Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 0,Vol.>> Issue()>> 0-0     doi: 10.3866/PKU.WHXB201707121         中文摘要
Accepted manuscript
Control of the Ligand Surface Density through Reaction Kinetics of Amino and Surface Vinyl Sulfone Groups
CHENG Fang1,2, LI Mingyang1,2, HE Wei1,3, WANG Hanqi1,2
1 State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, Liaoning Province, P. R. China;
2 School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116023, Liaoning Province, P. R. China;
3 School of Chemical Engineering, Dalian University of Technology, Dalian 116023, Liaoning Province, P. R. China
Full text: PDF (1518KB) Export: BibTeX | EndNote (RIS)

Control over the ligand surface density provides an accurate molecular basis for the quantitative study of biomolecular interactions. However, the classic hybrid self-assembly method lacks general applicability toward different self-assembly systems. In this paper, we report a new method based on the reaction kinetics of vinyl sulfone groups presented on surface to control the surface ligand density. ,-bis(carboxymethyl)-L-lysine (ab-NTA) was selected as the model biological ligand and the catalyst for surface reaction was screened. The surface reaction was characterized by X-ray photoelectron spectroscopy (XPS) and the surface membrane potential. Static water contact angle was used to quantify the kinetics of the surface reaction, and calculations showed that the rate constant was 0.0012 min-1. The ability of the biological functional surface to bind a histidine labeling protein (SA-6His) was investigated by surface plasmon resonance (SPR). The results show that such a surface has a higher protein binding quantity and binding strength than the traditional NHS-NTA surface. Four biological functional surfaces with different ligand densities were prepared by controlling the reaction time and catalyst, and the protein static adsorption of these surfaces was analyzed by SPR. The results show that ligand density and multivalence of the biological functional surface can be controlled by modulating the reaction time and catalyst.



Keywords: Surface catalysis   Vinyl sulfone   ab-NTA   Density control   SPR   Multivalent  
Received: 2017-06-05 Accepted: 2017-06-27 Publication Date (Web): 2017-07-12
Corresponding Authors: CHENG Fang Email: ffcheng@dlut.edu.cn

Fund: Fundamental Research Funds for the Central Universities,China (DUT16RC (3)019) and Recruitment Program of Global Youth Experts,China

Cite this article: CHENG Fang, LI Mingyang, HE Wei, WANG Hanqi. Control of the Ligand Surface Density through Reaction Kinetics of Amino and Surface Vinyl Sulfone Groups[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.    doi: 10.3866/PKU.WHXB201707121

(1) Yuan, P. X.; Deng, S. Y.; Yao, C. G.; Wan,
(2) Y.; Cosnier, S.; Shan, D. Biosens. Bioelectron. 2017, 89, 319. doi: 10.1016/j.bios.2016.07.031
(3) Cabanas-Danes, J.; Rodrigues, E. D. J. Am. Chem. Soc. 2014, 136, 12675. doi: 10.1021/ja505695w
(4) Nakamura, I.; Horikawa, Y.; Makino, A.; Sugiyama, J.; Kimura, S. Biomacromolecules 2011, 12, 785. doi: 10.1021/bm101394j
(5) Schartner, J.; Hoeck, N. Anal. Chem. 2015, 87, 7467. doi: 10.1021/acs.analchem.5b01823
(6) Cheng, F.; Li, M. Y.; Wang, H. Q.; Lin, D. Q.; Qu, J. P. Langmuir 2015, 31, 3422. doi: 10.1021/la5044987
(7) Rowley, J. A.; Mooney, D. J. J. Biomed. Mater. Res. 2002, 60, 217. doi: 10.1002/jbm.1287
(8) Shoffstall, A. J.; Everhart, L. M. Biomacromolecules 2013, 14, 2790. doi: 10.1021/bm400619v
(9) Chen, X. W.; Pei, D. H. J. Comb. Chem. 2009, 11, 604. doi: 10.1021/cc9000168
(10) Shao, Q.; Jiang, S. Y. J. Phys. Chem. B 2014, 118, 7630. doi: 10.1021/jp5027114
(11) Tomohiro, H.; Kenji, W. J. Phys. Chem. C 2009, 113, 18795. doi: 10.1021/jp906494u
(12) Subramanian, A.; Irudayaraj, J.; Ryan, T. Sensor. Actuat. B: Chem. 2006, 114, 192. doi: 10.1016/j.snb.2005.04.030
(13) Ma, H.; Wells, M.; Beebe, T. P. Jr.; Chilkoti, A. Adv. Funct. Mater. 2006, 16, 640. doi: 10.1002/adfm.200500426
(14) Bain, C. D.; Whitesides, G. M. J. Am. Chem. Soc. 1988, 110, 6560.
(15) Bohmler, J.; Ponche, A.; Anselme, K.; Ploux, L. ACS. Appl. Mater. Inter. 2013, 5, 10478. doi: 10.1021/am401976g
(16) Tomohiro, F.; Yoshiko, M. Bioconjugate Chem. 2010, 21, 1079. doi: 10.1021/bc100053x
(17) Liu, Y. T.; Yan, L.; Sun, L. M.; Li, H. Q.; Li, H. H. Chem. Eng. (China) 2014, 42, 69. [刘玉婷, 颜莉, 孙立民, 李慧琴, 李 海华. 化学工程, 2014, 42, 69.] doi: 10.3969/j.issn.1005-9954.2014.03.014
(18) Cheng, F.; Wang, H. Q.; Xu, K.; He, W. Acta Phys. -Chim. Sin. 2017, 33, 426. [程昉, 王汉奇, 许旷, 何炜. 物理化学 学报, 2017, 33, 426.] doi: 0.3866/PKU.WHXB201609291
(19) Eugene W. L.; Chan, M. N. Y. J. Am. Chem. Soc. 2006, 128, 15542. doi: 10.1021/ja065828l
(20) Zhang, S.; Maidenberg, Y.; Luo, K.; Koberstein, J. T. Langmuir 2014, 30, 6071. doi: 10.1021/la501233w
(21) Wang, H. Q.; Cheng, F.; Li, M. Y.; Peng, W.; Qu, J. P. Langmuir 2015, 31, 3413. doi: 10.1021/la504087a
(22) Esteves, A. P.; Silva, M. E.; Rodrigues, L.M.; Oliveira-Campos, A. M. F.; Hrdina, R. Tetrahedron Lett. 2007, 48, 9040. doi: 10.1016/j.tetlet.2007.10.077
(23) Wang, C.; Qi, C. Z. Tetrahedron 2013, 69, 5348. doi: 10.1016/j.tet.2013.04.123
(24) Cassie, A. B. D.; Baxter, S. Trans. Faraday Soc. 1944, 40, 546.
(25) Kim, E. J.; Chung, B. H.; Lee, H. J. Anal. Chem. 2012, 84, 10091. doi: 10.1021/ac302584d
(26) Maalouli, N.; Gouget-Laemmel, A. C. Langmuir 2011, 27, 5498. doi: 10.1021/la2005437
(27) Pei, J.; Tang, Y.; Xu, N.; Lu, W.; Xiao, S. J.; Liu, J. N. Sci. China. Chem. 2010, 54, 526. doi: 10.1007/s11426-010-4128-3
(28) Shin-ichiro, I.; Takashi, K. J. Electroanal. Chem. 1997, 428, 33. doi: 10.1016/S0022-0728(97)00006-5
(29) Suman L.; Jacob, P. J. Am. Chem. Soc. 2005, 127, 10205. doi: 10.1021/ja050690c

Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top