Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (2): 219-226    DOI: 10.3866/PKU.WHXB201707173
ARTICLE     
Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries
Xiyue ZHANG1,Yalan HUANG1,3,Shuwei WU2,Yinxiang ZENG1,Minghao YU1,Faliang CHENG3,Xihong LU1,2,*(),Yexiang TONG1,*()
1 MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
2 Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education), Nankai University, Tianjin 300071, P. R. China
3 Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, Guangdong Province, P. R. China
Download: HTML     PDF(2661KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Sodium ion batteries (SIBs), a promising substitute for lithium ion batteries (LIBs), have attracted extensive attention due to the abundance and low cost of sodium resources. In addition, flexible sodium-ion batteries may be able to satisfy the demands of large-scale energy storage applications for portable, wearable, and flexible electronics. Compared to the development of cathode materials, the progress on anode materials has been relatively slow. Therefore, the exploration of low-cost anode materials with high Na+ storage capacity is very important. Herein, we present oxygen-deficient Na2Ti3O7 nanobelts grown on carbon cloth (CC) as a promising novel flexible anode material for SIBs. Free-standing Na2Ti3O7 nanobelts with oxygen vacancies were directly grown on CC through a simple hydrothermal and thermal reduction process. Benefiting from the improved conductivity and increased active sites after the introduction of oxygen vacancies, the new material exhibits a high reversible capacity of 100 mAh·cm-2 at 200 mA·cm-2, with almost 80% capacitance retention after 200 cycles. When the current density was increased to 400 mA·cm-2, a high capacity of 69.7 mAh·cm-2 was achieved, which is three times that of bare Na2Ti3O7 nanobelts on CC. This 3D oxygen-deficient electrode can significantly promote the transport of Na+ ions and electrons, leading to remarkably improved electrochemical properties. Furthermore, this work constitutes a promising strategy to rationally design and fabricate novel Na2Ti3O7-based anodes with enhanced capacitive behavior, which hold great promise for energy storage/conversion devices, facilitating the large-scale implementation of high-performance flexible SIBs.



Key wordsOxygen-deficient      Na2Ti3O7      Flexible      Anode      Sodium ion battery     
Received: 06 June 2017      Published: 17 July 2017
MSC2000:  O646  
Fund:  the National Key R & D Program of China(2016YFA0202604);National Natural Science Foundation of China(2143306);Guangdong Natural Science Funds for Distinguished Young Scholar, China(2014A0306048);Tip-top Scientic and Technical Innovative Youth Talents of Guangdong Special Support Program, China(2015TQ01C205);Technology Planning Project of Guangdong Province, China(2015B090927007);Pearl River Nova Program of Guangzhou, China(201610010080);Science and Technology Program of Guangzhou, China(201604010124);Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, China(MTEC-2015M05)
Corresponding Authors: Xihong LU,Yexiang TONG     E-mail: luxh6@mail.sysu.edu.cn;chedhx@mail.sysu.edu.cn
Cite this article:

Xiyue ZHANG,Yalan HUANG,Shuwei WU,Yinxiang ZENG,Minghao YU,Faliang CHENG,Xihong LU,Yexiang TONG. Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries. Acta Phys. -Chim. Sin., 2018, 34(2): 219-226.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201707173     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I2/219

 
 
 
 
1 Xiao Y. M. ; Wu J. H. ; Yue G. T. ; Lin J. M. ; Huang M. L. ; Fan L. Q. ; Lan Z. Acta Phys. -Chim. Sin. 2012, 28 (3), 578.
1 肖尧明; 吴季怀; 岳根田; 林建明; 黄妙良; 范乐庆; 兰章. 物理化学学报, 2012, 28 (3), 578.
2 Xia K. L. ; Jian M. Q. ; Zhang Y. Y. Acta Phys. -Chim. Sin. 2016, 32 (10), 2427.
2 夏凯伦; 蹇木强; 张莹莹. 物理化学学报, 2016, 32 (10), 2427.
3 Zhuang L. Acta Phys. -Chim. Sin. 2017, 33, 655.
3 庄林. 物理化学学报, 2017, 33, 655.
4 Huang Z. L. ; Wang L. P. ; Mou C. X. ; Li J. Z. Acta Phys. -Chim. Sin. 2014, 30, 1787.
4 黄宗令; 王丽平; 牟成旭; 李晶泽. 物理化学学报, 2014, 30, 1787.
5 Xu J. ; Yang D. Z. ; Liao X. Z. ; He Y. S. ; Ma Z. F. Acta Phys. -Chim. Sin. 2015, 31, 913.
5 许婧; 杨德志; 廖小珍; 何雨石; 马紫峰. 物理化学学报, 2015, 31, 913.
6 Zhang W. ; Liu Y. ; Chen C. ; Li Z. ; Huang Y. ; Hu X. Small 2015, 11 (31), 3822.
7 Lamuel David R. B. ; Singh G. ACS Nano 2014, 8 (2), 1759.
8 Yuan S. ; Huang X. D. ; Ma H. ; Wang M. F. ; Zhang X. Adv. Mater. 2014, 26 (14), 2273.
9 Wang X. ; Li Y. ; Gao Y. ; Wang Z. ; Chen L. Nano Energy 2015, 13, 687.
10 Zhang Y. ; Guo L. ; Yang S. Nanoscale 2015, 7, 14618.
11 Senguttuvan P. ; Rousse G. ; Seznec V. ; Tarascon J. M. ; Palacín M. R. Chem. Mater. 2011, 23, 4109.
12 Chen C. ; Wen Y. ; Hu X. ; Ji X. ; Yan M. ; Mai L. ; Hu P. ; Shan B. ; Huang Y. Nat. Commun. 2015, 6, 6929.
13 Naeyaert P. J. P. ; Avdeev M. ; Sharma N. ; Yahia H. B. ; Ling C. D. Chem. Mater. 2014, 26, 7067.
14 Ni J. ; Fu S. ; Wu C. ; Maier J. ; Yu Y. ; Li L. Adv. Mater. 2016, 28, 2259.
15 Liao J. Y. ; Manthiram A. Nano Energy 2015, 18, 20.
16 Doeff M. M. ; Cabana J. ; Shirpour M. J. Inorg. Organomet. Polym. Mater. 2013, 24, 5.
17 Rousse G. ; Arroyo-de Dompablo M. E. ; Senguttuvan P. ; Ponrouch A. ; Tarascon J. M. ; Palacín M. R. Chem. Mater. 2013, 25, 4946.
18 Dong S. ; Shen L. ; Li H. ; Nie P. ; Zhu Y. ; Sheng Q. ; Zhang X. J. Mater. Chem. A 2015, 3, 21277.
19 Andersson S. ; Wadsley A. D. Acta Cryst. 1961, 14, 1245.
20 Xu L. ; Xia J. ; Wang L. ; Qian J. ; Li H. ; Wang K. ; Sun K. ; He M. Chem. Eur. J. 2014, 20, 2244.
21 Wang W. ; Yu C. ; Lin Z. ; Hou J. ; Zhu H. ; Jiao S. Nanoscale 2013, 5, 594.
22 Zou W. ; Li J. ; Deng Q. ; Xue J. ; Dai X. ; Zhou A. ; Li J. Solid State Ionics 2014, 262, 192.
23 Pan H. ; Lu X. ; Yu X. ; Hu Y. S. ; Li H. ; Yang X. Q. ; Chen L. Adv. Energy Mater. 2013, 3, 1186.
24 Wang W. ; Yu C. ; Liu Y. ; Hou J. ; Zhu H. ; Jiao S. RSC. Adv. 2013, 3, 1041.
25 Yin J. ; Qi L. ; Wang H. ACS. Appl. Mater. Interfaces 2012, 4, 2762.
26 Yan Z. ; Liu L. ; Shu H. ; Yang X. ; Wang H. ; Tan J. ; Zhou Q. ; Huang Z. ; Wang X. J. Power Sources 2015, 274, 8.
27 Fu S. ; Ni J. ; Xu Y. ; Zhang Q. ; Li L. Nano Lett. 2016, 16, 7.
28 Li Z. ; Shen W. ; Wang C. ; Xu Q. ; Liu H. ; Wang Y. ; Xia Y. J. Mater. Chem. A 2016, 4, 17111.
29 Xie F. ; Zhang L. ; Su D. ; Jaroniec M. ; Qiao S. Z. Adv. Mater. 2017.
30 Lu X. ; Wang G. ; Xie S. ; Shi J. ; Li W. ; Tong Y. ; Li Y. Chem. Commun. 2012, 48, 7717.
31 Chen C. ; Wang J. ; Zhao Q. ; Wang Y. ; Chen J. ACS. Energy Lett. 2016, 1, 1165.
32 Zhang Y. ; Guo L. ; Yang S. Chem. Commun. 2014, 50, 14029.
33 M K. H. ; Miyaji F. ; Kokubo T. ; Nakamura T. J. Mater. Sci. Mater. Med. 1997, 8, 341.
34 Ma K. F. R. ; Sasaki T. ; Osada M. ; Bando Y. J. Phys. Chem. B 2005, 109, 6210.
35 Dylla A. G. ; Xiao P. ; Henkelman G. ; Stevenson K. J. J. Phys. Chem. Lett. 2012, 3 (15), 2015.
36 Liu C. ; Sun T. ; Wu L. ; Liang J. ; Huang Q. ; Chen J. ; Hou W. Appl. Catal. B: Environ. 2015, 170-171, 17.
37 Tang Y. ; Tao J. ; Zhang Y. ; Wu T. ; Tao H. ; Bao Z. Acta Phys. -Chim. Sin. 2008, 24, 2191.
37 汤育欣; 陶杰; 张焱焱; 吴涛; 陶海军; 包祖国. 物理化学学报, 2008, 24, 2191.
38 Li X. ; Liu S. Acta Phys. -Chim. Sin. 2008, 24, 2019.
39 Ko J. S. ; Doan-Nguyen V. V. ; Kim H. S. ; Muller G. A. ; Serino A. C. ; Weiss P. S. ; Dunn B. S. ACS. Appl. Mater. Interfaces 2017, 9, 1416.
40 Zhan X. ; Shirpour M. Chem. Commun. 2017, 53, 204.
41 Ho C. K. ; Li C. Y. V. ; Chan K. Y. Ind. Eng. Chem. Res. 2016, 55, 10065.
42 Rudola A. ; Saravanan K. ; Mason C. W. ; Balaya P. J. Mater. Chem. A 2013, 1, 2653.
43 Ge Y. ; Jiang H. ; Zhu J. ; Lu Y. ; Chen C. ; Hu Y. ; Qiu Y. ; Zhang X. Electrochim. Acta 2015, 157, 142.
44 Rudola A. ; Saravanan K. ; Devaraj S. ; Gong H. ; Balaya P. Chem. Commun. 2013, 49, 3.
45 Dong S. ; Shen L. ; Li H. ; Pang G. ; Dou H. ; Zhang X. Adv. Funct. Mater. 2016, 26, 3703.
46 Xu X. ; Yan M. ; Tian X. ; Yang C. ; Shi M. ; Wei Q. ; Xu L. ; Mai L. Nano Lett. 2015, 15, 3879.
47 Zhang Z. J. ; Feng A. ; Sun X. Y. ; Guo K. ; Man Z. Y. ; Zhao J. T. J. Alloy. Compd. 2014, 592, 73.
48 Yang Q. ; Chen L. ; Hu C. ; Wang S. ; Zhang J. ; Wu W. J. Alloy. Compd. 2014, 612, 301.
49 Gu Y. ; Su X. ; Du Y. ; Wang C. Appl. Surf. Sci. 2010, 256, 5862.
[1] ZHAO Mingyu, ZHU Lin, FU Bowen, JIANG Suhua, ZHOU Yongning, SONG Yun. Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 193-199.
[2] Xi CHEN,Shengli ZHANG. Modulation of Molecular Sensing Properties of Graphdiyne Based on 3d Impurities[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1061-1073.
[3] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[4] Lei FANG,Mingjun SUN,Xinrui CAO,Zexing CAO. Mechanical and Optical Properties of a Novel Diamond-Like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor: a First-Principles Study[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 296-302.
[5] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[6] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[7] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[8] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[9] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[10] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 845-852.
[11] Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499.
[12] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[13] Shuai LIU,Lu YAO,Qin ZHANG,Lu-Lu LI,Nan-Tao HU,Liang-Ming WEI,Hao WEI. Advances in High-Performance Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2339-2358.
[14] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522.
[15] Bo PENG,Yao-Lin XU,Fokko M. MULDER. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2127-2132.