Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (2): 168-176    DOI: 10.3866/PKU.WHXB201707111
ARTICLE     
Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation
Changjiang LIU1,Hongwen MA1,*(),Pan ZHANG2
1 School of Materials Science and Technology, China University of Geosciences, Beijing 100083, P. R. China
2 Blue Sky Technology Corporation, Beijing 100083, P. R. China
Download: HTML     PDF(2214KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The thermodynamics of hydrothermal decomposition reaction of potassic syenite, collected from Anhui province, China, with the formation of zeolites was studied in this work.The phase equilibrium model of the potassic syenite-NaOH-H2O hydrothermal system was constructed by the combination of "mixed solvent electrolyte model" and thermodynamic data of mineral end-members, as well as zeolites species, which was calculated from the"polymer model".According to the Gibbs free energy of reaction, the decomposition of potassic syenite into hydroxycancrinite, analcime, zeolite P, and zeolite A occurs spontaneously within the temperature range of 160-300℃.The formation conditions of hydroxycancrinite and analcime were predicted from the simulation of phase equilibrium by OLI Analyzer 9.3 software.After experimental verification, analcime (regular tetragonal trisoctahedron, ~50 μm) and hydroxycancrinite (columnar crystals, ~20 μm in length, 500 nm-1 μm in diameters) were respectively obtained with >97% K2O leaching.



Key wordsPotassic syenite      Alkali-hydrothermal method      Zeolite      Chemical equilibrium      Thermodynamics     
Received: 05 June 2017      Published: 11 July 2017
O641  
Fund:  Fundamental Research Funds for the Central Universities(2652015371);China Geological Survey Project(12120113087700)
Corresponding Authors: Hongwen MA     E-mail: mahw@cugb.edu.cn
Cite this article:

Changjiang LIU,Hongwen MA,Pan ZHANG. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation. Acta Phys. -Chim. Sin., 2018, 34(2): 168-176.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201707111     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I2/168

Fig 1 XRD pattern of the potassic syenite powder (YK-13).
Samplew/%
SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaOBaONa2OK2OP2O5LOITotal
YK-1366.260.0417.610.260.250.10.170.520.513.2410.380.040.2799.63
Table 1 Chemical composition of the potassic syenite powder.
Mineral
End-member
NameΔHf?/
(kJ?mol-1)
ΔGf?/
(kJ?mol-1)
103S?/
(kJ?K-1?mol-1)
a/(kJ?K-1?mol-1)105b/
(kJ?K-1?mol-1)
c/(kJ?K-1?mol-1)
KAlSi3O8Microcline-3975.33-3750.19214.30.4488-1.0075-1007.3
CaAl2Si2O8Anorthite-4232.70-4007.51200.50.37051.0010-4339.1
NaAlSi3O8Albite-3935.49-3711.91207.40.452-1.3364-1275.9
SiO2Quartz-910.70-856.4641.430.0929-0.0642-714.9
KFe3AlSi3O10(OH)2Annite-5144.23-4796.024180.8157-3.486119.8
KMg3AlSi3O10(OH)2Phlogopite-6214.95-5837.423260.7703-3.6939-2328.9
CaCO3Calcite-1207.88-1128.8192.50.14090.5029950.7
Fe3O4Magnetite-1114.51-1012.31146.90.2625-0.7205-1926.2
Table 2 Thermodynamic data of mineral end-members.
Hydroxide polymerΔGf?/(kJ?mol?1)ΔHf?/(kJ?mol?1)CationRadius/nm
LiOH(c)?438.95?484.93Li+0.076
NaOH(c)?379.494?425.609Na+0.102
KOH(c)?379.08?424.764K+0.138
Rb(OH)2(c)?364.4?418.19Rb2+0.152
Mg(OH)2(c)?835.32?926.3Mg2+0.072
Ca(OH)2(c)?898.49?986.09Ca2+0.100
Sr(OH)2(c)?881.1?959Sr2+0.118
Ba(OH)2(c)?859.5?944.7Ba2+0.135
Al(OH)3(c)?1154.89?1293.13
Si(OH)4(SiO2?2H2Oam)?1324.66?1476.32
H2O(l)?237.18?285.84
Table 3 Standard Gibbs free energy of formation, standard enthalpy of formation of hydroxide polymers, and cation radius.
Oxide polymerNa2OK2OAl2O3CaOMgOH2OSiO2
S?/(J?K?1?mol?1)149.55163.4511.0543.4051.9952.0045.60
V/(cm3?mol?1)73.4499.5295.3020.9015.570.0031.75
Table 4 Standard entropy of oxide polymers.
Oxide polymerNa2OK2OAl2O3CaOMgOH2OSiO2
a/(J?K?1?mol?1)55.6127.824117.34754.84047.83423.99923.500
10?3b/(J?K?2?mol?1)1114.9171412.752?1186.0461057.9891320.23366.295104.500
105c/(J?K?mol?1)0.1900.085?0.190?0.215?8.106?0.395?9.000
Table 5 Cp-related parameters of oxide polymers.
ZeoliteFormulaΔGf?ΔHf?S?Cp, 298.15abc
Zeolite ANa96Al96Si96O384?216H2O-244081056-26540227223224.1420188.59915741.81620.937528-94927680
Ca-Zeolite ACa48Al96Si96O384?216H2O-245954880-26846160019423.1919379.09415704.7618.204984-96871680
Zeolite PNa6Al6Si10O32?12H2O-18300496-197774421572.791359.3461041.8651.627153-9473760
Ca-Zeolite PCa3Al6Si10O32?12H2O-18417610-199696501335.221305.5591038.5511.532779-11316300
AnalcimeNaAlSi2O6?H2O-3096336-3311947230.23198.307157.4790.2397305-1839480
WairakiteCaAl2Si4O12?2H2O-6231710-6687630371.16379.749314.1850.422533-3719460
HydroxycancriniteNa8Al6Si6O24(OH)2?2H2O-13483548-14291236991.451240.649787.4861.727415-5499400
GismonditeCaAl2Si2O8?4H2O-5005470-5450030431.48382.942315.1820.346123-1998420
Table 6 Thermodynamic data of zeolites predicted by polymer model.
IonΔGf?ΔHf?S?CpV104a110-2a2105a3104a4c1104c2105ω
Na+a-262056-24046058.4537.93-1.117.70-9.5713.63-11.4176.12-12.481.38
K+a-282651-252338101.118.299.0614.90-6.1722.76-11.3530.98-7.500.81
OH-a-157403-230178-10.72-137.29-4.185.240.317.71-11.6517.38-43.327.22
Ca2+a-553160-543447-56.52-31.53-18.06-0.82-30.3622.18-10.3837.68-10.565.18
HSiO3-b-1016559-114664720.93-87.92512.45-2.1724.90-11.5534.12-30.626.49
Table 7 Thermodynamic data of ionic species.
Target product∑ΔGr/(kJ?mol-1)
160 ℃180 ℃200 ℃220 ℃240 ℃260 ℃280 ℃300 ℃
Analcime-3.38-3.14-2.77-2.31-1.71-0.910.101.37
Hydroxycancrinite-42.97-44.46-45.86-47.21-48.45-49.49-50.27-50.67
Zeolite A-14.49-14.36-14.09-13.69-13.09-12.21-11.02-9.4
Zeolite P-4.58-3.94-3.15-2.28-1.200.091.603.40
Table 8 Gibbs free energy of reaction from potassic powder to Na-zeolites.
Fig 2 Simulated solid products at different NaOH concentrations.
T/℃Equilibrium pressure/MPaEquilibrium pHEquilibrium solid product/g
BiotiteMagnetiteCalciteApatiteAnalcimeK2Si2O5
2001.4511.20.900.380.220.0975.530.00
2202.1611.20.900.380.220.0975.520.00
2403.1211.100.900.370.220.0975.500.00
2604.3811.100.900.370.220.0975.460.00
2806.0011.100.900.370.220.0975.385.35
3008.0411.000.900.370.210.0975.159.82
Table 9 Simulated results at equilibrium at different temperatures.
Fig 3 XRD patterns of solid products at different NaOH concentrations.
Fig 4 SEM images of hydroxycancrinite (a, b), and analcime (c, d).
Sample No.w/%η(K2O)/%
SiO2TiO2Al2O3Fe2O3MnOMgOBaOCaONa2OK2OP2O5LOI
HC-3524041.630.0626.260.010.000.080.620.8720.610.400.067.6597.4
ANA-2326051.22023.720.430.000.040.930.9613.570.440.047.6396.9
Table 10 XRF analyses of the hydrothermal products from the potassic syenite powder, and the leaching ratio of K2O.
1 Ma H. W. ; Su S. Q. ; Liu H. ; Yang X. ; Peng H. ; Yu Z. J. Earth. Sci. Front. 2010, 17 (1), 294.
1 马鸿文; 苏双青; 刘浩; 杨雪; 彭辉; 俞子俭. 地学前缘, 2010, 17 (1), 294.
2 Ma H. W. Potassic Cocks in China: Resource and Clean Utilization Techniques Beijing: Chemical Industry Press, 2010, 1- 625.
2 马鸿文. 中国富钾岩石:资源与清洁利用技术, 北京: 化学工业出版社, 2010, 1- 25.
3 Su S. Q. ; Yang J. ; Ma H. W. ; Zhang P. Ind. Miner. Process. 2014, (2), 46.
3 苏双青; 杨静; 马鸿文; 张盼. 化工矿物与加工, 2014, (2), 46.
4 Ma H. W. ; Yang J. ; Su S. Q. ; Liu M. T. ; Zheng H. ; Wang Y. B. ; Qi H. B. ; Zhang P. Acta Geol. Sin.-Engl. 2015, 89 (6), 2058.
5 Lovat V. C. R. ; Sathy C. Zeolites 1993, 13, 524.
6 Liou J. G. ; Christian C. ; Martin F. New Zeal. J. Geol. Geop. 1991, 34 (3), 293.
7 Alekseyev V. A. ; Medvedeva L. S. ; Prisyagina N. I. ; Meshalkin S. S. ; Balabin A. I. Geochimica Cosmochim. Ac. 1997, 61 (6), 1125.
8 Ma X. ; Yang J. ; Ma H. W. ; Liu C. J. ; Zhang P. Micropor. Mesopor. Mat. 2015, 201, 134.
9 Yang J. ; Ma H. W. ; Zeng C. ; Liu C. J. ; Ma X. ; Luo Z. ; Wang S. J. Acta Minera. Sin. 2016, 36 (1), 38.
9 杨静; 马鸿文; 曾诚; 刘昶江; 马玺; 罗征; 王时健. 矿物学报, 2016, 36 (1), 38.
10 Yuan J. Y. ; Yang J. ; Ma H.W. ; Liu C.J. ; Zhao C. L. RSC Advances 2016, 6 (59), 54503.
11 Ma H. W. Introduction to Thermodynamics in Crystalline Petrology, 2nd ed Beijing: Higher Education Press, 2001, 1- 22.
11 马鸿文. 结晶岩热力学概论, 第2版 北京: 高等教育出版社, 2001, 1- 22.
12 OLI Systems Inc. A Guide to Using OLI Analyzer (Version 9.2), 2015.
13 Holland T. J. B. J. Metamorphic Geol. 1990, 8 (1), 89.
14 Holland T. J. B. ; Powell R. J. Metamorphic Geol. 2011, 29 (3), 333.
15 Veeillard P. Eur. J. Mineral. 2010, 22 (6), 823.
16 Arthur R. ; Sasamoto H. ; Walker C. ; Yui M. Clay and Clay Minerals 2011, 59 (6), 626.
17 Shock E. L. ; Helgeson H. C. Geochimica Cosmochim. Ac. 1988, 52 (8), 2009.
18 Sverjensky D. A. ; Shock E. L. ; Helgeson H. C. Geochimica Cosmochim. Ac. 1997, 61 (7), 1359.
19 Wang P. ; Anderko A. ; Young R. D. Fluid Phase Equilibr. 2002, 203 (1), 141.
20 Wang P. ; Springer R. D. ; Anderko A. ; Young R. D. Fluid Phase Equilibr. 2004, 222-223, 11.
21 Xu R. R. ; Pang W. Q. ; Huo Q. S. Molecular Sieve and Porous Materials Chemistry, 2nd Beijing: Science Press, 2014, 117- 131.
21 徐如人; 庞文琴; 霍启升. 分子筛与多孔材料化学, 第二版 北京: 科学出版社, 2014, 117- 131.
22 Wajima T. Micropor. Mesopor. Mat. 2016, 232, 77.
[1] Lulu XU,Zhenchao ZHAO,Rongrong ZHAO,Rui YU,Weiping ZHANG. Effects of Magnesium Modification on the Catalytic Performances of HZSM-5 Zeolite for the Conversion of Ethene to Propene[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 92-100.
[2] Teng XUE,Lilu DONG,Ying ZHANG,Haihong WU. Green and Cost-Effective Preparation of Small-Sized ZSM-5[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 920-926.
[3] Paul GEERLINGS,Frank DE PROFT,Stijn FIAS. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 699-707.
[4] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[5] Hai-Yang YU,Fang WANG,Qi-Chun LIU,Qing-Yu MA,Zheng-Gui GU. Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 344-355.
[6] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[7] Ren YAN,Lu LAI,Zi-Qiang XU,Feng-Lei JIANG,Yi LIU. Thermodynamics of the Interactions between Quantum Dots and Proteins[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2377-2387.
[8] Jun DU,Xiang-Ying WU,Xing-Peng PAN,Jiang YU. Oxygenation and Oxidation Desulfurization Properties of CeO2/NaY Catalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2337-2345.
[9] Peng-Fei JING,Hui-Jun LIU,Qin ZHANG,Sheng-Yong HU,Lan-Lin LEI,Zhi-Yuan FENG. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1933-1940.
[10] Si HU,Qing ZHANG,Yan-Jun GONG,Ying ZHANG,Zhi-Jie WU,Tao DOU. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1785-1794.
[11] Qing-Lian GUO,Huan HE,Ling-Li PAN,Yi LIU. Thermodynamics of the Interaction of BCBP with Bovine Serum Albumin[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1383-1390.
[12] Tian HE,Ke-Fen YUE,San-Ping CHEN,Chun-Sheng ZHOU,Ni YAN. Synthesis, Structure and Thermodynamics/Kinetics Analysis of Three Different Interpenetrating Zinc(Ⅱ) Coordination Architectures[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1397-1403.
[13] Li-Yuan SUN,Ya-Fei ZHANG,Yan-Jun GONG. Structural Features and Application of Micro-Microporous Composite Zeolites[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1105-1122.
[14] Jing ZOU,Zhi-Lin FAN,Li-Sha JIANG,Dan-Hong ZHOU. Theoretical Study of the Solvent Adsorption on Ti-Peroxo Active Center in Ti-MWW Zeolite[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 935-942.
[15] Qi-Liang HONG,Yi-Hui DONG,Wei ZHUANG,Chao RAO,Chang LIU. Kinetics and Thermodynamics of Lysozyme Adsorption on Mesoporous Titanium Dioxide[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 638-646.