Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2018,Vol.34>> Issue(2)>> 219-226     doi: 10.3866/PKU.WHXB201707173         中文摘要
Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries
ZHANG Xiyue1, HUANG Yalan1,3, WU Shuwei2, ZENG Yinxiang1, YU Minghao1, CHENG Faliang3, LU Xihong1,2, TONG Yexiang1
1 MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China;
2 Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education), Nankai University, Tianjin 300071, P. R. China;
3 Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, Guangdong Province, P. R. China
Full text: PDF (2661KB) Export: BibTeX | EndNote (RIS) Supporting Info

Sodium ion batteries (SIBs), a promising substitute for lithium ion batteries (LIBs), have attracted extensive attention due to the abundance and low cost of sodium resources. In addition, flexible sodium-ion batteries may be able to satisfy the demands of large-scale energy storage applications for portable, wearable, and flexible electronics. Compared to the development of cathode materials, the progress on anode materials has been relatively slow. Therefore, the exploration of low-cost anode materials with high Na+ storage capacity is very important. Herein, we present oxygen-deficient Na2Ti3O7 nanobelts grown on carbon cloth (CC) as a promising novel flexible anode material for SIBs. Free-standing Na2Ti3O7 nanobelts with oxygen vacancies were directly grown on CC through a simple hydrothermal and thermal reduction process. Benefiting from the improved conductivity and increased active sites after the introduction of oxygen vacancies, the new material exhibits a high reversible capacity of 100 mAh·cm-2 at 200 mA·cm-2, with almost 80% capacitance retention after 200 cycles. When the current density was increased to 400 mA·cm-2, a high capacity of 69.7 mAh·cm-2 was achieved, which is three times that of bare Na2Ti3O7 nanobelts on CC. This 3D oxygen-deficient electrode can significantly promote the transport of Na+ ions and electrons, leading to remarkably improved electrochemical properties. Furthermore, this work constitutes a promising strategy to rationally design and fabricate novel Na2Ti3O7-based anodes with enhanced capacitive behavior, which hold great promise for energy storage/conversion devices, facilitating the large-scale implementation of high-performance flexible SIBs.



Keywords: Oxygen-deficient   Na2Ti3O7   Flexible   Anode   Sodium ion battery  
Received: 2017-06-06 Accepted: 2017-07-06 Publication Date (Web): 2017-07-17
Corresponding Authors: LU Xihong, TONG Yexiang Email: luxh6@mail.sysu.edu.cn;chedhx@mail.sysu.edu.cn

Fund: The project was supported by the National Key R&D Program of China (2016YFA0202604),National Natural Science Foundation of China (21403306),Guangdong Natural Science Funds for Distinguished Young Scholar,China (2014A030306048),Tip-top Scientic and Technical Innovative Youth Talents of Guangdong Special Support Program,China (2015TQ01C205),Technology Planning Project of Guangdong Province,China (2015B090927007),Pearl River Nova Program of Guangzhou,China (201610010080),Science and Technology Program of Guangzhou,China (201604010124) and Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion,China (MTEC-2015M05).

Cite this article: ZHANG Xiyue, HUANG Yalan, WU Shuwei, ZENG Yinxiang, YU Minghao, CHENG Faliang, LU Xihong, TONG Yexiang. Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018,34 (2): 219-226.    doi: 10.3866/PKU.WHXB201707173

(1) Xiao, Y. M.; Wu, J. H.; Yue, G. T.; Lin, J. M.; Huang, M. L.; Fan, L. Q.; Lan, Z. Acta Phys. -Chim. Sin. 2012, 28 (3), 578. [肖尧明, 吴季怀, 岳根田, 林建明, 黄妙良, 范乐庆, 兰章. 物理化学学 报, 2012, 28 (3), 578.] doi: 10.3866/PKU.WHXB201201032
(2) Xia, K. L.; Jian, M. Q.; Zhang, Y. Y. Acta Phys. -Chim. Sin. 2016, 32 (10), 2427. [夏凯伦, 蹇木强, 张莹莹. 物理化学学报, 2016, 32 (10), 2427.] doi: 10.3866/PKU.WHXB201607261
(3) Zhuang, L. Acta Phys. -Chim. Sin. 2017, 33, 655. [庄林. 物理化 学学报, 2017, 33, 655.] doi: 10.3866/PKU.WHXB201703093
(4) Huang, Z. L.; Wang, L. P.; Mou, C. X.; Li, J. Z. Acta Phys. -Chim. Sin. 2014, 30, 1787. [黄宗令, 王丽平, 牟成旭, 李晶泽. 物理化 学学报, 2014, 30, 1787.] doi: 10.3866/PKU.WHXB20140852
(5) Xu, J.; Yang, D. Z.; Liao, X. Z.; He, Y. S.; Z. F. Ma, Acta Phys. -Chim. Sin. 2015, 31, 913. [许婧, 杨德志, 廖小珍, 何雨石, 马紫峰. 物理化学学报, 2015, 31, 913.] doi: 10.3866/PKU.WHXB201503162
(6) Zhang, W.; Liu, Y.; Chen, C.; Li, Z.; Huang, Y.; Hu, X. Small 2015, 11 (31), 3822. doi: 10.1002/smll.201500783
(7) Lamuel David, R. B.; Singh, G. ACS Nano 2014, 8 (2), 1759. doi: 10.1021/nn406156b
(8) Yuan, S.; Huang, X. D.; Ma, H.; Wang, M. F.; Zhang, X. Adv. Mater. 2014, 26 (14), 2273. doi: 10.1002/adma.201304469
(9) Wang, X.; Li, Y.; Gao, Y.; Wang, Z.; Chen, L. Nano Energy 2015, 13, 687. doi: 10.1016/j.nanoen.2015.03.029
(10) Zhang, Y.; Guo, L.; Yang, S. Nanoscale 2015, 7, 14618. doi: 10.1039/C5NR03076E
(11) Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon J. M.; Palacín, M. R. Chem. Mater. 2011, 23, 4109. doi: 10.1021/cm202076g
(12) Chen, C.; Wen, Y.; Hu, X.; Ji, X.; Yan, M.; Mai, L.; Hu, P.; Shan, B.; Huang, Y. Nat. Commun. 2015, 6, 6929. doi: 10.1038/ncomms7929
(13) Naeyaert, P. J. P.; Avdeev, M.; Sharma, N.; Yahia, H. B.; Ling, C. D. Chem. Mater. 2014, 26, 7067. doi: 10.1021/cm5035358
(14) Ni, J.; Fu, S.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Adv. Mater. 2016, 28, 2259. doi: 10.1002/adma.201504412
(15) Liao, J. Y.; Manthiram, A. Nano Energy 2015, 18, 20. doi: 10.1016/j.nanoen.2015.09.014
(16) Doeff, M. M.; Cabana, J.; Shirpour, M. J. Inorg. Organomet. Polym. Mater. 2013, 24, 5. doi: 10.1007/s10904-013-9977-8
(17) Rousse, G.; Arroyo-de Dompablo, M. E.; Senguttuvan, P.; Ponrouch, A.; Tarascon, J. M.; Palacín, M. R. Chem. Mater. 2013, 25, 4946. doi: 10.1021/cm4032336
(18) Dong, S.; Shen, L.; Li, H.; Nie, P.; Zhu, Y.; Sheng, Q.; Zhang, X.; J. Mater. Chem. A 2015, 3, 21277. doi: 10.1039/C5TA05714K
(19) Andersson, S.; Wadsley, A. D. Acta Cryst. 1961, 14, 1245. doi: 10.1107/S0365110X61003636
(20) Xu, L.; Xia, J.; Wang, L.; Qian, J.; Li, H.; Wang, K.; Sun, K.; He, M. Chem. Eur. J. 2014, 20, 2244. doi: 10.1002/chem.201304312
(21) Wang, W.; Yu, C.; Lin, Z.; Hou, J.; Zhu, H.; Jiao, S. Nanoscale 2013, 5, 594. doi: 10.1039/C2NR32661B
(22) Zou, W.; Li, J.; Deng, Q.; Xue, J.; Dai, X.; Zhou, A.; Li, J. Solid State Ionics 2014, 262, 192. doi: 10.1016/j.ssi.2013.11.005
(23) Pan, H.; Lu, X.; Yu, X.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Adv. Energy Mater. 2013, 3, 1186. doi: 10.1002/aenm.201300139
(24) Wang, W.; Yu, C.; Liu, Y.; Hou, J.; Zhu, H.; Jiao, S. RSC. Adv. 2013, 3, 1041. doi: 10.1039/C2RA22050D
(25) Yin, J.; Qi, L.; Wang, H. ACS. Appl. Mater. Interfaces 2012, 4, 2762. doi: 10.1021/am300385r
(26) Yan, Z.; Liu, L.; Shu, H.; Yang, X.; Wang, H.; Tan, J.; Zhou, Q.; Huang, Z.; Wang, X. J. Power Sources 2015, 274, 8. doi: 10.1016/j.jpowsour.2014.10.045
(27) Fu, S.; Ni, J.; Xu, Y.; Zhang, Q.; Li, L. Nano Lett. 2016, 16, 7. doi: 10.1021/acs.nanolett.6b01805
(28) Li, Z.; Shen, W.; Wang, C.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y. J. Mater. Chem. A 2016, 4, 17111. doi: 10.1039/C6TA08416H
(29) Xie, F.; Zhang, L.; Su, D.; Jaroniec, M.; Qiao, S. Z. Adv. Mater. 2017, doi: 10.1002/adma.201700989.
(30) Lu, X.; Wang, G.; Xie, S.; Shi, J.; Li, W.; Tong, Y.; Li, Y. Chem. Commun. 2012, 48, 7717. doi: 10.1039/C2CC31773G
(31) Chen, C.; Wang, J.; Zhao, Q.; Wang, Y.; Chen, J. ACS. Energy Lett. 2016, 1, 1165. doi: 10.1021/acsenergylett.6b00515
(32) Zhang, Y.; Guo, L.; Yang, S. Chem. Commun. 2014, 50, 14029. doi: 10.1039/C4CC06451H
(33) M, K. H.; Miyaji, F.; Kokubo, T.; Nakamura, T. J. Mater. Sci. Mater. Med., 1997, 8, 341. doi: 10.1023/A:1018524731409
(34) Ma, K. F. R.; Sasaki, T.; Osada, M.; Bando, Y. J. Phys. Chem. B 2005, 109, 6210. doi: 10.1021/jp044282r
(35) Dylla, A. G.; Xiao, P.; Henkelman, G.; Stevenson, K. J. J. Phys. Chem. Lett. 2012, 3(15), 2015. doi: 10.1021/jz300766a
(36) Liu, C.; Sun, T.; Wu, L.; Liang, J.; Huang, Q.; Chen, J.; Hou, W. Appl. Catal. B: Environ. 2015, 170-171, 17. doi: 10.1016/j.apcatb.2015.01.026
(37) Tang, Y.; Tao, J.; Zhang, Y.; Wu, T.; Tao, H.; Bao, Z. Acta Phys. -Chim. Sin. 2008, 24, 2191. [汤育欣,陶杰,张焱焱,吴涛,陶 海军,包祖国. 物理化学学报, 2008, 24, 2191.] doi: 10.1016/S1872-1508(08)60082-0
(38) Li, X.; Liu, S. Acta Phys. -Chim. Sin. 2008, 24, 2019. doi: 10.1016/S1872-1508(08)60079-0
(39) Ko, J. S.; Doan-Nguyen, V. V.; Kim, H. S.; Muller, G. A.; Serino, A. C.; Weiss, P. S.; Dunn, B. S. ACS. Appl. Mater. Interfaces 2017, 9, 1416. doi: 10.1021/acsami.6b10790
(40) Zhan, X.; Shirpour, M. Chem. Commun. 2017, 53, 204. doi: 10.1039/C6CC08901A
(41) Ho, C. K.; Li, C. Y. V.; Chan, K. Y. Ind. Eng. Chem. Res., 2016, 55, 10065. doi: 10.1021/acs.iecr.6b01867
(42) Rudola, A.; Saravanan, K.; Mason, C. W.; Balaya, P. J. Mater. Chem. A 2013, 1, 2653. doi: 10.1039/C2TA01057G
(43) Ge, Y.; Jiang, H.; Zhu, J.; Lu, Y.; Chen, C.; Hu, Y.; Qiu, Y.; Zhang, X. Electrochim. Acta 2015, 157, 142. doi: 10.1016/j.electacta.2015.01.086
(44) Rudola, A.; Saravanan, K.; Devaraj, S.; Gong, H.; Balaya, P. Chem. Commun. 2013, 49, 3. doi: 10.1039/C3CC44381G
(45) Dong, S.; Shen, L.; Li, H;. Pang, G.; Dou, H.; Zhang, X. Adv. Funct. Mater. 2016, 26, 3703. doi: 10.1002/adfm.201600264
(46) Xu, X.; Yan, M.; Tian, X.; Yang, C.; Shi, M.; Wei, Q.; Xu, L.; Mai, L. Nano Lett. 2015, 15, 3879. doi: 10.1021/acs.nanolett.5b00705
(47) Zhang, Z. J.; Feng, A.; Sun, X. Y.; Guo, K.; Man, Z. Y.; Zhao, J. T. J. Alloy. Compd. 2014, 592, 73. doi: 10.1016/j.jallcom.2013.12.211
(48) Yang, Q.; Chen, L.; Hu, C.; Wang, S.; Zhang, J.; Wu, W. J. Alloy. Compd. 2014, 612, 301. doi: 10.1016/j.jallcom.2014.05.193
(49) Gu, Y.; Su, X.; Du, Y.; Wang, C. Appl. Surf. Sci. 2010, 256, 5862. doi: 10.1016/j.apsusc.2010.03.065

1. QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin.Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017,33(9): 1822-1827
2. DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng.Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017,33(9): 1828-1837
3. ZHAO Li-Ping, MENG Wei-Shuai, WANG Hong-Yu, QI Li.MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. -Chim. Sin., 2017,33(4): 787-794
4. ZHEN Xu, GUO Xue-Jing.Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. -Chim. Sin., 2017,33(4): 845-852
5. NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning.AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017,33(12): 2517-2522
6. PENG Bo, XU Yao-Lin, MULDER Fokko M.Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Phys. -Chim. Sin., 2017,33(11): 2127-2132
7. FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang.Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017,33(1): 211-241
8. TANG Yan-Ping, YUAN Sha, GUO Yu-Zhong, HUANG Rui-An, WANG Jian-Hua, YANG Bin, DAI Yong-Nian.Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016,32(9): 2280-2286
9. HUANG Jia-Jun, DONG Zhi-Jun, ZHANG Xu, YUAN Guan-Ming, CONG Ye, CUI Zheng-Wei, LI Xuan-Ke.Effects of Structure on Electrochemical Performances of Ribbon-Shaped Mesophase Pitch-Based Graphite Fibers[J]. Acta Phys. -Chim. Sin., 2016,32(7): 1699-1707
10. HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze.Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016,32(6): 1489-1494
11. BIAN Shao-Wei, XU Ling-Li, GUO Mei-Xia, SHAO Fu, LIU Si.Fabrication of Graphene/Cotton and MnO2/Graphene/Cotton Composite Fabrics as Flexible Electrodes for Electrochemical Capacitors[J]. Acta Phys. -Chim. Sin., 2016,32(5): 1199-1206
12. YANG Ze, ZHANG Wang, SHEN Yue, YUAN Li-Xia, HUANG Yun-Hui.Next-Generation Energy Storage Technologies and Their Key Electrode Materials[J]. Acta Phys. -Chim. Sin., 2016,32(5): 1062-1071
13. LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong.Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Phys. -Chim. Sin., 2016,32(2): 573-580
14. XIA Kai-Lun, JIAN Mu-Qiang, ZHANG Ying-Ying.Advances inWearable and Flexible Conductors Based on Nanocarbon Materials[J]. Acta Phys. -Chim. Sin., 2016,32(10): 2427-2446
15. CHEN Cheng-Cheng, ZHANG Ning, LIU Yong-Chang, WANG Yi-Jing, CHEN Jun.In-situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016,32(1): 349-355
16. SUN Xue-Mei, GAO Li-Jun.Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2015,31(8): 1521-1526
17. WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long.TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2015,31(8): 1437-1451
18. XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng.Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2015,31(5): 913-919
19. LIU Jian-Hua, LIU Bin-Hong, LI Zhou-Peng.Fe3O4/Graphene Composites with a Porous 3D Network Structure Synthesized through Self-Assembly under Electrostatic Interactions as Anode Materials of High-Performance Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2014,30(9): 1650-1658
20. LIU Xin, XIE Jing-Ying, ZHAO Hai-Lei, Lü Peng-Peng, WANG Ke, FENG Zhen-He, WANG Meng-Wei.Synthesis and Properties of FeSn2-C Composites as Anode Materials for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2014,30(7): 1281-1289
21. ZHANG Qing-Qing, LI Rong, ZHANG Meng-Meng, GOU Xing-Long.Synthesis and Electrochemical Lithium Storage Performance of WO3 Nanorods/Graphene Nanocomposites[J]. Acta Phys. -Chim. Sin., 2014,30(3): 476-484
22. HUANG Zong-Ling, WANG Li-Ping, MOU Cheng-Xu, LI Jing-Ze.Magnesium Terephthalate as an Organic Anode Material for Sodium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2014,30(10): 1787-1793
23. WU Hong-Bin, ZHANG Ying, YUAN Cong-Li, WEI Xiao-Pei, YIN Jin-Ling, WANG Gui-Ling, CAO Dian-Xue, ZHANG Yi-Ming, YANG Bao-Feng, SHE Pei-liang.Synthesis and Electrochemical Performance of Li4Ti5O12/CMK-3 Nanocomposite Negative Electrode Materials for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2013,29(06): 1247-1252
24. DENG Jie, TAO Jie, WU Tao, TAO Hai-Jun.Growth Mechanism and Characterization of Flexible TiO2 Nanowhisker Films Hydrothermally Synthesized in Dilute Alkaline Solution[J]. Acta Phys. -Chim. Sin., 2013,29(04): 858-866
25. DING Peng, XU You-Long, SUN Xiao-Fei.Synthesis and Performance of Nano MnO as an Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2013,29(02): 293-297
26. LI Hui, PENG Hai-Lin, LIU Zhong-Fan.Two-Dimensional Nanostructures of Topological Insulators and Their Devices[J]. Acta Phys. -Chim. Sin., 2012,28(10): 2423-2435
27. LI Jin-Hua, LI JING, FANG Xuan, WANG Xiao-Hua, WEI Zhi-Peng.Fabrication and Characteristic of ZnO Glucose Oxidase Enzyme Electrode Based on Flexible Substrate[J]. Acta Phys. -Chim. Sin., 2012,28(06): 1393-1397
28. XIAO Yao-Ming, WU Ji-Huai, YUE Gen-Tian, LIN Jian-Ming, HUANG Miao-Liang, FAN Le-Qing, LAN Zhang.Preparation of Single-Crystalline TiO2 Nanowires and Their Application in Flexible Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2012,28(03): 578-584
29. LIN Xiao, WU Ming-Xing, AN Jiang, MIAO Qing-Qing, QIN Da, MA Ting-Li.Optimization of the Photoelectric Performance of Large-Scale All-Flexible Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2011,27(11): 2577-2582
30. GAO Wen-Chao, HUANG Tao, SHEN Yu-Dong, YU Ai-Shui.Phenolic Resin Coated Natural Graphite Oxide as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2011,27(09): 2129-2134
31. SONG Ji-Zhong, HE Ying, ZHU Di, CHEN Jie, PEI Chang-Long, WANG Jun-An.Polymer/ZnO Micro-Nano Array Composites for Light-Emitting Layer of Flexible Optoelectronic Devices[J]. Acta Phys. -Chim. Sin., 2011,27(05): 1207-1213
32. Lü Rong-Guan, YANG Jun, WANG Jiu-Lin, NULI Yan-Na.Electrodeposition and Electrochemical Property of Porous Li-Si Film Anodes for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2011,27(04): 759-763
33. CHEN Shi-Yu, WANG Zhao-Xiang, FANG Xiang-Peng, ZHAO Hai-Lei, LIU Xiao-Jiang, CHEN Li-Quan.Characterization of TiS2 as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2011,27(01): 97-102
34. ZHOU Xiao-Ling, HUANG Rui-An, WU Zhao-Cong, YANG Bin, DAI Yong-Nian.Synthesis and Electrochemical Properties of High-Rate Spinel Li4Ti5Ol2/TiN Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2010,26(12): 3187-3192
35. ZHANG Hui-Juan, SONG Huai-He, ZHOU Ji-Sheng, ZHANG Hong-Kun, CHEN Xiao-Hong.Preparation and Electrochemical Properties of SnO2/Onion-Like Hollow Carbon Nanoparticle Composites as Anode Materials for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2010,26(05): 1259-1263
36. ZHANG Hong-Fang; FU Ping-Ping; SONG Ying-Jie; DU Chen-Shu; YANG Hua-Bin; ZHOU Zuo-Xiang; WU Meng-Tao; HUANG Lai-He.Preparation and Properties of Sandwich-type Si/Fe/Si Film Anode for Lithium-ion Battery[J]. Acta Phys. -Chim. Sin., 2007,23(07): 1065-1070
37. QIN Hai-Ying;XIE Jian;MI Jian-Li;TU Jian;ZHAO Xin-Bing.Solvothermal Synthesis and Electrochemical Lithiation/Delithiation Performance of FeSb2 Nanorods[J]. Acta Phys. -Chim. Sin., 2006,22(12): 1555-1559
38. XU Yu-Hong;ZHANG Bao-Hong;GONG GUI-Ying;MA Ping .Electrochemical Properties Study of Sb2O3 doped Li4Ti5O12[J]. Acta Phys. -Chim. Sin., 2006,22(11): 1336-1341
39. XIE Jian;ZHAO Xin-Bing;YU Hong-Ming;QI Hao;CAO Gao-Shao;TU Jiang-Ping .Preparation, Characterization and Electrochemical Li-absorption/extraction Behaviors of Nanosized Co-Sn Intermetallic Compounds[J]. Acta Phys. -Chim. Sin., 2006,22(11): 1409-1412
40. WANG Zhong;TIAN Wen-Huai;LI Xing-Guo.Synthesis and Electrochemical Properties of Sn-Sb Alloy Prepared by Hydrogen Plasma-metal Reaction[J]. Acta Phys. -Chim. Sin., 2006,22(06): 752-755
41. SHEN Bin; LU Zhong-hua; CHI Xue-bin; LÜ Hai-feng; REN Tian-rui.Research on Pseudoreceptor Models for the Inhibitors at GABA Receptors via Flexible Atom Receptor Model[J]. Acta Phys. -Chim. Sin., 2005,21(07): 800-803
42. Chen Ji-Tao;Zhou Heng-Hui;Chang Wen-Bao;Ci Yun-Xiang.Effect of Particle Size on Lithium Intercalation Performance of Graphite Anode[J]. Acta Phys. -Chim. Sin., 2003,19(03): 278-282
43. Peng Tao;Pei Jian-Feng;Zhou Jia-Ju.Three-dimensional Quantitative Structure-Activity Relationship Study of Tyrosine Kinase Inhibitors[J]. Acta Phys. -Chim. Sin., 2003,19(02): 163-166
44. Chen Ji-Tao;Zhou Heng-Hui;Chang Wen-Bao;Ci Yun-Xiang.pyrolytic Carbon Coated Graphite Anode for Lithium Ion Battery[J]. Acta Phys. -Chim. Sin., 2002,18(02): 180-182
45. FANG Lei, SUN Mingjun, CAO Xinrui, CAO Zexing.Mechanical and Optical Properties of a Novel Diamond-like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor:a First-Principles Study[J]. Acta Phys. -Chim. Sin., 0,(): 0-0
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top