Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (2): 213-218    DOI: 10.3866/PKU.WHXB201707172
Special Issue: Special Issue for Highly Cited Researchers
An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries
MA Qiang1,2, HU Yongsheng1, LI Hong1, CHEN Liquan1, HUANG Xuejie1, ZHOU Zhibin2
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China;
2 School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Download:   PDF(1369KB) Export: BibTeX | EndNote (RIS)      


A solid polymer electrolyte (SPE), composed of sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) and poly(ethylene oxide) (PEO), is prepared by a simple solution-casting method. The physicochemical and electrochemical properties of the NaTFSI/PEO ([EO]/[Na+]=15) SPE in terms of its phase transitions, crystallization, thermal stability, ionic conductivity, and anodic electrochemical stability are systematically investigated. We demonstrate that the NaTFSI/PEO SPE has a relatively high ionic conductivity (σ ≈ 10-3 S·cm-1) at 80℃, excellent electrochemical stability (4.86 V vs. Na+/Na), and thermal stability up to 350℃. More importantly, the NaTFSI-based SPE delivers not only excellent chemical and electrochemical stability with sodium metal, but also good cycling and rate performances in an Na|SPE|NaCu1/9Ni2/9Fe1/3Mn1/3O2 cell.

Key wordsSodium bis (trifluoromethanesulfonyl) imide      Solid polymer electrolyte      Poly (ethylene oxide)      Sodium battery     
Received: 06 June 2017      Published: 17 July 2017

The project was supported by the National Key Technologies R&D Program,China (2016YFB0901504),the National Natural Science Foundation of China (51421002,51472268,51172083).

Corresponding Authors: HU Yongsheng, ZHOU Zhibin     E-mail:;
Cite this article:

MA Qiang, HU Yongsheng, LI Hong, CHEN Liquan, HUANG Xuejie, ZHOU Zhibin. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries. Acta Phys. -Chim. Sin., 2018, 34(2): 213-218.

URL:     OR

(1) Goodenough, J. B.; Park, K. S. J. Am. Chem. Soc. 2013, 135, 1167. doi: 10.1021/ja3091438
(2) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a
(3) Xu, K. Chem. Rev. 2004, 104, 4303. doi: 10.1021/cr030203g
(4) Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energy Environ. Sci. 2011, 4, 3243. doi: 10.1039/c1ee01598b
(5) Tarascon, J. M. Nat. Chem. 2010, 2, 510. doi: 10.1038/nchem.680
(6) Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741
(7) Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Adv. Energy Mater. 2012, 2, 710. doi: 10.1002/aenm.201200026
(8) Li, Y. M.; Hu, Y. S.; Qi, X. G.; Rong, X. H.; Li, H.; Huang, X. J.; Chen, L. Q. Energy Storage Mater. 2016, 5, 191. doi: 10.1016/j.ensm.2016.07.006
(9) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gónzalez, J.; Rojo, T. Energy Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j
(10) Jian, Z. L.; Han, W. Z.; Lu, X.; Yang, H. X.; Hu, Y. S.; Zhou, J.; Zhou, Z. B.; Li, J. Q.; Chen, W.; Chen, D. F.; Chen, L. Q. Adv. Energy Mater. 2013, 3, 156. doi: 10.1002/aenm.201200558
(11) Li, W. H.; Yang, Z. H.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Nano Lett. 2016, 16, 1546. doi: 10.1021/acs.nanolett.5b03903
(12) Wu, F.; Zhu, N.; Bai, Y.; Liu, L. B.; Zhou, H.; Wu, C. ACS Appl. Mater. Interfaces 2016, 8, 21381. doi: 10.1021/acsami.6b07054
(13) Colò, F.; Bella, F.; Nair, J. R.; Destro, M.; Gerbaldi, C. Electrochim. Acta 2015, 174, 185. doi: 10.1016/j.electacta.2015.05.178
(14) Ma, Q.; Zhang, H.; Zhou, C. W.; Zheng, L. P.; Cheng, P. F.; Nie, J.; Feng, W. F.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q.; Armand, M.; Zhou, Z. B. Angew. Chem. Int. Ed. 2016, 55, 2521. doi: 10.1002/anie.201509299
(15) Long, L. Z.; Wang, S. J.; Xiao, M.; Meng, Y. Z. J. Mater. Chem. A 2016, 4, 10038. doi: 10.1039/c6ta02621d
(16) Ma, Q.; Xia, Y.; Feng, W. F.; Nie, J.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q.; Armand, M.; Zhou, Z. B. RSC Adv. 2016, 6, 32454. doi: 10.1039/c6ra01387b
(17) Moreno, J. S.; Armand, M.; Berman, M. B.; Greenbaum, S. G.; Scrosati, B.; Panero, S. J. Power Sources 2014, 248, 695. doi: 10.1016/j.jpowsour.2013.09.137
(18) Boschin, A.; Johansson, P. Electrochim. Acta 2015, 175, 124. doi: 10.1016/j.electacta.2015.03.228
(19) Qi, X. G.; Ma, Q.; Liu, L. L.; Hu, Y. S.; Li, H.; Zhou, Z. B.; Huang, X. J.; Chen, L. Q. ChemElectroChem 2016, 3, 1741. doi: 10.1002/celc.201600221
(20) Mu, L. Q.; Qi, X. G.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Energy Storage Sci. Tech. 2016, 5, 324. doi: 10.3969/j.issn.2095-4239.2016.03.009
(21) Ma, Q.; Liu, J. J.; Qi, X. G.; Rong, X. H.; Shao, Y. J.,; Feng, W. F.; Nie, J.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q.; Zhou, Z. B. J. Mater. Chem. A 2017, 5, 7738. doi: 10.1039/c7ta01820g
(22) Ma, Q.; Qi, X. G.; Tong, B.; Zheng, Y. H.; Feng, W. F.; Nie, J.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q.; Zhou, Z. B. ACS Appl. Mater. Interfaces 2016, 8, 29705. doi: 10.1021/acsami.6b10597

[1] Jiang Jun-Hua, Chen Lan, Wu Bing-Liang, Zhai Run-Sheng. Electrochemical Reduction of Nitrobenzene on the Cu/C-Nafion Composite Electrode[J]. Acta Phys. -Chim. Sin., 1998, 14(08): 704-708.
[2] Chen Zhen. Application of Solid Polymer Electrolyte in Electrooxidation of Cinnamyl Alcohol(II)——Influence of Follow-up Reaction on Electro-catalytic Reaction[J]. Acta Phys. -Chim. Sin., 1993, 9(03): 319-324.
[3] Chen Zhen. Application of SPE(Solid Polymer Electrolyte) in Electrooxidation of Cinnamyl Alcohol(I)[J]. Acta Phys. -Chim. Sin., 1993, 9(02): 181-186.