Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (2): 213-218    DOI: 10.3866/PKU.WHXB201707172
Special Issue: Special Issue for Highly Cited Researchers
ARTICLE     
An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries
Qiang MA1,2,Yongsheng HU1,*(),Hong LI1,Liquan CHEN1,Xuejie HUANG1,Zhibin ZHOU2,*()
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Download: HTML     PDF(1369KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A solid polymer electrolyte (SPE), composed of sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) and poly(ethylene oxide) (PEO), is prepared by a simple solution-casting method. The physicochemical and electrochemical properties of the NaTFSI/PEO ([EO]/[Na+]=15) SPE in terms of its phase transitions, crystallization, thermal stability, ionic conductivity, and anodic electrochemical stability are systematically investigated. We demonstrate that the NaTFSI/PEO SPE has a relatively high ionic conductivity (σ ≈ 10-3 S·cm-1) at 80℃, excellent electrochemical stability (4.86 V vs. Na+/Na), and thermal stability up to 350℃. More importantly, the NaTFSI-based SPE delivers not only excellent chemical and electrochemical stability with sodium metal, but also good cycling and rate performances in an Na|SPE|NaCu1/9Ni2/9Fe1/3Mn1/3O2 cell.



Key wordsSodium bis (trifluoromethanesulfonyl) imide      Solid polymer electrolyte      Poly (ethylene oxide)      Sodium battery     
Received: 06 June 2017      Published: 17 July 2017
MSC2000:  O646  
Fund:  the National Key Technologies R & D Program, China(2016YFB0901504);the National Natural Science Foundation of China(51421002);the National Natural Science Foundation of China(51472268);the National Natural Science Foundation of China(51172083)
Corresponding Authors: Yongsheng HU,Zhibin ZHOU     E-mail: yshu@iphy.ac.cn;zb-zhou@mail.hust.edu.cn
Cite this article:

Qiang MA,Yongsheng HU,Hong LI,Liquan CHEN,Xuejie HUANG,Zhibin ZHOU. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries. Acta Phys. -Chim. Sin., 2018, 34(2): 213-218.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201707172     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I2/213

Fig 1 Photograph for the membrane of the NaTFSI/PEO ([EO]/[Na+] = 15) solid polymer electrolyte.
Fig 2 (a) DSC traces of neat PEO, NaTFSI, and the NaTFSI/PEO ([EO]/[Na+] = 15) solid polymer electrolyte; (b) XRD patterns of the neat PEO and NaTFSI/PEO ([EO]/[Na+] = 15) solid polymer electrolyte; (c) TGA traces of neat PEO, NaTFSI, and the NaTFSI/PEO ([EO]/[Na+] = 15) solid polymer electrolyte.
Samples Tg/℃ Tm/℃ Td/℃ ?Hm/(J?g?1) χc/%
NaTFSI 417.5
NaTFSI/PEO ?33.2 41.6/62.5 375.1 57.8 28.5
PEO 72.1 374.5 147.8 72.8
Table 1 Characterization data for phase transition and thermal decomposition temperature of the NaTFSI/PEO ([EO]/[Na+] = 15) solid polymer electrolyte, as well as the neat PEO and NaTFSI.
Fig 3 (a) Temperature dependence of the ionic conductivities for the NaTFSI/PEO ([EO]/[Na+] = 15) solid polymer electrolyte; (b) Linear sweep voltammogram of the NaTFSI/PEO ([EO]/[Na+] = 15) solid polymer electrolyte.
Fig 4 Symmetric Na|SPE|Na coin-type cell with the NaTFSI/PEO ([EO]/[Na+] = 15) solid polymer electrolyte at 80 ℃.
Fig 5 Electrochemical performances of the Na|SPE|NaCu1/9Ni2/9Fe1/3Mn1/3O2 cell with the NaTFSI/PEO ([EO]/[Na+] = 15) solid polymer electrolyte at 80 ℃.
Fig 6 Rate capabilities of the Na|SPE|NaCu1/9Ni2/9Fe1/3Mn1/3O2 cell with the NaTFSI/PEO ([EO]/[Na+] = 15) solid polymer electrolyte at 80 ℃.
1 Goodenough J. B. ; Park K. S. J. Am. Chem. Soc. 2013, 135, 1167.
2 Armand M. ; Tarascon J. M. Nature 2008, 451, 652.
3 Xu K. Chem. Rev. 2004, 104, 4303.
4 Etacheri V. ; Marom R. ; Elazari R. ; Salitra G. ; Aurbach D. Energy Environ. Sci. 2011, 4, 3243.
5 Tarascon J. M. Nat. Chem. 2010, 2, 510.
6 Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
7 Kim S. W. ; Seo D. H. ; Ma X. H. ; Ceder G. ; Kang K. Adv. Energy Mater. 2012, 2, 710.
8 Li Y. M. ; Hu Y. S. ; Qi X. G. ; Rong X. H. ; Li H. ; Huang X. J. ; Chen L. Q. Energy Storage Mater. 2016, 5, 191.
9 Palomares V. ; Serras P. ; Villaluenga I. ; Hueso K. B. ; Carretero-Gónzalez J. ; Rojo T. Energy Environ. Sci. 2012, 5, 5884.
10 Jian Z. L. ; Han W. Z. ; Lu X. ; Yang H. X. ; Hu Y. S. ; Zhou J. ; Zhou Z. B. ; Li J. Q. ; Chen W. ; Chen D. F. ; Chen L. Q. Adv. Energy Mater. 2013, 3, 156.
11 Li W. H. ; Yang Z. H. ; Li M. S. ; Jiang Y. ; Wei X. ; Zhong X. W. ; Gu L. ; Yu Y. Nano Lett. 2016, 16, 1546.
12 Wu F. ; Zhu N. ; Bai Y. ; Liu L. B. ; Zhou H. ; Wu C. ACS Appl. Mater. Interfaces 2016, 8, 21381.
13 Colò F. ; Bella F. ; Nair J. R. ; Destro M. ; Gerbaldi C. Electrochim. Acta 2015, 174, 185.
14 Ma Q. ; Zhang H. ; Zhou C. W. ; Zheng L. P. ; Cheng P. F. ; Nie J. ; Feng W. F. ; Hu Y. S. ; Li H. ; Huang X. J. ; Chen L. Q. ; Armand M. ; Zhou Z. B. Angew. Chem. Int. Ed. 2016, 55, 2521.
15 Long L. Z. ; Wang S. J. ; Xiao M. ; Meng Y. Z. J. Mater. Chem. A 2016, 4, 10038.
16 Ma Q. ; Xia Y. ; Feng W. F. ; Nie J. ; Hu Y. S. ; Li H. ; Huang X. J. ; Chen L. Q. ; Armand M. ; Zhou Z. B. RSC Adv. 2016, 6, 32454.
17 Moreno J. S. ; Armand M. ; Berman M. B. ; Greenbaum S. G. ; Scrosati B. ; Panero S. J. Power Sources 2014, 248, 695.
18 Boschin A. ; Johansson P. Electrochim. Acta 2015, 175, 124.
19 Qi X. G. ; Ma Q. ; Liu L. L. ; Hu Y. S. ; Li H. ; Zhou Z. B. ; Huang X. J. ; Chen L. Q. ChemElectroChem 2016, 3, 1741.
20 Mu L. Q. ; Qi X. G. ; Hu Y. S. ; Li H. ; Chen L. Q. ; Huang X. J. Energy Storage Sci. Tech. 2016, 5, 324.
21 Ma Q. ; Liu J. J. ; Qi X. G. ; Rong X. H. ; Shao Y. J. ; Feng W. F. ; Nie J. ; Hu Y. S. ; Li H. ; Huang X. J. ; Chen L. Q. ; Zhou Z. B. J. Mater. Chem. A 2017, 5, 7738.
22 Ma Q. ; Qi X. G. ; Tong B. ; Zheng Y. H. ; Feng W. F. ; Nie J. ; Hu Y. S. ; Li H. ; Huang X. J. ; Chen L. Q. ; Zhou Z. B. ACS Appl. Mater. Interfaces 2016, 8, 29705.
[1] Jiang Jun-Hua, Chen Lan, Wu Bing-Liang, Zhai Run-Sheng. Electrochemical Reduction of Nitrobenzene on the Cu/C-Nafion Composite Electrode[J]. Acta Phys. -Chim. Sin., 1998, 14(08): 704-708.
[2] Chen Zhen. Application of Solid Polymer Electrolyte in Electrooxidation of Cinnamyl Alcohol(II)——Influence of Follow-up Reaction on Electro-catalytic Reaction[J]. Acta Phys. -Chim. Sin., 1993, 9(03): 319-324.
[3] Chen Zhen. Application of SPE(Solid Polymer Electrolyte) in Electrooxidation of Cinnamyl Alcohol(I)[J]. Acta Phys. -Chim. Sin., 1993, 9(02): 181-186.