. 2007, 67, 1302. doi: 10.1016/j.compscitech.2006.10.002
(29) Shimizu, F.; Ogata, S.; Li, J. Mater. Trans. 2007, 48 (11), 2923. doi: 10.2320/matertrans.MJ200769
(30) Tang, C.; Wong, C. H. Intermetallics 2016, 70, 61. doi: 10.1016/j.intermet.2015.12.010
(31) Kageshima, H.; Shiraishi, K. Phys. Rev. Lett. 1998, 81 (26), 5936. doi: 10.1103/PhysRevLett.81.5936
(32) Kelires, P. C. Phys. Rev. B 2000, 62 (23), 15686. doi: 10.1103/PhysRevB.62.15686
(33) Li, Y. Y.; Xiao, W.; Li, H. L. J. Nucl. Mater. 2016, 480, 75. doi: 10.1016/j.jnucmat.2016.08.004
(34) Pamungkas, M. A.; Joe, M.; Kim, B. H.; Lee, K. R. J. Appl. Phys. 2011, 110, 053513. doi: 10.1063/1.3632968
(35) Kao, D. B.; Mcvittie, J. P.; Nix, W. D.; Saraswat, C. K. IEEE Trans. Electron Devices 1988, 35 (1), 25. doi: 10.1109/16.2412
(36) Liu, H. I.; Biegelsen, D. K.; Johnson, N. M.; Ponce, F. A.; Pease, R. F. W. J. Vac. Sci. Technol. B 1993, 11 (6), 2532. doi: 10.1116/1.586661
(37) Khalilov, U.; Pourtois, G.; Bogaerts, A.; van Duin, A. C. T.; Neytsa, E. C. Nanoscale 2013, 5, 719. doi: 10.1039/C2NR32387G

[1] FU Zhi-Dan, ZANG Jia-Xin, YE Qing, CHENG Shui-Yuan, KANG Tian-Fang. Cu-Doped Octahedral Layered Birnessites Catalysts for the Catalytic Oxidation of CO and Ethyl Acetate[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1855-1864.
[2] HU Ling-Xiao, WANG Lian, WANG Fei, ZHANG Chang-Bin, HE Hong. Catalytic Oxidation of o-Xylene over Pd/γ-Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1681-1688.
[3] ZHENG Fang-Fang, LI Qian, ZHANG Hong, WENG Wei-Zheng, YI Xiao-Dong, ZHENG Yan-Ping, HUANG Chuan-Jing, WAN Hui-Lin. Preparation and Characterization of Sinter-Resistant Rh-Sm2O3/SiO2 Catalyst and Its Performance for Partial Oxidation of Methane to Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1689-1698.
[4] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[5] HUANG Xue-Hui, SHANG Xiao-Hui, NIU Peng-Ju. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1462-1473.
[6] LIU Jing-Wei, YANG Na-Ting, ZHU Yan. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1453-1461.
[7] WANG Zi-Min, ZHENG Mo, XIE Yong-Bing, LI Xiao-Xia, ZENG Ming, CAO Hong-Bin, GUO Li. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1399-1410.
[8] HUANG Yu-Fen, ZHANG Hai-Long, YANG Zheng-Zheng, ZHAO Ming, HUANG Mu-Lan, LIANG Yan-Li, WANG Jian-Li, CHEN Yao-Qiang. Effects of CeO2 Addition on Improved NO Oxidation Activities of Pt/SiO2-Al2O3 Diesel Oxidation Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1242-1252.
[9] CHEN Fang, LIU Yuan-Yuan, WANG Jian-Long, Su Ning-Ning, LI Li-Jie, CHEN Hong-Chun. nvestigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1140-1148.
[10] ZHOU Ting-Ting, SONG Hua-Jie, HUANG Feng-Lei. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 949-959.
[11] PENG Li-Juan, YAO Qian, WANG Jing-Bo, LI Ze-Rong, ZHU Quan, LI Xiang-Yuan. Pyrolysis of RDX and Its Derivatives via Reactive Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 745-754.
[12] CHEN Ming, WANG Lin, TAN Tian, LUO Xue-Cai, ZHENG Zai, YIN Ruo-Chun, SU Ji-Hu, DU Jiang-Feng. Radical Mechanism of Laccase-Catalyzed Catechol Ring-Opening[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 620-626.
[13] HUANG Ming-Hui, JIN Bi-Yao, ZHAO Lian-Hua, SUN Shi-Gang. Preparation and Characterization of Pt-Ni-SnO2/C for Ethanol Oxidation Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 563-572.
[14] Lü Yang, SONG Yu-Jiang, LIU Hui-Yuan, LI Huan-Qiao. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294.
[15] YIN Jin-Ling, LIU Jia, WEN Qing, WANG Gui-Ling, CAO Dian-Xue. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 370-376.