Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (2): 177-184    DOI: 10.3866/PKU.WHXB201707121
Control of the Ligand Surface Density through Reaction Kinetics of Amino and Surface Vinyl Sulfone Groups
Fang CHENG1,2,*(),Mingyang LI1,2,Wei HE1,3,Hanqi WANG1,2
1 State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, Liaoning Province, P. R. China
2 School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116023, Liaoning Province, P. R. China
3 School of Chemical Engineering, Dalian University of Technology, Dalian 116023, Liaoning Province, P. R. China
Download: HTML     PDF(1938KB) Export: BibTeX | EndNote (RIS)      


Control over the ligand surface density provides an accurate molecular basis for the quantitative study of biomolecular interactions. However, the classic hybrid self-assembly method lacks general applicability toward different self-assembly systems. In this paper, we report a new method based on the reaction kinetics of vinyl sulfone groups presented on surface to control the surface ligand density. , -bis(carboxymethyl)-L-lysine (ab-NTA) was selected as the model biological ligand and the catalyst for surface reaction was screened. The surface reaction was characterized by X-ray photoelectron spectroscopy (XPS) and the surface membrane potential. Static water contact angle was used to quantify the kinetics of the surface reaction, and calculations showed that the rate constant was 0.0012 min-1. The ability of the biological functional surface to bind a histidine labeling protein (SA-6His) was investigated by surface plasmon resonance (SPR). The results show that such a surface has a higher protein binding quantity and binding strength than the traditional NHS-NTA surface. Four biological functional surfaces with different ligand densities were prepared by controlling the reaction time and catalyst, and the protein static adsorption of these surfaces was analyzed by SPR. The results show that ligand density and multivalence of the biological functional surface can be controlled by modulating the reaction time and catalyst.

Key wordsSurface catalysis      Vinyl sulfone      ab-NTA      Density control      SPR      Multivalent     
Received: 05 June 2017      Published: 12 July 2017
MSC2000:  O643  
Fund:  Fundamental Research Funds for the Central Universities, China(DUT16RC(3)019);Recruitment Program of Global Youth Experts
Corresponding Authors: Fang CHENG     E-mail:
Cite this article:

Fang CHENG,Mingyang LI,Wei HE,Hanqi WANG. Control of the Ligand Surface Density through Reaction Kinetics of Amino and Surface Vinyl Sulfone Groups. Acta Phys. -Chim. Sin., 2018, 34(2): 177-184.

URL:     OR

Fig Scheme 1 Schematic showing surface modification.
Fig 1 Chemical structures of catalysts.
Fig 2 Contact-angle titrations for (a) different catalysts and (b) different 2, 6-pyridinedicarboxylic acid concentrations.
Fig 3 (a) Representative photomicrographs of water droplets and (b) contact-angle titrations for 2, 6-pyridinedicarboxylic acid as the catalyst.
Fig 4 Natural logarithm of VS (vinyl sulfone) coverage.
Fig 5 Surface membrane potential.
Fig 6 XPS spectra of (1) VS surface and (2) ab-NTA surface. (a) S 2p; (b) C 1s; (c) N 1s.
Fig 7 SPR sensorgrams of protein interactions with the VS-ab-NTA surface. 1 was protein solution; 2 was 0.5 mol?L-1 imidazole solution; 3 was PBS.
Fig 8 Isothermal adsorption curve of ab-NTA surface base on VS(a) and NHS(b).
106Kd/mol-1Rmax/(refraction unit)
VS surface0.6693
NHS surface1.01457
Table 1 Kd and Rmax of ab-NTA surface base on VS and NHS.
Fig 9 Isothermal adsorption curve of the surface with different reaction time and catalyzed by2, 6-pyridinedicarboxylic acid and Triphenylphosphine.
CatalystTime/h106Kd/mol-1Rmax/(refraction unit)
Table 2 Kd and Rmax of ab-NTA surface with different reaction time and catalysts.
1 Yuan P. X. ; Deng S. Y. ; Yao C. G. ; Wan Y. ; Cosnier S. ; Shan D. Biosens. Bioelectron. 2017, 89, 319.
2 Cabanas-Danes J. ; Rodrigues E. D. J. Am. Chem. Soc. 2014, 136, 12675.
3 Nakamura I. ; Horikawa Y. ; Makino A. ; Sugiyama J. ; Kimura S. Biomacromolecules 2011, 12, 785.
4 Schartner J. ; Hoeck N. Anal. Chem. 2015, 87, 7467.
5 Cheng F. ; Li M. Y. ; Wang H. Q. ; Lin D. Q. ; Qu J. P. Langmuir 2015, 31, 3422.
6 Rowley J. A. ; Mooney D. J. J. Biomed. Mater. Res. 2002, 60, 217.
7 Shoffstall A. J. ; Everhart L. M. Biomacromolecules 2013, 14, 2790.
8 Chen X. W. ; Pei D. H. J. Comb. Chem. 2009, 11, 604.
9 Shao Q. ; Jiang S. Y. J. Phys. Chem. B 2014, 118, 7630.
10 Tomohiro H. ; Kenji W. J. Phys. Chem. C 2009, 113, 18795.
11 Subramanian A. ; Irudayaraj J. ; Ryan T. Sensor. Actuat. B: Chem. 2006, 114, 192.
12 Ma H. ; Wells M. ; Beebe T. P. Jr. ; Chilkoti A. Adv. Funct. Mater. 2006, 16, 640.
13 Bain C. D. ; Whitesides G. M. J. Am. Chem. Soc. 1988, 110, 6560.
14 Bohmler J. ; Ponche A. ; Anselme K. ; Ploux L. ACS. Appl. Mater. Inter. 2013, 5, 10478.
15 Tomohiro F. ; Yoshiko M. Bioconjugate Chem. 2010, 21, 1079.
16 Liu Y. T. ; Yan L. ; Sun L. M. ; Li H. Q. ; Li H. H. Chem. Eng. (China) 2014, 42, 69.
16 刘玉婷; 颜莉; 孙立民; 李慧琴; 李海华. 化学工程, 2014, 42, 69.
17 Cheng F. ; Wang H. Q. ; Xu K. ; He W. Acta Phys. -Chim. Sin. 2017, 33, 426.
17 程昉; 王汉奇; 许旷; 何炜. 物理化学学报, 2017, 33, 426.
18 Eugene W. L. ; Chan M. N. Y. J. Am. Chem. Soc. 2006, 128, 15542.
19 Zhang S. ; Maidenberg Y. ; Luo K. ; Koberstein J. T. Langmuir 2014, 30, 6071.
20 Wang H. Q. ; Cheng F. ; Li M. Y. ; Peng W. ; Qu J. P. Langmuir 2015, 31, 3413.
21 Esteves A. P. ; Silva M. E. ; Rodrigues L.M. ; Oliveira-Campos A. M. F. ; Hrdina R. Tetrahedron Lett. 2007, 48, 9040.
22 Wang C. ; Qi C. Z. Tetrahedron 2013, 69, 5348.
23 Cassie A. B. D. ; Baxter S. Trans. Faraday Soc. 1944, 40, 546.
24 Kim E. J. ; Chung B. H. ; Lee H. J. Anal. Chem. 2012, 84, 10091.
25 Maalouli N. ; Gouget-Laemmel A. C. Langmuir 2011, 27, 5498.
26 Pei J. ; Tang Y. ; Xu N. ; Lu W. ; Xiao S. J. ; Liu J. N. Sci. China. Chem. 2010, 54, 526.
27 Shin-ichiro I. ; Takashi K. J. Electroanal. Chem. 1997, 428, 33.
28 Suman L. ; Jacob P. J. Am. Chem. Soc. 2005, 127, 10205.
[1] Xiaoqin DING,Junjie DING,Dayu LI,Li PAN,Chengxin PEI. Toxicity Prediction of Organoph Osphorus Chemical Reactivity Compounds Based on Conceptual DFT[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 314-322.
[2] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[3] DENG Sheng-Wei, HAN Xia, HUANG Yong-Min, XU Shou-Hong, LIU Hong-Lai, LIN Shao-Liang. Sequential Mesoscale Approach for Determining the Effects of the Addition of a Block Copolymer Compatibilizer on the Mechanical Properties of Polymer Blends[J]. Acta Phys. -Chim. Sin., 2014, 30(12): 2241-2248.
[4] ZHANG Long, HAN Jing-Jing, LI Jia-Jia, LIU Tian-Qing. Properties and Spreading Kinetics of Water-Based Cypermethrin Microemulsions[J]. Acta Phys. -Chim. Sin., 2013, 29(02): 346-350.
[5] JIN Wei-Yang, CHENG Dang-Guo, CHEN Feng-Qiu, ZHAN Xiao-Li. Synthesis of MFI-Type Zeolite Membrane Encapsulated Activated Carbon Particles Using a Modified Seeded Method[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 139-143.
[6] SHI Jing-Jie, CHEN Li-Ping, CHEN Wang-Hua, SHI Ning, YANG Hui, XU Wei. Prediction of the Thermal Conductivity of Organic Compounds Using Heuristic and Support Vector Machine Methods[J]. Acta Phys. -Chim. Sin., 2012, 28(12): 2790-2796.
[7] LING Xing, DING Chuan-Fan. Online Electrochemistry/Electrospray Mass Spectrometry with a Coaxial Probe for Investigation of Electrochemical Derivatization of Anthracene with Dodecylamine[J]. Acta Phys. -Chim. Sin., 2012, 28(11): 2616-2624.
[8] ZHANG Yong, XIAO Zhong-Dang. Brownian Dynamics Simulation of Three Nonlinear Interactions on the Folding Process of Single Completely Stretched DNA Chain[J]. Acta Phys. -Chim. Sin., 2011, 27(11): 2705-2710.
[9] MENG Gen, KONG De-Jin, QI Xiao-Lan, XU Zhong-Qiang. Carbon Deposition on a Toluene Disproportionation and Transalkylation Catalyst[J]. Acta Phys. -Chim. Sin., 2010, 26(11): 3017-3022.
[10] HE Xiao-Dan, JIANG Dan, CHEN Chen, CHU Yan-Qiu, DING Chuan-Fan, WENG Zhi-Jie, LI Jian-Qi. Non-Covalent Complexes of the Antidepressant Compound SIPI5358 with Cyclodextrins[J]. Acta Phys. -Chim. Sin., 2010, 26(10): 2604-2612.
[11] HE Xiang-Wei, LONG Hai-Tao, YUAN Gu, Xu Xiao-Jie, ZHOU Ya-Wei. Investigation of Interaction of Small Natural Product Molecules and Human Telomeric G-Quadruplex and Thermal Stabilities of the Complexes by Electrospray Ionization Mass Spectrometry[J]. Acta Phys. -Chim. Sin., 2010, 26(04): 1082-1086.
[12] CHEN Xiu-Min, YANG Bin, TAO Dong-Ping, DAI Yong-Nian. Formation Mechanism of [AlCl]n during Production of Aluminum by AlCl Disproportionation[J]. Acta Phys. -Chim. Sin., 2010, 26(02): 415-421.
[13] CHU Yan-Qiu; PAN Ting-Ting; DAI Zhao-Yun; YU Zhuo-Wei; ZHENG Song-Bai; DING Chuan-Fan. Probing Non-Covalent Complexes of Glutathione with D-Amino Acids by Mass Spectrometry[J]. Acta Phys. -Chim. Sin., 2008, 24(11): 1981-1987.
[14] YAO Jing-Xia;ZHAO Ying;HUANG Jian-Bin . Multivalent Metal Ion Induced Vesicle Aggregation in Aqueous Polyelectrolyte-surfactant System[J]. Acta Phys. -Chim. Sin., 2006, 22(08): 913-916.
[15] ZHAO Feng-Ming;MA Chun-An;CHU You-Qun;XU Ying-Hua. Oxygen Reduction on Ni-MnO2 Electrode in Alkaline Solution[J]. Acta Phys. -Chim. Sin., 2006, 22(06): 716-720.