Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (12): 2404-2423    DOI: 10.3866/PKU.WHXB201706263
Special Issue: Special Issue for Highly Cited Researchers
REVIEW     
Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective
Quan QUAN1,Shun-Ji XIE2,Ye WANG2,*(),Yi-Jun XU1,*()
1 State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
2 State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Download: HTML     PDF(5661KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In response to aggravated fossil resources consuming and greenhouse effect, CO2 reduction has become a globally important scientific issue because this method can be used to produce value-added feedstock for application in alternative energy supply. Photoelectrocatalysis, achieved by combining optical energy and external electrical bias, is a feasible and promising system for CO2 reduction. In particular, applying graphene in tuning photoelectrochemical CO2 reduction has aroused considerable attention because graphene is advantageous for enhancing CO2 adsorption, facilitating electrons transfer, and thus optimizing the performance of graphene-based composite electrodes. In this review, we elaborate the fundamental principle, basic preparation methods, and recent progress in developing a variety of graphene-based composite electrodes for photoelectrochemical reduction of CO2 into solar fuels and chemicals. We also present a perspective on the opportunities and challenges for future research in this booming area and highlight the potential evolution strategies for advancing the research on photoelectrochemical CO2 reduction.



Key wordsPhotoelectrochemical      CO2 reduction      Graphene-based composite     
Received: 05 June 2017      Published: 26 June 2017
MSC2000:  O649  
Fund:  the National Natural Science Foundation of China(U1463204);the National Natural Science Foundation of China(20903023);the National Natural Science Foundation of China(21173045);the Award Program for Minjiang Scholar Professorship;the Natural Science Foundation of Fujian Province for Distinguished Young Investigator Grant(2012J06003);the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment(2014A05);the first Program of Fujian Province for Top Creative Young Talents;the Open Research Project of State Key Laboratory of Physical Chemistry of Solid Surfaces of Xiamen University(201519);the Program for Returned High-Level Overseas Chinese Scholars of Fujian province;the Natural Science Foundation of Fujian Province for Distinguished Young Investigator Rolling Grant(2017J07002)
Corresponding Authors: Ye WANG,Yi-Jun XU     E-mail: wangye@xmu.edu.cn;yjxu@fzu.edu.cn
Cite this article:

Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective. Acta Phys. -Chim. Sin., 2017, 33(12): 2404-2423.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201706263     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2404

Reaction Production Transferred electron numbers ΔG0/(kJ·mol-1) ΔE0/V
CO2(g) → CO(g) + 1/2O2(g) CO 2 257 1.33
CO2(g) + H2O(l) → HCOOH(l) + 1/2O2(g) HCOOH 2 286 1.48
CO2(g) + H2O(l) → HCHO(l) + O2(g) HCHO 4 522 1.35
CO2(g) + 2H2O(l) → CH3OH(l) + 3/2O2(g) CH3OH 6 703 1.21
CO2(g) + 2H2O(l) → CH4(g) + 2O2(g) CH4 8 818 1.06
CO2(g) + 3/2H2O(l) → 1/2C2H5OH(l) + 3/2O2(g) C2H5OH 6 663 1.14
CO2(g) + H2O(l) → 1/2C2H4(g) + 3/2O2(g) C2H4 6 666 1.15
CO2(g) + 3/2H2O(l) → 1/2C2H6(g) + 7/4O2(g) C2H6 7 734 1.09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 Luthi D. ; Le Floch M. ; Bereiter B. ; Blunier T. ; Barnola J. M. ; Siegenthaler U. ; Raynaud D. ; Jouzel J. ; Fischer H. ; Kawamura K. ; Stocker T. F. Nature 2008, 453, 379.
2 Canadell J. G. ; Le Quere C. ; Raupach M. R. ; Field C. B. ; Buitenhuis E. T. ; Ciais P. ; Conway T. J. ; Gillett N. P. ; Houghton R. A. ; Marland G. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 18866.
3 Somorjai G. A. ; Frei H. ; Park J. Y. J. Am. Chem. Soc. 2009, 131, 16589.
4 Aresta M. ; Dibenedetto A. Dalton Trans. 2007, 2975.
5 Centi G. ; Perathoner S. Catal. Today 2009, 148, 191.
6 Jiang Z. ; Xiao T. ; Kuznetsov V. L. ; Edwards P. P. Philos. Trans. R. Soc. A 2010, 368, 3343.
7 Grills D. C. ; Fujita E. J. Phys. Chem. Lett. 2010, 1, 2709.
8 Bolton J. R. Science 1978, 202, 705.
9 Ikeue K. ; Yamashita H. ; Anpo M. ; Takewaki T. J. Phys. Chem. B 2001, 105, 8350.
10 Varghese O. K. ; Paulose M. ; LaTempa T. J. ; Grimes C. A. Nano Lett. 2009, 9, 731.
11 Dimitrijevic N. M. ; Vijayan B. K. ; Poluektov O. G. ; Rajh T. ; Gray K. A. ; He H. ; Zapol P. J. Am. Chem. Soc. 2011, 133, 3964.
12 Liu Q. ; Zhou Y. ; Kou J. ; Chen X. ; Tian Z. ; Gao J. ; Yan S. ; Zou Z. J. Am. Chem. Soc. 2010, 132, 14385.
13 Izumi Y. Coord. Chem. Rev. 2013, 257, 171.
14 Fu Y. ; Sun D. ; Chen Y. ; Huang R. ; Ding Z. ; Fu X. ; Li Z. Angew. Chem. 2012, 51, 3420.
15 Roy S. C. ; Varghese O. K. ; Paulose M. ; Grimes C. A. ACS Nano 2010, 4, 1259.
16 Benson E. E. ; Kubiak C. P. ; Sathrum A. J. ; Smieja J. M. Chem. Soc. Rev. 2009, 38, 89.
17 Spinner N. S. ; Vega J. A. ; Mustain W. E. Catal. Sci. Technol. 2012, 2, 19.
18 Li C. W. ; Kanan M. W. J. Am. Chem. Soc. 2012, 134, 7231.
19 Ampelli C. ; Centi G. ; Passalacqua R. ; Perathoner S. Energy Environ. Sci. 2010, 3, 292.
20 Bard A. J. Science 1980, 207, 139.
21 Sato S. ; Arai T. ; Morikawa T. Inorg. Chem. 2015, 54, 5105.
22 Halmann M. Nature 1978, 275, 115.
23 Sato, S. Photoelectrochemical CO2 Reduction. In Encyclopedia of Applied Electrochemistry; Springer New York: 2014; pp 1535.
24 Li D. ; Kaner R. B. Science 2008, 320, 1170.
25 Li Y. ; Su H. ; Chan S. H. ; Sun Q. ACS Catal. 2015, 5, 6658.
26 Yang M. Q. ; Xu Y. J. Nanoscale Horiz. 2016, 1, 185.
27 Zhu D. D. ; Liu J. L. ; Qiao S. Z. Adv. Mater. 2016, 28, 3423.
28 Xiao F. X. ; Miao J. ; Liu B. J. Am. Chem. Soc. 2014, 136, 1559.
29 Liu Q. ; Liu Z. ; Zhang X. ; Yang L. ; Zhang N. ; Pan G. ; Yin S. ; Chen Y. ; Wei J. Adv. Funct. Mater. 2009, 19, 894.
30 Zhai C. ; Zhu M. ; Lu Y. ; Ren F. ; Wang C. ; Du Y. ; Yang P. Phys. Chem. Chem. Phys. 2014, 16, 14800.
31 Chang H. ; Lv X. ; Zhang H. ; Li J. Electrochem. Commun. 2010, 12, 483.
32 Xiang Q. ; Cheng B. ; Yu J. Angew. Chem. Int. Ed. 2015, 54, 11350.
33 Tran P. D. ; Wong L. H. ; Barber J. ; Loo J. S. C. Energy Environ. Sci. 2012, 5, 5902.
34 Habisreutinger S. N. ; Schmidt-Mende L. ; Stolarczyk J. K. Angew. Chem. Int. Ed. 2013, 52, 7372.
35 Li H. ; Gan S. ; Wang H. ; Han D. ; Niu L. Adv. Mater. 2015, 27, 6906.
36 Sato S. ; Arai T. ; Morikawa T. ; Uemura K. ; Suzuki T. M. ; Tanaka H. ; Kajino T. J. Am. Chem. Soc. 2011, 133, 15240.
37 Magesh G. ; Kim E. S. ; Kang H. J. ; Banu M. ; Kim J. Y. ; Kim J. H. ; Lee J. S. J. Mater. Chem. A 2014, 2, 2044.
38 Chen W. Y. ; Mattern D. L. ; Okinedo E. ; Senter J. C. ; Mattei A. A. ; Redwine C. W. AIChE J. 2014, 60, 1054.
39 Xie S. ; Zhang Q. ; Liu G. ; Wang Y. Chem. Commun. 2016, 52, 35.
40 Tinnemans A. ; Koster T. ; Thewissen D. ; Mackor A. Recl. Trav. Chim. Pays-Bas 1984, 103, 288.
41 Zhao W. W. ; Xiong M. ; Li X. R. ; Xu J. J. ; Chen H. Y. Electrochem. Commun. 2014, 38, 40.
42 Li X. ; Wen J. ; Low J. ; Fang Y. ; Yu J. Sci. China Mater. 2014, 57, 70.
43 Schouten K. J. P. ; Kwon Y. ; van der Ham C. J. M. ; Qin Z. ; Koper M. T. M. Chem. Sci. 2011, 2, 1902.
44 Inoue T. ; Fujishima A. ; Konishi S. ; Honda K. Nature 1979, 277, 637.
45 Anpo M. ; Yamashita H. ; Ichihashi Y. ; Ehara S. J. Electroanal. Chem. 1995, 396, 21.
46 Yang C. C. ; Vernimmen J. ; Meynen V. ; Cool P. ; Mul G. J. Catal. 2011, 284, 1.
47 Ulagappan N. ; Frei H. J. Phys. Chem. A 2000, 104, 7834.
48 Amatore C. ; Saveant J. M. J. Am. Chem. Soc. 1981, 103, 5021.
49 Chang X. ; Wang T. ; Gong J. Energy Environ. Sci. 2016, 9, 2177.
50 Hori Y. ; Wakebe H. ; Tsukamoto T. ; Koga O. Electrochim. Acta 1994, 39, 1833.
51 Koppenol W. H. ; Rush J. D. J. Phys. Chem. 1987, 91, 4429.
52 Centi G. ; Perathoner S. ; Wine G. ; Gangeri M. Green Chem. 2007, 9, 671.
53 Wu T. ; Zou L. ; Han D. ; Li F. ; Zhang Q. ; Niu L. Green Chem. 2014, 16, 2142.
54 Ong W. J. ; Tan L. L. ; Chai S. P. ; Yong S. T. Chem. Commun. 2015, 51, 858.
55 Yu J. ; Jin J. ; Cheng B. ; Jaroniec M. J. Mater. Chem. A 2014, 2, 3407.
56 Stoller M. D. ; Park S. ; Zhu Y. ; An J. ; Ruoff R. S. Nano Lett. 2008, 8, 3498.
57 Gattrell M. ; Gupta N. ; Co A. J. Electroanal. Chem. 2006, 594, 1.
58 Yoneyama H. ; Sugimura K. ; Kuwabata S. J. Electroanal. Chem. 1988, 249, 143.
59 Chang X. ; Wang T. ; Zhang P. ; Wei Y. ; Zhao J. ; Gong J. Angew. Chem. Int. Ed. 2016, 128, 8986.
60 Allam N. K. ; Shankar K. ; Grimes C. A. J. Mater. Chem. 2008, 18, 2341.
61 Luo J. ; Im J. H. ; Mayer M. T. ; Schreier M. ; Nazeeruddin M. K. ; Park N. G. ; Tilley S. D. ; Fan H. J. ; Gr?tzel M. Science 2014, 345, 1593.
62 Minguez-Bacho I. ; Courte M. ; Fan H. J. ; Fichou D. Nanotechnology 2015, 26, 185401.
63 Chua L. L. ; Zaumseil J. ; Chang J. F. ; Ou E. C. W. ; Ho P. K. H. ; Sirringhaus H. ; Friend R. H. Nature 2005, 434, 194.
64 Koval C. A. ; Howard J. N. Chem. Rev. 1992, 92, 411.
65 Gao Y. Q. ; Georgievskii Y. ; Marcus R. A. J. Chem. Phys. 2000, 112, 3358.
66 White J. L. ; Baruch M. F. ; Pander Iii J. E. ; Hu Y. ; Fortmeyer I. C. ; Park J. E. ; Zhang T. ; Liao K. ; Gu J. ; Yan Y. ; Shaw T. W. ; Abelev E. ; Bocarsly A. B. Chem. Rev. 2015, 115, 12888.
67 Peng Y. P. ; Yeh Y. T. ; Shah S. I. ; Huang C. P. Appl. Catal., B 2012, 123- 124, 414.
68 Chen D. ; Zhang H. ; Liu Y. ; Li J. Energy Environ. Sci. 2013, 6, 1362.
69 Lightcap I. V. ; Kamat P. V. Acc. Chem. Res. 2013, 46, 2235.
70 Low J. ; Yu J. ; Ho W. J. Phys. Chem. Lett. 2015, 6, 4244.
71 Lightcap I. V. ; Murphy S. ; Schumer T. ; Kamat P. V. J. Phys. Chem. Lett. 2012, 3, 1453.
72 Zhang N. ; Yang M. Q. ; Liu S. ; Sun Y. ; Xu Y. J. Chem. Rev. 2015, 115, 10307.
73 Tu W. ; Zhou Y. ; Liu Q. ; Tian Z. ; Gao J. ; Chen X. ; Zhang H. ; Liu J. ; Zou Z. Adv. Funct. Mater. 2012, 22, 1215.
74 Han C. ; Chen Z. ; Zhang N. ; Colmenares J. C. ; Xu Y. J. Adv. Funct. Mater. 2015, 25, 221.
75 Gao E. ; Wang W. ; Shang M. ; Xu J. Phys. Chem. Chem. Phys. 2011, 13, 2887.
76 Wang P. Q. ; Bai Y. ; Luo P. Y. ; Liu J. Y. Catal. Commun. 2013, 38, 82.
77 Cheng J. ; Zhang M. ; Wu G. ; Wang X. ; Zhou J. ; Cen K. Environ. Sci. Technol. 2014, 48, 7076.
78 Yang K. D. ; Ha Y. ; Sim U. ; An J. ; Lee C. W. ; Jin K. ; Kim Y. ; Park J. ; Hong J. S. ; Lee J. H. ; Lee H. E. ; Jeong H. Y. ; Kim H. ; Nam K. T. Adv. Funct. Mater. 2016, 26, 233.
79 Xiao F. X. ; Pagliaro M. ; Xu Y. J. ; Liu B. Chem. Soc. Rev. 2016, 45, 3088.
80 Li Z. ; Luo W. ; Zhang M. ; Feng J. ; Zou Z. Energy Environ. Sci. 2013, 6, 347.
81 Kecenovic E. ; Endr?di B. ; Pápa Z. ; Hernadi K. ; Rajeshwar K. ; Janaky C. J. Mater. Chem. A 2016, 4, 3139.
82 Shen Q. ; Chen Z. ; Huang X. ; Liu M. ; Zhao G. Environ. Sci. Technol. 2015, 49, 5828.
83 Kim K. S. ; Zhao Y. ; Jang H. ; Lee S. Y. ; Kim J. M. ; Kim K. S. ; Ahn J. H. ; Kim P. ; Choi J. Y. ; Hong B. H. Nature 2009, 457, 706.
84 Juang Z. Y. ; Wu C. Y. ; Lu A. Y. ; Su C. Y. ; Leou K. C. ; Chen F. R. ; Tsai C. H. Carbon 2010, 48, 3169.
85 Huang X. ; Qi X. ; Boey F. ; Zhang H. Chem. Soc. Rev. 2012, 41, 666.
86 Xu C. ; Xu B. ; Gu Y. ; Xiong Z. ; Sun J. ; Zhao X. S. Energy Environ. Sci. 2013, 6, 1388.
87 Chen J. ; Shi J. ; Wang X. ; Cui H. ; Fu M. Chin. J. Catal. 2013, 34, 621.
88 Xiang Q. ; Yu J. ; Jaroniec M. Chem. Soc. Rev. 2012, 41, 782.
89 Ng Y. H. ; Iwase A. ; Kudo A. ; Amal R. J. Phys. Chem. Lett. 2010, 1, 2607.
90 Sun L. ; Bai Y. ; Zhang N. ; Sun K. Chem. Commun. 2015, 51, 1846.
91 Li H. ; Pang S. ; Wu S. ; Feng X. ; Müllen K. ; Bubeck C. J. Am. Chem. Soc. 2011, 133, 9423.
92 Eda G. ; Emrah Unalan H. ; Rupesinghe N. ; Amaratunga G. A. J. ; Chhowalla M. Appl. Phys. Lett. 2008, 93, 233502.
93 Annamalai A. ; Kannan A. G. ; Lee S. Y. ; Kim D. W. ; Choi S. H. ; Jang J. S. J. Phys. Chem. C 2015, 119, 19996.
94 Chen Z. ; Ren W. ; Gao L. ; Liu B. ; Pei S. ; Cheng H. M. Nat. Mater. 2011, 10, 424.
95 Li X. ; Cai W. ; An J. ; Kim S. ; Nah J. ; Yang D. ; Piner R. ; Velamakanni A. ; Jung I. ; Tutuc E. ; Banerjee S. K. ; Colombo L. ; Ruoff R. S. Science 2009, 324, 1312.
96 Yu C. ; Meng X. ; Song X. ; Liang S. ; Dong Q. ; Wang G. ; Hao C. ; Yang X. ; Ma T. ; Ajayan P. M. ; Qiu J. Carbon 2016, 100, 474.
97 Shin S. ; Kim S. ; Kim T. ; Du H. ; Kim K. S. ; Cho S. ; Seo S. Carbon 2017, 111, 215.
98 Gao L. ; Ren W. ; Xu H. ; Jin L. ; Wang Z. ; Ma T. ; Ma L. P. ; Zhang Z. ; Fu Q. ; Peng L. M. ; Bao X. ; Cheng H. M. Nat. Commun. 2012, 3, 699.
99 Wang H. ; Yu G. Adv. Mater. 2016, 28, 4956.
100 Teng P. Y. ; Lu C. C. ; Akiyama-Hasegawa K. ; Lin Y. C. ; Yeh C. H. ; Suenaga K. ; Chiu P. W. Nano Lett. 2012, 12, 1379.
101 Wei D. ; Lu Y. ; Han C. ; Niu T. ; Chen W. ; Wee A. T. Angew. Chem. Int. Ed. 2013, 52, 14121.
102 Yang W. ; Chen G. ; Shi Z. ; Liu C. C. ; Zhang L. ; Xie G. ; Cheng M. ; Wang D. ; Yang R. ; Shi D. ; Watanabe K. ; Taniguchi T. ; Yao Y. ; Zhang Y. ; Zhang G. Nat. Mater. 2013, 12, 792.
103 Yuan Y. P. ; Ruan L. W. ; Barber J. ; Joachim Loo S. C. ; Xue C. Energy Environ. Sci. 2014, 7, 3934.
104 An S. J. ; Zhu Y. ; Lee S. H. ; Stoller M. D. ; Emilsson T. ; Park S. ; Velamakanni A. ; An J. ; Ruoff R. S. J. Phys. Chem. Lett. 2010, 1, 1259.
105 Yang Y. ; Li J. ; Chen D. ; Zhao J. ACS Appl. Mater. Interfaces 2016, 8, 26730.
106 Chen L. ; Tang Y. ; Wang K. ; Liu C. ; Luo S. Electrochem. Commun. 2011, 13, 133.
107 Li F. ; Zhang L. ; Tong J. ; Liu Y. ; Xu S. ; Cao Y. ; Cao S. Nano Energy 27, 320.
108 Liu C. ; Teng Y. ; Liu R. ; Luo S. ; Tang Y. ; Chen L. ; Cai Q. Carbon 2011, 49, 5312.
109 Liu C. ; Wang K. ; Luo S. ; Tang Y. ; Chen L. Small 2011, 7, 1203.
110 Tang J. ; Zhang Y. ; Kong B. ; Wang Y. ; Da P. ; Li J. ; Elzatahry A. A. ; Zhao D. ; Gong X. ; Zheng G. Nano Lett. 2014, 14, 2702.
111 Bessegato G. G. ; Guaraldo T. T. ; Brito J. F. ; Brugnera M. F. ; Zanoni M. V. B. Electrocatalysis 2015, 6, 415.
112 Zhang M. ; Cheng J. ; Xuan X. ; Zhou J. ; Cen K. ACS Sustainable Chem. Eng. 2016, 4, 6344.
113 Cheng J. ; Zhang M. ; Wu G. ; Wang X. ; Zhou J. ; Cen K. Sol. Energy Mater. Sol. Cells 2015, 132, 606.
114 Pathak P. ; Gupta S. ; Grosulak K. ; Imahori H. ; Subramanian V. J. Phys. Chem. C 2015, 119, 7543.
115 Ng Y. H. ; Lightcap I. V. ; Goodwin K. ; Matsumura M. ; Kamat P. V. J. Phys. Chem. Lett. 2010, 1, 2222.
116 Lightcap I. V. ; Kamat P. V. J. Am. Chem. Soc. 2012, 134, 7109.
117 Hasan M. R. ; Abd Hamid S. B. ; Basirun W. J. ; Meriam Suhaimy S. H. ; Che Mat A. N. RSC Adv. 2015, 5, 77803.
118 Liang Y. ; Li Y. ; Wang H. ; Zhou J. ; Wang J. ; Regier T. ; Dai H. Nat. Mater. 2011, 10, 780.
119 Wu Z. S. ; Yang S. ; Sun Y. ; Parvez K. ; Feng X. ; Müllen K. J. Am. Chem. Soc. 2012, 134, 9082.
120 Huang X. ; Cao T. ; Liu M. ; Zhao G. J. Phys. Chem. C 2013, 117, 26432.
121 Sekizawa K. ; Maeda K. ; Domen K. ; Koike K. ; Ishitani O. J. Am. Chem. Soc. 2013, 135, 4596.
122 Jin J. ; Yu J. ; Guo D. ; Cui C. ; Ho W. Small 2015, 11, 5262.
123 Iwashina K. ; Iwase A. ; Ng Y. H. ; Amal R. ; Kudo A. J. Am. Chem. Soc. 2015, 137, 604.
124 Xian J. ; Li D. ; Chen J. ; Li X. ; He M. ; Shao Y. ; Yu L. ; Fang J. ACS Appl. Mater. Interfaces 2014, 6, 13157.
125 Li P. ; Zhou Y. ; Li H. ; Xu Q. ; Meng X. ; Wang X. ; Xiao M. ; Zou Z. Chem. Commun. 2015, 51, 800.
126 Maeda K. ACS Catal. 2013, 3, 1486.
127 Zhou P. ; Yu J. ; Jaroniec M. Adv. Mater. 2014, 26, 4920.
128 Arai T. ; Sato S. ; Kajino T. ; Morikawa T. Energy Environ. Sci. 2013, 6, 1274.
129 Arai T. ; Sato S. ; Uemura K. ; Morikawa T. ; Kajino T. ; Motohiro T. Chem. Commun. 2010, 46, 6944.
130 Iwase A. ; Yoshino S. ; Takayama T. ; Ng Y. H. ; Amal R. ; Kudo A. J. Am. Chem. Soc. 2016, 138, 10260.
131 Kondratenko E. V. ; Mul G. ; Baltrusaitis J. ; Larrazabal G. O. ; Perez-Ramirez J. Energy Environ. Sci. 2013, 6, 3112.
132 Christensen P. A. ; Curtis T. P. ; Egerton T. A. ; Kosa S. A. M. ; Tinlin J. R. Appl. Catal.B 2003, 41, 371.
133 Gangeri M. ; Perathoner S. ; Caudo S. ; Centi G. ; Amadou J. ; Bégin D. ; Pham-Huu C. ; Ledoux M. J. ; Tessonnier J. P. ; Su D. S. ; Schl?gl R. Catal. Today 2009, 143, 57.
[1] Hui NING,Wenhang WANG,Qinhu MAO,Shirui ZHENG,Zhongxue YANG,Qingshan ZHAO,Mingbo WU. Catalytic Electroreduction of CO2 to C2H4 Using Cu2O Supported on 1-Octyl-3-methylimidazole Functionalized Graphite Sheets[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 938-944.
[2] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[3] Li-Xia SANG,Jia LIN,Hao GE,Lei LEI. Dynamic Analysis of Carbon Dots/KOH Electrolyte Interface by IMPS/IMVS[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2454-2462.
[4] Hao ZHANG,Xin-Gang LI,Jin-Meng CAI,Ya-Ting WANG,Mo-Qing WU,Tong DING,Ming MENG,Ye TIAN. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[5] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[6] Qing-Gong ZHU,Xiao-Fu SUN,Xin-Chen KANG,Jun MA,Qing-Li QIAN,Bu-Xing HAN. Cu2S on Cu Foam as Highly Efficient Electrocatalyst for Reduction of CO2 to Formic Acid[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 261-266.
[7] ZHANG Jian-Fang, WANG Yan, SHEN Tian-Kuo, SHU Xia, CUI Jie-Wu, CHEN Zhong, WU Yu-Cheng. Visible Light Photocatalytic Performance of Cu2O/TiO2 Nanotube Heterojunction Composites Prepared by Pulse Deposition[J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1535-1542.
[8] HU Yu-Xiang, JIANG Chun-Xiang, FANG Liang, ZHENG Fen-Gang, DONG Wen, SU Xiao-Dong, SHEN Ming-Rong. Effect of HF Treatment on the Photoelectrochemical Properties of a Hematite Thin Film Photoanode for Water Splitting[J]. Acta Phys. -Chim. Sin., 2014, 30(6): 1099-1106.
[9] JIANG Chun-Xiang, HU Yu-Xiang, DONG Wen, ZHENG Fen-Gang, SU Xiao-Dong, FANG Liang, SHEN Ming-Rong. Bias-Determined Cu2O and Cu Growth on TiO2 Surface and Their Photoelectrochemical Properties[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1867-1875.
[10] SHANGGUAN Peng-Peng, TONG Shao-Ping, LI Hai-Li, LENG Wen-Hua. Influence of the Potential on the Charge-Transfer Rate Constant of Photooxidation of Water over α-Fe2O3 and Ti-Doped α-Fe2O3[J]. Acta Phys. -Chim. Sin., 2013, 29(09): 1954-1960.
[11] LI Wei-Bing, BU Yu-Yu, YU Jian-Qiang. Preparation of ZnO/In2O3 Composite Hollow Spheres and Their Photoelectrocatalytic Properties to Glucose Degradation[J]. Acta Phys. -Chim. Sin., 2012, 28(11): 2676-2682.
[12] JIN Tao, XU Di, DIAO Peng, XIANG Min. Preparation and Photoelectrocatalytic Water Oxidation Properties of FeO(OH)-TiO2/CoPi Composite Photoanodes[J]. Acta Phys. -Chim. Sin., 2012, 28(10): 2276-2284.
[13] HUANG Ye, LIU Yu-Yang, LI Wen-Zhang, CHEN Qi-Yuan. Effects of Calcination Temperature on Morphologies and Photoelectrochemical Properties of Anodized WO3 Nanoporous Films[J]. Acta Phys. -Chim. Sin., 2012, 28(04): 865-870.
[14] ZHANG Xiao-Yan, SUN Ming-Xuan, SUN Yu-Jun, LI Jing, SONG Peng, SUN Tong, CUI Xiao-Li. Photoelectrochemical Properties of Graphene Oxide Thin Film Electrodes[J]. Acta Phys. -Chim. Sin., 2011, 27(12): 2831-2835.
[15] PENG Tian-You, KE Ding-Ning, ZENG Peng, ZHANG Xiao-Hu, FAN Ke. Preparation and Photoelectrochemical Performance of BiVO4 Film Electrode[J]. Acta Phys. -Chim. Sin., 2011, 27(09): 2160-2166.