Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (2): 201-207    DOI: 10.3866/PKU.WHXB201707131
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
ARTICLE     
Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects
Manas GHARA,Pratim K. CHATTARAJ*()
Download: HTML     PDF(1220KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Density functional theory-based calculations have been carried out to study the bonding and reactivity in RB-AsR (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO) systems. Our calculations demonstrated that all the studied systems adopted bent geometry (∠R-B-As ≈ 180° and ∠B-As-R ≈ 90° or less). The reason for this bending was explained with the help of a valence-orbital model. The potential energy surfaces for three possible isomers of RB-AsR systems were also generated, indicating that the RB-AsR isomer was more stable than R2B-AsR when R=SiF3, CMe3, and H. The B-As bond character was analyzed using natural bond orbital (NBO) and Wiberg bond index (WBI) calculations. The WBI values for B-As bonds in F3SiB-AsSiF3 and HB-AsH were 2.254 and 2.209, respectively, indicating that this bond has some triple-bond character in these systems. While the B centers prefer nucleophilic attack, the As centers prefer electrophilic attack.



Key wordsDensity-functional theory      Bent geometry      Wiberg bond index      Reactivity      Multiphilic descriptor     
Received: 22 June 2017      Published: 13 July 2017
Corresponding Authors: Pratim K. CHATTARAJ     E-mail: pkc@chem.iitkgp.ernet.in
Cite this article:

Manas GHARA,Pratim K. CHATTARAJ. Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects. Acta Phys. -Chim. Sin., 2018, 34(2): 201-207.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201707131     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I2/201

 
RB-AsR dB-As/? ∠R―B―As/(°) ∠B―As―R/(°) ΔEST(R-B)a ΔEST(R-As)b H-L gap/eV
H 1.796 179.8 47.0 28.74 -32.46 6.90
F 1.902 177.0 93.4 81.00 -30.77 5.39
OH 1.892 175.9 93.2 68.96 -21.78 5.91
CH3 1.840 174.9 95.5 38.42 -29.98 5.90
CMe3 1.841 174.2 94.7 37.07 -27.06 6.01
CF3 1.836 177.3 81.6 30.02 -31.63 6.46
SiF3 1.811 179.9 73.0 9.60 -30.67 6.65
BO 1.810 177.5 59.7 12.97 -30.15 6.11
 
 
 
RB-AsR QB QAs WBI(B-As)
H ?0.268 0.227 2.209
F 0.621 0.469 1.798
OH 0.532 0.369 1.811
CH3 0.394 0.120 2.031
CMe3 0.469 0.114 2.073
CF3 0.272 0.197 2.012
SiF3 ?0.534 ?0.003 2.254
BO ?0.373 0.367 2.041
 
System BCP ρ(rc) ?2ρ(rc) G(rc) V(rc) -G(rc)/V(rc) H(rc)
HB-AsH B-As 0.157 -0.126 0.088 -0.207 0.424 -0.119
HB-AsH B-Ha 0.128 -0.097 0.053 -0.130 0.406 -0.077
FB-AsF B-As 0.137 -0.041 0.081 -0.173 0.471 -0.091
HOB-AsOH B-As 0.140 -0.057 0.081 -0.176 0.459 -0.095
H3CB-AsCH3 B-As 0.154 -0.086 0.090 -0.201 0.447 -0.111
Me3CB-AsCMe3 B-As 0.154 -0.092 0.088 -0.199 0.442 -0.111
F3CB-AsCF3 B-As 0.155 -0.077 0.093 -0.204 0.453 -0.112
F3SiB-AsSiF3 B-As 0.159 -0.117 0.090 -0.209 0.430 -0.119
OBB-AsBO B-As 0.156 -0.114 0.089 -0.206 0.431 -0.118
 
 
Molecule f+B f+As fB- fAs- ΔfB ΔfAs ΔωB ΔωAs
HB-AsH 0.319 0.599 0.302 0.674 0.017 -0.076 0.020 -0.086
H3CBAsCH3 0.491 0.221 0.252 0.556 0.239 -0.335 0.231 -0.324
Me3CBAsCMe3 0.518 0.160 0.346 0.460 0.172 -0.300 0.159 -0.278
HOBAsOH 0.382 0.385 0.207 0.616 0.175 -0.231 0.173 -0.228
FBAsF 0.430 0.424 0.219 0.649 0.211 -0.225 0.231 -0.246
F3CB-AsCF3 0.453 0.284 0.302 0.546 0.151 -0.261 0.186 -0.323
OBB-AsBO 0.262 0.395 0.317 0.534 -0.055 -0.139 -0.073 -0.185
F3SiB-AsSiF3 0.425 0.306 0.338 0.533 0.086 -0.227 0.110 -0.289
H3CB-AsF 0.462 0.343 0.287 0.543 0.175 -0.200 0.183 -0.209
H3CB-AsBO 0.307 0.339 0.213 0.602 0.093 -0.262 0.108 -0.304
H3CB-AsCF3 0.454 0.260 0.237 0.582 0.217 -0.322 0.236 -0.351
Me3CB-AsCF3 0.506 0.205 0.307 0.522 0.199 -0.318 0.211 -0.338
Me3CB-AsF 0.516 0.281 0.327 0.490 0.188 -0.209 0.190 -0.212
Me3CB-AsBO 0.335 0.297 0.255 0.553 0.080 -0.257 0.091 -0.292
FB-AsCH3 0.494 0.263 0.184 0.657 0.309 -0.394 0.313 -0.398
FB-AsCMe3 0.447 0.256 0.185 0.615 0.262 -0.359 0.257 -0.352
FB-AsOH 0.420 0.389 0.206 0.647 0.214 -0.258 0.224 1.746
OBB-AsCH3 0.455 0.226 0.340 0.483 0.114 -0.257 0.130 -0.293
OBB-AsCMe3 0.428 0.214 0.336 0.452 0.092 -0.238 0.102 -0.262
F3CB-AsCMe3 0.462 0.227 0.307 0.492 0.155 -0.264 0.167 -0.285
 
1 Power P. P. Chem. Rev 1999, 99, 3463.
2 Bino A. ; Ardon M. ; Shirman E. Science 2005, 308, 234.
3 Seidu I. ; Seth M. ; Ziegler T. Inorg. Chem 2013, 52, 8378.
4 Danovich D. ; Bino A. ; Shaik S. J. Phys. Chem. Lett 2013, 4, 58.
5 Lein M. ; Krapp A. ; Frenking G. J. Am. Chem. Soc 2005, 127, 6290.
6 Sekiguchi A. ; Kinjo R. ; Ichinohe M. Science 2004, 305, 1755.
7 Sasamori T. ; Hironaka K. ; Sugiyama T. ; Takagi N. ; Nagase S. ; Hosoi Y. ; Furukawa Y. ; Tokitoh N. J. Am. Chem. Soc 2008, 130, 13856.
8 Stender M. ; Phillips A. D. ; Wright R. J. ; Power P. P. Angew. Chem., Int. Ed 2002, 41, 1785.
9 Sugiyama Y. ; Sasamori T. ; Hosoi Y. ; Furukawa Y. ; Takagi N. ; Nagase S. ; Tokitoh N. J. Am. Chem. Soc 2006, 128, 1023.
10 Phillips A. D. ; Wright R. J. ; Olmstead M. M. ; Power P. P. J. Am. Chem. Soc 2002, 124, 5930.
11 Pu L. ; Twamley B. ; Power P. P. J. Am. Chem. Soc 2000, 122, 3524.
12 Wu P. C. ; Su M. D. Dalton Trans 2011, 40, 4253.
13 Wu P. C. ; Su M. D. Inorg. Chem 2011, 50, 6814.
14 Paetzold P. Adv. Inorg. Chem 1987, 31, 123.
15 Petrie M. A. ; Shoner S. C. ; Dias H. V. R. ; Power P. P. Angew. Chem., Int. Ed. Engl 1990, 29, 1033.
16 Rivard E. ; Merrill W. A. ; Fettinger J. C. ; Power P. P. Chem. Commun 2006, 3800.
17 Mardones M. A. ; Cowley A. H. ; Contreras L. ; Jones R. A. J. Organomet. Chem 1993, 455.
18 Kerins M. C. ; Fitzpatrick N. J. ; Nguyen M. T. Polyhedron 1989, 8, 969.
19 Watts J. D. ; Zant L. C. V. Chem. Phys. Lett 1996, 251, 119.
20 Lu J. S. ; Yanga M. C. ; Su M. D. PhysChemChemPhys 2017, 19, 8026.
21 Lu J. S. ; Su S. H. ; Yanga M. C. ; Wen X. T. ; Xie J. Z. ; Su M. D. Organometallics 2016, 35, 3924.
22 Lu J. S. ; Yanga M. C. ; Su M. D. ACS Omega 2017, 2, 1172.
23 Chattaraj P. K. ; Rivas N. G. ; Matus M. H. ; Galvan M. J. Phys. Chem. A 2005, 109, 25.
24 Parr R. G. ; Yang W. Density Functional Theory of Atoms and Molecules Oxford: Oxford University Press, 1989.
25 Geerlings P. ; De Proft F. ; Langenaeker W. Chem. Rev 2003, 103, 1793.
26 Parr R. G. ; Szentpaly L. v. ; Liu S. J. Am. Chem. Soc 1999, 121, 1922.
27 Chattaraj P. K. ; Sarkar U. ; Roy D. R. Chem. Rev 2006, 106, 2065.
28 Parr R. G. ; Donnelly R. A. ; Levy M. ; Palke W. E. J. Chem. Phys 1978, 68, 3801.
29 Parr R. G. ; Pearson R. G. J. Am. Chem. Soc 1983, 105, 7512.
30 Chattaraj, P. K. ; Parr, R. G. Density functional theory of Chemical Hardness in Chemical Hardness (Structure and Bonding) Vol. 80; Sen, K. D., Mingos, D. M. P. Eds. ; Springer: Berlin, 1993.
31 Chattaraj P. K. ; Giri S. ; Duley S. J. Phys. Chem. Lett 2010, 1, 1064.
32 Sanderson R. T. Science 1951, 114, 670.
33 Datta D. J. Phys. Chem 1986, 90, 4216.
34 Szentpály L. V. J. Phys. Chem. A 2015, 119, 1715.
35 Szentpály L. V. J. Mol. Model 2017, 23, 217.
36 Posthumus K. Rec. Trav. Chim 1933, 52, 25.
37 Parr R. G. ; Yang W. J. Am. Chem. Soc 1984, 106, 4049.
38 Yang W. ; Mortier W. J. J. Am. Chem. Soc 1986, 108, 5708.
39 Chattaraj P. K. ; Maiti B. ; Sarkar U. J. Phys. Chem. A 2003, 107, 4973.
40 Roy D. R. ; Parthasarathi R. ; Padmanabhan J. ; Sarkar U. ; Subramanian V. ; Chattaraj P. K. J. Phys. Chem. A 2006, 110, 1084.
41 Morell C. ; Grand A. ; Toro-Labbé A. J. Phys. Chem. A 2005, 109, 205.
42 Morell C. ; Grand A. ; Toro-Labbe A. Chem. Phys. Lett 2006, 425, 342.
43 Padmanabhan J. ; Parthasarathi R. ; Elango M. ; Subramanian V. ; Krishnamoorthy B. S. ; Gutierrez-Oliva S. ; Toro-Labbé A. ; Roy D. R. ; Chattaraj P. K. J. Phys. Chem. A 2007, 111, 37.
44 Chattaraj P. K. ; Chakraborty A. ; Giri S. J. Phys. Chem. A 2009, 113, 10068.
45 Zhao Y. ; Truhlar D. G. Theor. Chem. Account 2006, 120, 215.
46 Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; et al. Gaussian 09, Revision C. 01; Gaussian Inc. : Wallingford CT, 2010.
47 Reed A. E. ; Curtiss L. A. ; Weinhold F. Chem. Rev 1988, 88, 899.
48 Reed A. E. ; Weinstock R. B. ; Weinhold F. J. Chem. Phys 1985, 83, 735.
49 Wiberg K. B. Tetrahedron 1968, 24, 1083.
50 Bader R. F. W. Atoms in Molecules: A Quantum Theory Clarendon Press: Oxford, UK, 1990.
51 Lu T. ; Chen F. W. J. Comput. Chem 2012, 33, 580.
52 Pyykko P. ; Desclaux J. P. Acc. Chem. Res 1979, 12, 276.
53 Pyykko P. Chem. Rev 1988, 88, 563.
[1] Wenwu XU,Yi GAO. Thiolate-Protected Hollow Gold Nanospheres[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 770-775.
[2] Marco FRANCO-PÉREZ,José L. GÁZQUEZ,W. AYERS Paul,Alberto VELA. Thermodynamic Dual Descriptor[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 683-391.
[3] László VON SZENTPÁLY. Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 675-682.
[4] Ulises OROZCO-VALENCIA,L. GÁZQUEZ José,Alberto VELA. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 692-698.
[5] Carlos CÁRDENAS,Macarena MUÑOZ,Julia CONTRERAS,Paul W. AYERS,Tatiana GÓMEZ,Patricio FUENTEALBA. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 631-638.
[6] Donghai. YU,Chunying. RONG,Tian. LU,Frank. DE PROFT,Shubin. LIU. Aromaticity Study of Benzene-Fused Fulvene Derivatives Using the Information-Theoretic Approach in Density Functional Reactivity Theory[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 639-649.
[7] Chaoxian YAN,Fan YANG,Ruizhi WU,Dagang ZHOU,Xing YANG,Panpan ZHOU. Application of Natural Orbital Fukui Functions and Bonding Reactivity Descriptor in Understanding Bond Formation Mechanisms Underlying [2+4] and [4+2] Cycloadditions of o-Thioquinones with 1, 3-Dienes[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 497-502.
[8] Xiaoqin DING,Junjie DING,Dayu LI,Li PAN,Chengxin PEI. Toxicity Prediction of Organoph Osphorus Chemical Reactivity Compounds Based on Conceptual DFT[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 314-322.
[9] Roman F NALEWAJSKI. Chemical Reactivity Description in Density-Functional and Information Theories[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2491-2509.
[10] Jun-Feng ZHAO,Xiao-Li SUN,Xu-Ri HUANG,Ji-Lai LI. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1175-1182.
[11] Shu-Bin LIU. Information-Theoretic Approach in Density Functional Reactivity Theory[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 98-118.
[12] ZHAO Jun-Feng, SUN Xiao-Li, LI Ji-Lai, HUANG Xu-Ri. Theoretical Study of Methanol C―H and O―H Bond Activation by PtRu Clusters[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1077-1085.
[13] Shu-Bin. LIU,Chun-Ying. RONG,Ze-Min. WU,Tian. LU. Rényi Entropy, Tsallis Entropy and Onicescu Information Energy in Density Functional Reactivity Theory[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2057-2063.
[14] PENG Zhong, YAN Wen-Yi, WANG Shao-Na, ZHENG Shi-Li, DU Hao, ZHANG Yi. Effect of Alkali Concentration, Oxygen Partial Pressure and Temperature on Oxygen Reduction Reaction on Pt Electrode in NaOH Solution[J]. Acta Phys. -Chim. Sin., 2014, 30(1): 67-74.
[15] LUO Bing, XIA Da-Hai. Characterization of pH Effect on Corrosion Resistance of Nuclear Steam Generator Tubing Alloy by In-situ Scanning Electrochemical Microscopy[J]. Acta Phys. -Chim. Sin., 2014, 30(1): 59-66.