Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(12)>> 2404-2423     doi: 10.3866/PKU.WHXB201706263         中文摘要
Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective
QUAN Quan1, XIE Shun-Ji2, WANG Ye2, XU Yi-Jun1
1 State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China;
2 State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Full text: PDF (5661KB) HTML Export: BibTeX | EndNote (RIS)

In response to aggravated fossil resources consuming and greenhouse effect, CO2 reduction has become a globally important scientific issue because this method can be used to produce value-added feedstock for application in alternative energy supply. Photoelectrocatalysis, achieved by combining optical energy and external electrical bias, is a feasible and promising system for CO2 reduction. In particular, applying graphene in tuning photoelectrochemical CO2 reduction has aroused considerable attention because graphene is advantageous for enhancing CO2 adsorption, facilitating electrons transfer, and thus optimizing the performance of graphene-based composite electrodes. In this review, we elaborate the fundamental principle, basic preparation methods, and recent progress in developing a variety of graphene-based composite electrodes for photoelectrochemical reduction of CO2 into solar fuels and chemicals. We also present a perspective on the opportunities and challenges for future research in this booming area and highlight the potential evolution strategies for advancing the research on photoelectrochemical CO2 reduction.



Keywords: Photoelectrochemical   CO2 reduction   Graphene-based composite  
Received: 2017-06-05 Accepted: 2017-06-19 Publication Date (Web): 2017-06-26
Corresponding Authors: WANG Ye, XU Yi-Jun Email: wangye@xmu.edu.cn;yjxu@fzu.edu.cn

Fund: The project was supported by the National Natural Science Foundation of China (U1463204, 20903023 and 21173045), the Award Program for Minjiang Scholar Professorship, the Natural Science Foundation of Fujian Province for Distinguished Young Investigator Grant (2012J06003), the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment (2014A05), the first Program of Fujian Province for Top Creative Young Talents, the Open Research Project of State Key Laboratory of Physical Chemistry of Solid Surfaces of Xiamen University (201519), the Program for Returned High-Level Overseas Chinese Scholars of Fujian province, and the Natural Science Foundation of Fujian Province for Distinguished Young Investigator Rolling Grant (2017J07002).

Cite this article: QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. -Chim. Sin., 2017,33 (12): 2404-2423.    doi: 10.3866/PKU.WHXB201706263

(1) Luthi, D.; Le Floch, M.; Bereiter, B.; Blunier, T.; Barnola, J. M.; Siegenthaler, U.; Raynaud, D.; Jouzel, J.; Fischer, H.; Kawamura, K.; Stocker, T. F. Nature 2008, 453, 379. doi: 10.1038/nature06949
(2) Canadell, J. G.; Le Quere, C.; Raupach, M. R.; Field, C. B.; Buitenhuis, E. T.; Ciais, P.; Conway, T. J.; Gillett, N. P.; Houghton, R. A.; Marland, G. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 18866. doi: 10.1073/pnas.0702737104
(3) Somorjai, G. A.; Frei, H.; Park, J. Y. J. Am. Chem. Soc. 2009, 131, 16589. doi: 10.1021/ja9061954
(4) Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 2975. doi: 10.1039/B700658F
(5) Centi, G.; Perathoner, S. Catal. Today 2009, 148, 191. doi: 10.1016/j.cattod.2009.07.075
(6) Jiang, Z.; Xiao, T.; Kuznetsov, V. L.; Edwards, P. P. Philos. Trans. R. Soc. A 2010, 368, 3343. doi: 10.1098/rsta.2010.0119
(7) Grills, D. C.; Fujita, E. J. Phys. Chem. Lett. 2010, 1, 2709. doi: 10.1021/jz1010237
(8) Bolton, J. R. Science 1978, 202, 705. doi: 10.1126/science.202.4369.705
(9) Ikeue, K.; Yamashita, H.; Anpo, M.; Takewaki, T. J. Phys. Chem. B 2001, 105, 8350. doi: 10.1021/jp010885g
(10) Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A. Nano Lett. 2009, 9, 731. doi: 10.1021/nl803258p
(11) Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H.; Zapol, P. J. Am. Chem. Soc. 2011, 133, 3964. doi: 10.1021/ja108791u
(12) Liu, Q.; Zhou, Y.; Kou, J.; Chen, X.; Tian, Z.; Gao, J.; Yan, S.; Zou, Z. J. Am. Chem. Soc. 2010, 132, 14385. doi: 10.1021/ja1068596
(13) Izumi, Y. Coord. Chem. Rev. 2013, 257, 171. doi: 10.1016/j.ccr.2012.04.018
(14) Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. Angew. Chem. 2012, 51, 3420. doi: 10.1002/anie.201108357
(15) Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. ACS Nano 2010, 4, 1259. doi: 10.1021/nn9015423
(16) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Chem. Soc. Rev. 2009, 38, 89. doi: 10.1039/B804323J
(17) Spinner, N. S.; Vega, J. A.; Mustain, W. E. Catal. Sci. Technol. 2012, 2, 19. doi: 10.1039/C1CY00314C
(18) Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 7231. doi: 10.1021/ja3010978
(19) Ampelli, C.; Centi, G.; Passalacqua, R.; Perathoner, S. Energy Environ. Sci. 2010, 3, 292. doi: 10.1039/B925470F
(20) Bard, A. J. Science 1980, 207, 139. doi: 10.1126/science.207.4427.139
(21) Sato, S.; Arai, T.; Morikawa, T. Inorg. Chem. 2015, 54, 5105. doi: 10.1021/ic502766g
(22) Halmann, M. Nature 1978, 275, 115. doi: 10.1038/275115a0
(23) Sato, S. Photoelectrochemical CO2 Reduction. In Encyclopedia of Applied Electrochemistry; Springer New York: 2014; pp 1535.
(24) Li, D.; Kaner, R. B. Science 2008, 320, 1170. doi: 10.1126/science.1158180
(25) Li, Y.; Su, H.; Chan, S. H.; Sun, Q. ACS Catal. 2015, 5, 6658. doi: 10.1021/acscatal.5b01165
(26) Yang, M. Q.; Xu, Y. J. Nanoscale Horiz. 2016, 1, 185. doi: 10.1039/C5NH00113G
(27) Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Adv. Mater. 2016, 28, 3423. doi: 10.1002/adma.201504766
(28) Xiao, F. X.; Miao, J.; Liu, B. J. Am. Chem. Soc. 2014, 136, 1559. doi: 10.1021/ja411651e
(29) Liu, Q.; Liu, Z.; Zhang, X.; Yang, L.; Zhang, N.; Pan, G.; Yin, S.; Chen, Y.; Wei, J. Adv. Funct. Mater. 2009, 19, 894. doi: 10.1002/adfm.200800954
(30) Zhai, C.; Zhu, M.; Lu, Y.; Ren, F.; Wang, C.; Du, Y.; Yang, P. Phys. Chem. Chem. Phys. 2014, 16, 14800. doi: 10.1039/C4CP01401D
(31) Chang, H.; Lv, X.; Zhang, H.; Li, J. Electrochem. Commun. 2010, 12, 483. doi: 10.1016/j.elecom.2010.01.025
(32) Xiang, Q.; Cheng, B.; Yu, J. Angew. Chem. Int. Ed. 2015, 54, 11350. doi: 10.1002/anie.201411096
(33) Tran, P. D.; Wong, L. H.; Barber, J.; Loo, J. S. C. Energy Environ. Sci. 2012, 5, 5902. doi: 10.1039/C2EE02849B
(34) Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angew. Chem. Int. Ed. 2013, 52, 7372. doi: 10.1002/anie.201207199
(35) Li, H.; Gan, S.; Wang, H.; Han, D.; Niu, L. Adv. Mater. 2015, 27, 6906. doi: 10.1002/adma.201502755
(36) Sato, S.; Arai, T.; Morikawa, T.; Uemura, K.; Suzuki, T. M.; Tanaka, H.; Kajino, T. J. Am. Chem. Soc. 2011, 133, 15240. doi: 10.1021/ja204881d
(37) Magesh, G.; Kim, E. S.; Kang, H. J.; Banu, M.; Kim, J. Y.; Kim, J. H.; Lee, J. S. J. Mater. Chem. A 2014, 2, 2044. doi: 10.1039/C3TA14408A
(38) Chen, W. Y.; Mattern, D. L.; Okinedo, E.; Senter, J. C.; Mattei, A. A.; Redwine, C. W. AIChE J. 2014, 60, 1054. doi: 10.1002/aic.14347
(39) Xie, S.; Zhang, Q.; Liu, G.; Wang, Y. Chem. Commun. 2016, 52, 35. doi: 10.1039/C5CC07613G
(40) Tinnemans, A.; Koster, T.; Thewissen, D.; Mackor, A. Recl. Trav. Chim. Pays-Bas 1984, 103, 288. doi: 10.1002/recl.19841031004
(41) Zhao, W. W.; Xiong, M.; Li, X. R.; Xu, J. J.; Chen, H. Y. Electrochem. Commun. 2014, 38, 40. doi: 10.1016/j.elecom.2013.10.035
(42) Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J. Sci. China Mater. 2014, 57, 70. doi: 10.1007/s40843-014-0003-1
(43) Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M.; Qin, Z.; Koper, M. T. M. Chem. Sci. 2011, 2, 1902. doi: 10.1039/C1SC00277E
(44) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277, 637. doi: 10.1038/277637a0
(45) Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. J. Electroanal. Chem. 1995, 396, 21. doi: 10.1016/0022-0728(95)04141-A
(46) Yang, C. C.; Vernimmen, J.; Meynen, V.; Cool, P.; Mul, G. J. Catal. 2011, 284, 1. doi: 10.1016/j.jcat.2011.08.005
(47) Ulagappan, N.; Frei, H. J. Phys. Chem. A 2000, 104, 7834. doi: 10.1021/jp001470i
(48) Amatore, C.; Saveant, J. M. J. Am. Chem. Soc. 1981, 103, 5021. doi: 10.1021/ja00407a008
(49) Chang, X.; Wang, T.; Gong, J. Energy Environ. Sci. 2016, 9, 2177. doi: 10.1039/C6EE00383D
(50) Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39, 1833. doi: 10.1016/0013-4686(94)85172-7
(51) Koppenol, W. H.; Rush, J. D. J. Phys. Chem. 1987, 91, 4429. doi: 10.1021/j100300a045
(52) Centi, G.; Perathoner, S.; Wine, G.; Gangeri, M. Green Chem. 2007, 9, 671. doi: 10.1039/B615275A
(53) Wu, T.; Zou, L.; Han, D.; Li, F.; Zhang, Q.; Niu, L. Green Chem. 2014, 16, 2142. doi: 10.1039/C3GC42454E
(54) Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T. Chem. Commun. 2015, 51, 858. doi: 10.1039/C4CC08996K
(55) Yu, J.; Jin, J.; Cheng, B.; Jaroniec, M. J. Mater. Chem. A 2014, 2, 3407. doi: 10.1039/C3TA14493C
(56) Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8, 3498. doi: 10.1021/nl802558y
(57) Gattrell, M.; Gupta, N.; Co, A. J. Electroanal. Chem. 2006, 594, 1. doi: 10.1016/j.jelechem.2006.05.013
(58) Yoneyama, H.; Sugimura, K.; Kuwabata, S. J. Electroanal. Chem. 1988, 249, 143. doi: 10.1016/0022-0728(88)80355-3
(59) Chang, X.; Wang, T.; Zhang, P.; Wei, Y.; Zhao, J.; Gong, J. Angew. Chem. Int. Ed. 2016, 128, 8986. doi: 10.1002/anie.201602973
(60) Allam, N. K.; Shankar, K.; Grimes, C. A. J. Mater. Chem. 2008, 18, 2341. doi: 10.1039/B718580D
(61) Luo, J.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Science 2014, 345, 1593. doi: 10.1126/science.1258307
(62) Minguez-Bacho, I.; Courte, M.; Fan, H. J.; Fichou, D. Nanotechnology 2015, 26, 185401. doi: 10.1088/0957-4484/26/18/185401
(63) Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194. doi: 10.1038/nature03376
(64) Koval, C. A.; Howard, J. N. Chem. Rev. 1992, 92, 411. doi: 10.1021/cr00011a004
(65) Gao, Y. Q.; Georgievskii, Y.; Marcus, R. A. J. Chem. Phys. 2000, 112, 3358. doi: 10.1063/1.480918
(66) White, J. L.; Baruch, M. F.; Pander Iii, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; Shaw, T. W.; Abelev, E.; Bocarsly, A. B. Chem. Rev. 2015, 115, 12888. doi: 10.1021/acs.chemrev.5b00370
(67) Peng, Y. P.; Yeh, Y. T.; Shah, S. I.; Huang, C. P. Appl. Catal., B 2012, 123-124, 414. doi: 10.1016/j.apcatb.2012.04.037
(68) Chen, D.; Zhang, H.; Liu, Y.; Li, J. Energy Environ. Sci. 2013, 6, 1362. doi: 10.1039/c3ee23586f
(69) Lightcap, I. V.; Kamat, P. V. Acc. Chem. Res. 2013, 46, 2235. doi: 10.1021/ar300248f
(70) Low, J.; Yu, J.; Ho, W. J. Phys. Chem. Lett. 2015, 6, 4244. doi: 10.1021/acs.jpclett.5b01610
(71) Lightcap, I. V.; Murphy, S.; Schumer, T.; Kamat, P. V. J. Phys. Chem. Lett. 2012, 3, 1453. doi: 10.1021/jz3004206
(72) Zhang, N.; Yang, M. Q.; Liu, S.; Sun, Y.; Xu, Y. J. Chem. Rev. 2015, 115, 10307. doi: 10.1021/acs.chemrev.5b00267
(73) Tu, W.; Zhou, Y.; Liu, Q.; Tian, Z.; Gao, J.; Chen, X.; Zhang, H.; Liu, J.; Zou, Z. Adv. Funct. Mater. 2012, 22, 1215. doi: 10.1002/adfm.201102566
(74) Han, C.; Chen, Z.; Zhang, N.; Colmenares, J. C.; Xu, Y. J. Adv. Funct. Mater. 2015, 25, 221. doi: 10.1002/adfm.201402443
(75) Gao, E.; Wang, W.; Shang, M.; Xu, J. Phys. Chem. Chem. Phys. 2011, 13, 2887. doi: 10.1039/C0CP01749C
(76) Wang, P. Q.; Bai, Y.; Luo, P. Y.; Liu, J. Y. Catal. Commun. 2013, 38, 82. doi: 10.1016/j.catcom.2013.04.020
(77) Cheng, J.; Zhang, M.; Wu, G.; Wang, X.; Zhou, J.; Cen, K. Environ. Sci. Technol. 2014, 48, 7076. doi: 10.1021/es500364g
(78) Yang, K. D.; Ha, Y.; Sim, U.; An, J.; Lee, C. W.; Jin, K.; Kim, Y.; Park, J.; Hong, J. S.; Lee, J. H.; Lee, H. E.; Jeong, H. Y.; Kim, H.; Nam, K. T. Adv. Funct. Mater. 2016, 26, 233. doi: 10.1002/adfm.201502751
(79) 79) Xiao, F. X.; Pagliaro, M.; Xu, Y. J.; Liu, B. Chem. Soc. Rev. 2016, (45, 3088. doi: 10.1039/C5CS00781J
(80) Li, Z.; Luo, W.; Zhang, M.; Feng, J.; Zou, Z. Energy Environ. Sci. 2013, 6, 347. doi: 10.1039/C2EE22618A
(81) Kecenovic, E.; Endr?di, B.; Pápa, Z.; Hernadi, K.; Rajeshwar, K.; Janaky, C. J. Mater. Chem. A 2016, 4, 3139. doi: 10.1039/C5TA10457B
(82) Shen, Q.; Chen, Z.; Huang, X.; Liu, M.; Zhao, G. Environ. Sci. Technol. 2015, 49, 5828. doi: 10.1021/acs.est.5b00066
(83) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706. doi: 10.1038/nature07719
(84) Juang, Z. Y.; Wu, C. Y.; Lu, A. Y.; Su, C. Y.; Leou, K. C.; Chen, F. R.; Tsai, C. H. Carbon 2010, 48, 3169. doi: 10.1016/j.carbon.2010.05.001
(85) Huang, X.; Qi, X.; Boey, F.; Zhang, H. Chem. Soc. Rev. 2012, 41, 666. doi: 10.1039/C1CS15078B
(86) Xu, C.; Xu, B.; Gu, Y.; Xiong, Z.; Sun, J.; Zhao, X. S. Energy Environ. Sci. 2013, 6, 1388. doi: 10.1039/C3EE23870A
(87) Chen, J.; Shi, J.; Wang, X.; Cui, H.; Fu, M. Chin. J. Catal. 2013, 34, 621. doi: 10.1016/S1872-2067(12)60530-0
(88) Xiang, Q.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2012, 41, 782. doi: 10.1039/C1CS15172J
(89) Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. J. Phys. Chem. Lett. 2010, 1, 2607. doi: 10.1021/jz100978u
(90) Sun, L.; Bai, Y.; Zhang, N.; Sun, K. Chem. Commun. 2015, 51, 1846. doi: 10.1039/C4CC08288E
(91) Li, H.; Pang, S.; Wu, S.; Feng, X.; Müllen, K.; Bubeck, C. J. Am. Chem. Soc. 2011, 133, 9423. doi: 10.1021/ja201594k
(92) Eda, G.; Emrah Unalan, H.; Rupesinghe, N.; Amaratunga, G. A. J.; Chhowalla, M. Appl. Phys. Lett. 2008, 93, 233502. doi: 10.1063/1.3028339
(93) Annamalai, A.; Kannan, A. G.; Lee, S. Y.; Kim, D. W.; Choi, S. H.; Jang, J. S. J. Phys. Chem. C 2015, 119, 19996. doi: 10.1021/acs.jpcc.5b06450
(94) Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H. M. Nat. Mater. 2011, 10, 424. doi: 10.1038/nmat3001
(95) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312. doi: 10.1126/science.1171245
(96) Yu, C.; Meng, X.; Song, X.; Liang, S.; Dong, Q.; Wang, G.; Hao, C.; Yang, X.; Ma, T.; Ajayan, P. M.; Qiu, J. Carbon 2016, 100, 474. doi: 10.1016/j.carbon.2016.01.042
(97) Shin, S.; Kim, S.; Kim, T.; Du, H.; Kim, K. S.; Cho, S.; Seo, S. Carbon 2017, 111, 215. doi: 10.1016/j.carbon.2016.09.077
(98) Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L. P.; Zhang, Z.; Fu, Q.; Peng, L. M.; Bao, X.; Cheng, H. M. Nat. Commun. 2012, 3, 699. doi: 10.1038/ncomms1702
(99) Wang, H.; Yu, G. Adv. Mater. 2016, 28, 4956. doi: 10.1002/adma.201505123
(100) Teng, P. Y.; Lu, C. C.; Akiyama-Hasegawa, K.; Lin, Y. C.; Yeh, C. H.; Suenaga, K.; Chiu, P. W. Nano Lett. 2012, 12, 1379. doi: 10.1021/nl204024k
(101) Wei, D.; Lu, Y.; Han, C.; Niu, T.; Chen, W.; Wee, A. T. Angew. Chem. Int. Ed. 2013, 52, 14121. doi: 10.1002/anie.201306086
(102) Yang, W.; Chen, G.; Shi, Z.; Liu, C. C.; Zhang, L.; Xie, G.; Cheng, M.; Wang, D.; Yang, R.; Shi, D.; Watanabe, K.; Taniguchi, T.; Yao, Y.; Zhang, Y.; Zhang, G. Nat. Mater. 2013, 12, 792. doi: 10.1038/nmat3695
(103) Yuan, Y. P.; Ruan, L. W.; Barber, J.; Joachim Loo, S. C.; Xue, C. Energy Environ. Sci. 2014, 7, 3934. doi: 10.1039/C4EE02914C
(104) An, S. J.; Zhu, Y.; Lee, S. H.; Stoller, M. D.; Emilsson, T.; Park, S.; Velamakanni, A.; An, J.; Ruoff, R. S. J. Phys. Chem. Lett. 2010, 1, 1259. doi: 10.1021/jz100080c
(105) Yang, Y.; Li, J.; Chen, D.; Zhao, J. ACS Appl. Mater. Interfaces 2016, 8, 26730. doi: 10.1021/acsami.6b07990
(106) Chen, L.; Tang, Y.; Wang, K.; Liu, C.; Luo, S. Electrochem. Commun. 2011, 13, 133. doi: 10.1016/j.elecom.2010.11.033
(107) Li, F.; Zhang, L.; Tong, J.; Liu, Y.; Xu, S.; Cao, Y.; Cao, S. Nano Energy 27, 320. doi: 10.1016/j.nanoen.2016.06.056
(108) Liu, C.; Teng, Y.; Liu, R.; Luo, S.; Tang, Y.; Chen, L.; Cai, Q. Carbon 2011, 49, 5312. doi: 10.1016/j.carbon.2011.07.051
(109) Liu, C.; Wang, K.; Luo, S.; Tang, Y.; Chen, L. Small 2011, 7, 1203. doi: 10.1002/smll.201002340
(110) Tang, J.; Zhang, Y.; Kong, B.; Wang, Y.; Da, P.; Li, J.; Elzatahry, A. A.; Zhao, D.; Gong, X.; Zheng, G. Nano Lett. 2014, 14, 2702. doi: 10.1021/nl500608w
(111) Bessegato, G. G.; Guaraldo, T. T.; Brito, J. F.; Brugnera, M. F.; Zanoni, M. V. B. Electrocatalysis 2015, 6, 415. doi: 10.1007/s12678-015-0259-9
(112) Zhang, M.; Cheng, J.; Xuan, X.; Zhou, J.; Cen, K. ACS Sustainable Chem. Eng. 2016, 4, 6344. doi: 10.1021/acssuschemeng.6b00909
(113) Cheng, J.; Zhang, M.; Wu, G.; Wang, X.; Zhou, J.; Cen, K. Sol. Energy Mater. Sol. Cells 2015, 132, 606. doi: 10.1016/j.solmat.2014.10.015
(114) Pathak, P.; Gupta, S.; Grosulak, K.; Imahori, H.; Subramanian, V. J. Phys. Chem. C 2015, 119, 7543. doi: 10.1021/jp512160h
(115) Ng, Y. H.; Lightcap, I. V.; Goodwin, K.; Matsumura, M.; Kamat, P. V. J. Phys. Chem. Lett. 2010, 1, 2222. doi: 10.1021/jz100728z
(116) Lightcap, I. V.; Kamat, P. V. J. Am. Chem. Soc. 2012, 134, 7109. doi: 10.1021/ja3012929
(117) Hasan, M. R.; Abd Hamid, S. B.; Basirun, W. J.; Meriam Suhaimy, S. H.; Che Mat, A. N. RSC Adv. 2015, 5, 77803. doi: 10.1039/C5RA12525A
(118) Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Nat. Mater. 2011, 10, 780. doi: 10.1038/nmat3087
(119) Wu, Z. S.; Yang, S.; Sun, Y.; Parvez, K.; Feng, X.; Müllen, K. J. Am. Chem. Soc. 2012, 134, 9082. doi: 10.1021/ja3030565
(120) Huang, X.; Cao, T.; Liu, M.; Zhao, G. J. Phys. Chem. C 2013, 117, 26432. doi: 10.1021/jp408630s
(121) Sekizawa, K.; Maeda, K.; Domen, K.; Koike, K.; Ishitani, O. J. Am. Chem. Soc. 2013, 135, 4596. doi: 10.1021/ja311541a
(122) Jin, J.; Yu, J.; Guo, D.; Cui, C.; Ho, W. Small 2015, 11, 5262. doi: 10.1002/smll.201500926
(123) Iwashina, K.; Iwase, A.; Ng, Y. H.; Amal, R.; Kudo, A. J. Am. Chem. Soc. 2015, 137, 604. doi: 10.1021/ja511615s
(124) Xian, J.; Li, D.; Chen, J.; Li, X.; He, M.; Shao, Y.; Yu, L.; Fang, J. ACS Appl. Mater. Interfaces 2014, 6, 13157. doi: 10.1021/am5029999
(125) Li, P.; Zhou, Y.; Li, H.; Xu, Q.; Meng, X.; Wang, X.; Xiao, M.; Zou, Z. Chem. Commun. 2015, 51, 800. doi: 10.1039/C4CC08744E
(126) Maeda, K. ACS Catal. 2013, 3, 1486. doi: 10.1021/cs4002089
(127) Zhou, P.; Yu, J.; Jaroniec, M. Adv. Mater. 2014, 26, 4920. doi: 10.1002/adma.201400288
(128) Arai, T.; Sato, S.; Kajino, T.; Morikawa, T. Energy Environ. Sci. 2013, 6, 1274. doi: 10.1039/C3EE24317F
(129) Arai, T.; Sato, S.; Uemura, K.; Morikawa, T.; Kajino, T.; Motohiro, T. Chem. Commun. 2010, 46, 6944. doi: 10.1039/C0CC02061C
(130) Iwase, A.; Yoshino, S.; Takayama, T.; Ng, Y. H.; Amal, R.; Kudo, A. J. Am. Chem. Soc. 2016, 138, 10260. doi: 10.1021/jacs.6b05304
(131) Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazabal, G. O.; Perez-Ramirez, J. Energy Environ. Sci. 2013, 6, 3112. doi: 10.1039/C3EE41272E
(132) Christensen, P. A.; Curtis, T. P.; Egerton, T. A.; Kosa, S. A. M.; Tinlin, J. R. Appl. Catal., B 2003, 41, 371. doi: 10.1016/s0926-3373(02)00172-8
(133) Gangeri, M.; Perathoner, S.; Caudo, S.; Centi, G.; Amadou, J.; Bégin, D.; Pham-Huu, C.; Ledoux, M. J.; Tessonnier, J. P.; Su, D. S.; Schlögl, R. Catal. Today 2009, 143, 57. doi: 10.1016/j.cattod.2008.11.00

Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top