Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (2): 219-226    DOI: 10.3866/PKU.WHXB201707173
Article     
Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries
ZHANG Xiyue1, HUANG Yalan1,3, WU Shuwei2, ZENG Yinxiang1, YU Minghao1, CHENG Faliang3, LU Xihong1,2, TONG Yexiang1
1 MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China;
2 Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education), Nankai University, Tianjin 300071, P. R. China;
3 Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, Guangdong Province, P. R. China
Download:   PDF(2661KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Sodium ion batteries (SIBs), a promising substitute for lithium ion batteries (LIBs), have attracted extensive attention due to the abundance and low cost of sodium resources. In addition, flexible sodium-ion batteries may be able to satisfy the demands of large-scale energy storage applications for portable, wearable, and flexible electronics. Compared to the development of cathode materials, the progress on anode materials has been relatively slow. Therefore, the exploration of low-cost anode materials with high Na+ storage capacity is very important. Herein, we present oxygen-deficient Na2Ti3O7 nanobelts grown on carbon cloth (CC) as a promising novel flexible anode material for SIBs. Free-standing Na2Ti3O7 nanobelts with oxygen vacancies were directly grown on CC through a simple hydrothermal and thermal reduction process. Benefiting from the improved conductivity and increased active sites after the introduction of oxygen vacancies, the new material exhibits a high reversible capacity of 100 mAh·cm-2 at 200 mA·cm-2, with almost 80% capacitance retention after 200 cycles. When the current density was increased to 400 mA·cm-2, a high capacity of 69.7 mAh·cm-2 was achieved, which is three times that of bare Na2Ti3O7 nanobelts on CC. This 3D oxygen-deficient electrode can significantly promote the transport of Na+ ions and electrons, leading to remarkably improved electrochemical properties. Furthermore, this work constitutes a promising strategy to rationally design and fabricate novel Na2Ti3O7-based anodes with enhanced capacitive behavior, which hold great promise for energy storage/conversion devices, facilitating the large-scale implementation of high-performance flexible SIBs.



Key wordsOxygen-deficient      Na2Ti3O7      Flexible      Anode      Sodium ion battery     
Received: 06 June 2017      Published: 17 July 2017
O646  
Fund:  

The project was supported by the National Key R&D Program of China (2016YFA0202604),National Natural Science Foundation of China (21403306),Guangdong Natural Science Funds for Distinguished Young Scholar,China (2014A030306048),Tip-top Scientic and Technical Innovative Youth Talents of Guangdong Special Support Program,China (2015TQ01C205),Technology Planning Project of Guangdong Province,China (2015B090927007),Pearl River Nova Program of Guangzhou,China (201610010080),Science and Technology Program of Guangzhou,China (201604010124) and Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion,China (MTEC-2015M05).

Corresponding Authors: LU Xihong, TONG Yexiang     E-mail: luxh6@mail.sysu.edu.cn;chedhx@mail.sysu.edu.cn
Cite this article:

ZHANG Xiyue, HUANG Yalan, WU Shuwei, ZENG Yinxiang, YU Minghao, CHENG Faliang, LU Xihong, TONG Yexiang. Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries. Acta Phys. -Chim. Sin., 2018, 34(2): 219-226.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201707173     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I2/219

(1) Xiao, Y. M.; Wu, J. H.; Yue, G. T.; Lin, J. M.; Huang, M. L.; Fan, L. Q.; Lan, Z. Acta Phys. -Chim. Sin. 2012, 28 (3), 578. [肖尧明, 吴季怀, 岳根田, 林建明, 黄妙良, 范乐庆, 兰章. 物理化学学 报, 2012, 28 (3), 578.] doi: 10.3866/PKU.WHXB201201032
(2) Xia, K. L.; Jian, M. Q.; Zhang, Y. Y. Acta Phys. -Chim. Sin. 2016, 32 (10), 2427. [夏凯伦, 蹇木强, 张莹莹. 物理化学学报, 2016, 32 (10), 2427.] doi: 10.3866/PKU.WHXB201607261
(3) Zhuang, L. Acta Phys. -Chim. Sin. 2017, 33, 655. [庄林. 物理化 学学报, 2017, 33, 655.] doi: 10.3866/PKU.WHXB201703093
(4) Huang, Z. L.; Wang, L. P.; Mou, C. X.; Li, J. Z. Acta Phys. -Chim. Sin. 2014, 30, 1787. [黄宗令, 王丽平, 牟成旭, 李晶泽. 物理化 学学报, 2014, 30, 1787.] doi: 10.3866/PKU.WHXB20140852
(5) Xu, J.; Yang, D. Z.; Liao, X. Z.; He, Y. S.; Z. F. Ma, Acta Phys. -Chim. Sin. 2015, 31, 913. [许婧, 杨德志, 廖小珍, 何雨石, 马紫峰. 物理化学学报, 2015, 31, 913.] doi: 10.3866/PKU.WHXB201503162
(6) Zhang, W.; Liu, Y.; Chen, C.; Li, Z.; Huang, Y.; Hu, X. Small 2015, 11 (31), 3822. doi: 10.1002/smll.201500783
(7) Lamuel David, R. B.; Singh, G. ACS Nano 2014, 8 (2), 1759. doi: 10.1021/nn406156b
(8) Yuan, S.; Huang, X. D.; Ma, H.; Wang, M. F.; Zhang, X. Adv. Mater. 2014, 26 (14), 2273. doi: 10.1002/adma.201304469
(9) Wang, X.; Li, Y.; Gao, Y.; Wang, Z.; Chen, L. Nano Energy 2015, 13, 687. doi: 10.1016/j.nanoen.2015.03.029
(10) Zhang, Y.; Guo, L.; Yang, S. Nanoscale 2015, 7, 14618. doi: 10.1039/C5NR03076E
(11) Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon J. M.; Palacín, M. R. Chem. Mater. 2011, 23, 4109. doi: 10.1021/cm202076g
(12) Chen, C.; Wen, Y.; Hu, X.; Ji, X.; Yan, M.; Mai, L.; Hu, P.; Shan, B.; Huang, Y. Nat. Commun. 2015, 6, 6929. doi: 10.1038/ncomms7929
(13) Naeyaert, P. J. P.; Avdeev, M.; Sharma, N.; Yahia, H. B.; Ling, C. D. Chem. Mater. 2014, 26, 7067. doi: 10.1021/cm5035358
(14) Ni, J.; Fu, S.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Adv. Mater. 2016, 28, 2259. doi: 10.1002/adma.201504412
(15) Liao, J. Y.; Manthiram, A. Nano Energy 2015, 18, 20. doi: 10.1016/j.nanoen.2015.09.014
(16) Doeff, M. M.; Cabana, J.; Shirpour, M. J. Inorg. Organomet. Polym. Mater. 2013, 24, 5. doi: 10.1007/s10904-013-9977-8
(17) Rousse, G.; Arroyo-de Dompablo, M. E.; Senguttuvan, P.; Ponrouch, A.; Tarascon, J. M.; Palacín, M. R. Chem. Mater. 2013, 25, 4946. doi: 10.1021/cm4032336
(18) Dong, S.; Shen, L.; Li, H.; Nie, P.; Zhu, Y.; Sheng, Q.; Zhang, X.; J. Mater. Chem. A 2015, 3, 21277. doi: 10.1039/C5TA05714K
(19) Andersson, S.; Wadsley, A. D. Acta Cryst. 1961, 14, 1245. doi: 10.1107/S0365110X61003636
(20) Xu, L.; Xia, J.; Wang, L.; Qian, J.; Li, H.; Wang, K.; Sun, K.; He, M. Chem. Eur. J. 2014, 20, 2244. doi: 10.1002/chem.201304312
(21) Wang, W.; Yu, C.; Lin, Z.; Hou, J.; Zhu, H.; Jiao, S. Nanoscale 2013, 5, 594. doi: 10.1039/C2NR32661B
(22) Zou, W.; Li, J.; Deng, Q.; Xue, J.; Dai, X.; Zhou, A.; Li, J. Solid State Ionics 2014, 262, 192. doi: 10.1016/j.ssi.2013.11.005
(23) Pan, H.; Lu, X.; Yu, X.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Adv. Energy Mater. 2013, 3, 1186. doi: 10.1002/aenm.201300139
(24) Wang, W.; Yu, C.; Liu, Y.; Hou, J.; Zhu, H.; Jiao, S. RSC. Adv. 2013, 3, 1041. doi: 10.1039/C2RA22050D
(25) Yin, J.; Qi, L.; Wang, H. ACS. Appl. Mater. Interfaces 2012, 4, 2762. doi: 10.1021/am300385r
(26) Yan, Z.; Liu, L.; Shu, H.; Yang, X.; Wang, H.; Tan, J.; Zhou, Q.; Huang, Z.; Wang, X. J. Power Sources 2015, 274, 8. doi: 10.1016/j.jpowsour.2014.10.045
(27) Fu, S.; Ni, J.; Xu, Y.; Zhang, Q.; Li, L. Nano Lett. 2016, 16, 7. doi: 10.1021/acs.nanolett.6b01805
(28) Li, Z.; Shen, W.; Wang, C.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y. J. Mater. Chem. A 2016, 4, 17111. doi: 10.1039/C6TA08416H
(29) Xie, F.; Zhang, L.; Su, D.; Jaroniec, M.; Qiao, S. Z. Adv. Mater. 2017, doi: 10.1002/adma.201700989.
(30) Lu, X.; Wang, G.; Xie, S.; Shi, J.; Li, W.; Tong, Y.; Li, Y. Chem. Commun. 2012, 48, 7717. doi: 10.1039/C2CC31773G
(31) Chen, C.; Wang, J.; Zhao, Q.; Wang, Y.; Chen, J. ACS. Energy Lett. 2016, 1, 1165. doi: 10.1021/acsenergylett.6b00515
(32) Zhang, Y.; Guo, L.; Yang, S. Chem. Commun. 2014, 50, 14029. doi: 10.1039/C4CC06451H
(33) M, K. H.; Miyaji, F.; Kokubo, T.; Nakamura, T. J. Mater. Sci. Mater. Med., 1997, 8, 341. doi: 10.1023/A:1018524731409
(34) Ma, K. F. R.; Sasaki, T.; Osada, M.; Bando, Y. J. Phys. Chem. B 2005, 109, 6210. doi: 10.1021/jp044282r
(35) Dylla, A. G.; Xiao, P.; Henkelman, G.; Stevenson, K. J. J. Phys. Chem. Lett. 2012, 3(15), 2015. doi: 10.1021/jz300766a
(36) Liu, C.; Sun, T.; Wu, L.; Liang, J.; Huang, Q.; Chen, J.; Hou, W. Appl. Catal. B: Environ. 2015, 170-171, 17. doi: 10.1016/j.apcatb.2015.01.026
(37) Tang, Y.; Tao, J.; Zhang, Y.; Wu, T.; Tao, H.; Bao, Z. Acta Phys. -Chim. Sin. 2008, 24, 2191. [汤育欣,陶杰,张焱焱,吴涛,陶 海军,包祖国. 物理化学学报, 2008, 24, 2191.] doi: 10.1016/S1872-1508(08)60082-0
(38) Li, X.; Liu, S. Acta Phys. -Chim. Sin. 2008, 24, 2019. doi: 10.1016/S1872-1508(08)60079-0
(39) Ko, J. S.; Doan-Nguyen, V. V.; Kim, H. S.; Muller, G. A.; Serino, A. C.; Weiss, P. S.; Dunn, B. S. ACS. Appl. Mater. Interfaces 2017, 9, 1416. doi: 10.1021/acsami.6b10790
(40) Zhan, X.; Shirpour, M. Chem. Commun. 2017, 53, 204. doi: 10.1039/C6CC08901A
(41) Ho, C. K.; Li, C. Y. V.; Chan, K. Y. Ind. Eng. Chem. Res., 2016, 55, 10065. doi: 10.1021/acs.iecr.6b01867
(42) Rudola, A.; Saravanan, K.; Mason, C. W.; Balaya, P. J. Mater. Chem. A 2013, 1, 2653. doi: 10.1039/C2TA01057G
(43) Ge, Y.; Jiang, H.; Zhu, J.; Lu, Y.; Chen, C.; Hu, Y.; Qiu, Y.; Zhang, X. Electrochim. Acta 2015, 157, 142. doi: 10.1016/j.electacta.2015.01.086
(44) Rudola, A.; Saravanan, K.; Devaraj, S.; Gong, H.; Balaya, P. Chem. Commun. 2013, 49, 3. doi: 10.1039/C3CC44381G
(45) Dong, S.; Shen, L.; Li, H;. Pang, G.; Dou, H.; Zhang, X. Adv. Funct. Mater. 2016, 26, 3703. doi: 10.1002/adfm.201600264
(46) Xu, X.; Yan, M.; Tian, X.; Yang, C.; Shi, M.; Wei, Q.; Xu, L.; Mai, L. Nano Lett. 2015, 15, 3879. doi: 10.1021/acs.nanolett.5b00705
(47) Zhang, Z. J.; Feng, A.; Sun, X. Y.; Guo, K.; Man, Z. Y.; Zhao, J. T. J. Alloy. Compd. 2014, 592, 73. doi: 10.1016/j.jallcom.2013.12.211
(48) Yang, Q.; Chen, L.; Hu, C.; Wang, S.; Zhang, J.; Wu, W. J. Alloy. Compd. 2014, 612, 301. doi: 10.1016/j.jallcom.2014.05.193
(49) Gu, Y.; Su, X.; Du, Y.; Wang, C. Appl. Surf. Sci. 2010, 256, 5862. doi: 10.1016/j.apsusc.2010.03.065

[1] FANG Lei, SUN Mingjun, CAO Xinrui, CAO Zexing. Mechanical and Optical Properties of a Novel Diamond-like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor:a First-Principles Study[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 296-302.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[3] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[4] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[5] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[7] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 845-852.
[8] ZHANG Yan-Tao, LIU Zhen-Jie, WANG Jia-Wei, WANG Liang, PENG Zhang-Quan. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499.
[9] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[10] LIU Shuai, YAO Lu, ZHANG Qin, LI Lu-Lu, HU Nan-Tao, WEI Liang-Ming, WEI Hao. Advances in High-Performance Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2339-2358.
[11] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522.
[12] PENG Bo, XU Yao-Lin, MULDER Fokko M. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2127-2132.
[13] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 211-241.
[14] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[15] TANG Yan-Ping, YUAN Sha, GUO Yu-Zhong, HUANG Rui-An, WANG Jian-Hua, YANG Bin, DAI Yong-Nian. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2280-2286.