Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (2): 208-212    DOI: 10.3866/PKU.WHXB201707031
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
Effect of Pressure on Cesium Iodide Band Gap
CEDILLO Andrés1, CORTONA Pietro2
1 Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, 09340 México, DF, México;
2 Laboratoire Structures, Propriétés et Modélisation des Solides, CNRS UMR 8580, Université Paris-Saclay, CentraleSupélec, Grande Voie des Vignes, F-92295 Châtenay-Malabry, France
Download:   PDF(713KB) Export: BibTeX | EndNote (RIS)      


The evolution of cesium iodide band gap as a function of pressure is studied in the range from 0 to 60 GPa. Within this range, two structural phase transitions occurred, and the band gap was affected by the compression pressure and structural rearrangement. The band gap estimation under pressure, as obtained by the density functional theory methods, successfully reproduced the experimental trend of the optical gap and electrical resistivity, namely, a general decreasing tendency, an early maximum, and a discontinuous peak around 40 GPa.

Key wordsPressure-induced phase transition      Crystalline structure      Band gap      Resistivity     
Received: 05 May 2017      Published: 03 July 2017

A Lithuanian State Scholarship from the Education Exchanges Support Foundation was granted to A.C. Support from CONACYT grant 237045 and the hospitality of the SPMS Laboratory and Vilnius University were also acknowledged

Corresponding Authors: CEDILLO Andrés     E-mail:
Cite this article:

CEDILLO Andrés, CORTONA Pietro. Effect of Pressure on Cesium Iodide Band Gap. Acta Phys. -Chim. Sin., 2018, 34(2): 208-212.

URL:     OR

(1) Nelson, D. A., Jr.; Ruoff, A. L. Phys. Rev. Lett. 1979, 42, 383. doi: 10.1103/PhysRevLett.42.383
(2) Besson, J. M.; Itie, J. P.; Weill, G.; Makarenko, I. J. Phys. Lett. 1982, 43, 401. doi: 10.1051/jphyslet:019820043011040100
(3) Asaumi, K.; Kondo, Y. Solid State Comm. 1981, 40, 715. doi: 10.1016/0038-1098(81)90813-9
(4) Asaumi, K. Phys. Rev. B 1984, 29, 1118. doi: 10.1103/PhysRevB.29.1118
(5) Huang, T. L.; Ruoff, A. L. Phys. Rev. B 1984, 29, 1112. doi: 10.1103/PhysRevB.29.1112
(6) Itie, J.; Polian, A.; Besson, J. J. Phys. Coll. 1984, 45, 47. doi: 10.1051/jphyscol:1984809
(7) Knittle, E.; Jeanloz, R. Science 1984, 223, 53. doi: 10.1126/science.223.4631.53
(8) Huang, T. L.; Brister, K. E.; Ruoff, A. L. Phys. Rev. B 1985, 30, 2968. doi: 10.1103/PhysRevB.30.2968
(9) Brister, K. E.; Vohra, Y. K.; Ruoff, A. L. Phys. Rev. B 1985, 31, 4657. doi: 10.1103/PhysRevB.31.4657
(10) Knittle, E.; Jeanloz, R. J. Phys. Chem. Solids 1985, 46, 1179. doi: 10.1016/0022-3697(85)90147-7
(11) Knittle, E.; Rudy, A.; Jeanloz, R. Phys. Rev. B 1985, 31, 588. doi: 10.1103/PhysRevB.31.588
(12) Reichlin, R.; Ross, M.; Martin, S.; Goettel, K. A. Phys. Rev. Lett. 1986, 56, 2858. doi: 10.1103/PhysRevLett.56.2858
(13) Vohra, Y. K.; Brister, K. E.; Weir, S. T.; Duclos, S. J.; Ruoff, A. L. Science 1986, 231, 1136. doi: 10.1126/science.231.4742.1136
(14) Williams, Q.; Jeanloz, R. Phys. Rev. Lett. 1986, 56, 163. doi: 10.1103/PhysRevLett.56.163
(15) Aidun, J.; Bukowinski, M. S. T.; Ross, M. Phys. Rev. B 1984, 29, 2611. doi: 10.1103/PhysRevB.29.2611
(16) Christensen, N. E.; Satpathy, S. Phys. Rev. Lett. 1985, 55, 600. doi: 10.1103/PhysRevLett.55.600
(17) Satpathy, S.; Christensen, N. E.; Jepsen, O. Phys. Rev. B 1985, 32, 6793. doi: 10.1103/PhysRevB.32.6793
(18) Vohra, Y. K.; Duclos, S. J.; Ruoff, A. L. Phys. Rev. Lett. 1985, 54, 570. doi: 10.1103/PhysRevLett.54.570
(19) Satpathy, S. Phys. Rev. B 1986, 33, 8706. doi: 10.1103/PhysRevB.33.8706
(20) Baroni, S.; Giannozzi, P. Phys. Rev. B 1987, 35, 765. doi: 10.1103/PhysRevB.35.765
(21) Cedillo, A.; Vela, A.; Gázquez, J. L. Structural Phase Transitions in Cesium Halides. In Density Functional Methods in Chemistry; Labanowski, J. K., Andzelm, J. W. Eds.; Springer: New York, USA, 1991; pp. 293–306.doi: 10.1007/978-1-4612-3136-3_19
(22) Mao, H. K.; Wu, Y.; Hemley, R. J.; Chen, L. C.; Shu, J. F.; Finger, L. W.; Cox D. E. Phys. Rev. Lett. 1990, 64, 1749. doi: 10.1103/PhysRevLett.64.1749
(23) Winkler, B.; Milman, V. J. Phys. Condens. Matter 1997, 9, 9811. doi: 10.1088/0953-8984/9/45/009
(24) Xu, Y.; Tse, J. S.; Oganov. A.R.; Cui, T.; Wang, H.; Ma, Y.; Zou, G. Phys. Rev. B 2009, 79, 144110. doi: 10.1103/PhysRevB.79.144110
(25) Babushkin, A. N. High Pressure Res. 1991, 6, 349. doi: 10.1080/08957959208201042
(26) Eremets, M. I.; Shimizu, K.; Kobayashi, T. C.; Amaya, K. J. Phys. Condens. Matter 1998, 10, 11519. doi: 10.1088/0953-8984/10/49/037
(27) Breskin, A. Nucl. Instrum. Meth. Phys. Res. A 1996, 371, 116. doi: 10.1016/0168-9002(95)01145-5
(28) Va'vra, J.; Breskin, A.; Buzulutskov, A.; Chechik, R.; Shefer, E. Nucl. Instrum. Meth. Phys. Res. A 1997, 387, 154. doi: 10.1016/S0168-9002(96)00980-1
(29) Sham, L. J.; Schlüter, M. Phys. Rev. Lett. 1983, 51, 1888. doi: 10.1103/PhysRevLett.51.1888
(30) Perdew, J. P. Int. J. Quantum Chem. Symp. 1986, 19, 497. doi: 10.1002/qua.560280846
(31) Perdew, J. P.; Yang, W.; Burke, K.; Yang, Z.; Gross, E. K. U.; Scheffler, M.; Scuseria, G. E.; Henderson, T. M.; Zhang, I. Y.; Ruzsinszky, A.; et al. Proc. Natl. Acad. Sci. 2017, 114, 2801. doi: 10.1073/pnas.1621352114
(32) Gonze, X.; Amadon, B.; Anglade, P. M.; Beuken, J. M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Côté, M.; et al. Comput. Phys. Comm. 2009, 180, 2582. doi: 10.1016/j.cpc.2009.07.007
(33) Gonze, X.; RignaneseI, G. M.; Verstraete, M.; Beuken, J. M.; Pouillon, Y.; Caracas, R.; Jollet, F.; Torrent, M.; Zerah, G.; Mikami, M. et al. Z. Kristallogr. 2005, 220, 558. doi: 10.1524/zkri.220.5.558.65066
(34) Blöchl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953
(35) Torrent, M.; Jollet, F.; Bottin, F.; Zerah, G.; Gonze, X. Comput. Mat. Sci. 2008, 42, 337. doi: 10.1016/j.commatsci.2007.07.020
(36) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
(37) Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L.A.; Zhou, X.; Burke, K. Phys. Rev. Lett. 2008, 100, 136406. doi: 10.1103/PhysRevLett.100.136406
(38) Cortona, P. Phys. Rev. B 1992, 46, 2008. doi: 10.1103/PhysRevB.46.2008
(39) Demichelis, R.; Civalleri, B.; D'Arco, P.; Dovesi, R. Int. J. Quantum Chem. 2010, 110, 2260. doi: 10.1002/qua.22574
(40) Cedillo, A.; Torrent, M.; Cortona, P. J. Phys. Condens. Matter 2016, 28, 185401. doi: 10.1088/0953- 8984/28/18/185401
(41) Buongiorno, M.; Baroni, S.; Giannozzi, P. Phys. Rev. Lett. 1992, 69, 1069. doi: 10.1103/PhysRevLett.69.1069
(42) Lipp, M. J.; Yoo, C. H.; Strachan, D.; Daniels, W. B. Phys. Rev. B 2006, 73, 085121. doi: 10.1103/PhysRevB.73.085121

[1] SUN Hai-Tao, ZHONG Cheng, SUN Zhen-Rong. Recent Advances in the Optimally “Tuned” Range-Separated Density Functional Theory[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2197-2208.
[2] HU Xue-Mei, GAO Xiang-Dong, LI Xiao-Min, GU Zheng-Ying, SHI Ying, WU Yong-Qing. Microstructure and Band Gap Modulation of SrSn1-xCoxO3 Epitaxial Thin Films via Pulsed Laser Deposition[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 828-833.
[3] KONG Ling-Ming, ZHU Bao-Lin, PANG Xian-Yong, WANG Gui-Chang. First-Principles Study on TiO2-B with Oxygen Vacancies as a Negative Material of Rechargeable Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 656-664.
[4] YU Qiu-Jie, ZHOU Bin, ZHANG Zhi-Hua, LIU Guang-Wu, DU Ai. Antimony-Doped Tin Oxide Aerogel Based on Epoxide Additional Method[J]. Acta Phys. -Chim. Sin., 2014, 30(3): 500-507.
[5] LIU Kong-Hua, LIU Lan, GAO Hong, LUO Yuan-Fang, JIA De-Min. In situ Preparation of Epoxy-Based Conductive Nanocomposites Containing Nanosilver-Decorated Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2012, 28(03): 711-719.
[6] XIE Juan, WANG Hu, DUAN Ming. Controlled Growth of Self-Assembled ZnO Thin Films and Characterization of Their Photocatalytic Properties[J]. Acta Phys. -Chim. Sin., 2011, 27(01): 193-198.
[7] WANG Xiao-Yan, DONG Gui-Fang, QIAO Juan, DUAN Lian, WANG Li-Duo, QIU Yong. Preparation and Properties of Zinc Oxide Films by Spin-Coating Water Solution Precursor[J]. Acta Phys. -Chim. Sin., 2010, 26(07): 2049-2052.
[8] FAN Min-Guang, LI Bin, ZHANG Fei-Yue, LI Wang-Liang, XING Jian-Min, LIU Zi-Li. Distribution of Copper Ions in a CuLaHY Zeolite and Its Performance in Adsorption Desulfurization[J]. Acta Phys. -Chim. Sin., 2009, 25(03): 495-501.
[9] WANG Quan; ZHANG Qi-Feng; SUN Hui; ZHANG Jun-Yan; DENG Tian-Song; WU Jin-Lei. Growth and Optical Characteristics of ZnO Photonic Crystals[J]. Acta Phys. -Chim. Sin., 2007, 23(11): 1667-1670.
[10] LI Shi-Bin; WU Zhi-Ming; ZHU Kui-Peng; JIANG Ya-Dong; LI Wei; LIAO Nai-Man. Effect of Substrate Temperature on the Optical Properties of a-Si:H Films by RF-PECVD[J]. Acta Phys. -Chim. Sin., 2007, 23(08): 1252-1256.
[11] HU Ze-Shan;FU Min;WEI Xiao-Ping;SHAO Ming-Hao. Influence of Polydispersity on the Absorbance Spectra of ZnO Nanoparticles[J]. Acta Phys. -Chim. Sin., 2007, 23(01): 59-63.
[12] YANG Bing;LIU Xiao-Dong;XU Hai;ZHENG;Yan LU Ping;YU Jing-Sheng;MA Yu-Guang;FENG Ji-Kang. Effect of Connecting Formof Repeat Unit in Polyphenylene Derivatives Conjugated Polymers on Band Gap[J]. Acta Phys. -Chim. Sin., 2006, 22(08): 962-966.
[13] Yu Xing-Wen, Cao Chu-Nan, Lin Hai-Chao, Zhou Yu-Hong, Zhou De-Rui, Yin Zhong-Da. Composition,Structure and Properties of Rare Earth Metal Conversion Coating on Al6061/SiCp[J]. Acta Phys. -Chim. Sin., 2000, 16(06): 547-552.
[14] Lin Xian-Jie,Xu Long-Jun. Study on the Active Mechanism of Substitution and Doping on Conductivity of Polyanilines[J]. Acta Phys. -Chim. Sin., 1996, 12(02): 152-155.
[15] Han Fu-Tian,Chen Ji-Zhou,Wang Jun-Qiao,Wu Xuan-Chi,Bin Ren-Mao. Strcuture of Oriented Non-crystalline PET Studied with Two-dimensional WAXS Intensity by Symmetrical Transmission[J]. Acta Phys. -Chim. Sin., 1996, 12(01): 39-43.