Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (12): 2424-2437    DOI: 10.3866/PKU.WHXB201707171
REVIEW     
Toward Understanding the Nature of the Active Sites and Structure-Activity Relationships of Heterogeneous Catalysts by Model Catalysis Studies
Mingshu CHEN*()
Download: HTML     PDF(835KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Understanding the nature of the active sites and the relationship between the catalyst structure and its performance are fundamental aspects of heterogeneous catalysis. With the development of modern surface science techniques, atomically resolved surface structures of heterogeneous catalysts and their properties can be studied with ease. Combined with an in situ high pressure cell, model catalysis studies can provide convincing information about the relationship between the catalyst structure and its performance. In this mini-review, several case studies of model catalysts have been summarized, including those of the active surfaces for CO and alkane oxidation using the Pt group metals as catalysts, the active site of gold nanoparticles for CO oxidation, synergistic effects between VOx and Pt for propane oxidation, promotional effects of Au in Pd-Au catalysts for vinyl acetate synthesis, structure-sensitivity of n-heptane dehydrocyclization on model oxide-supported Pt, as well as several significant improvements of the model catalysis techniques.



Key wordsModel catalysis study      Structure-activity      CO oxidation      Alkanes oxidation      In situ spectroscopy     
Received: 17 June 2017      Published: 17 July 2017
MSC2000:  O643  
Fund:  the National Basic Research Program of China(2013CB933102);National Natural Science Foundation of China(21273178);National Natural Science Foundation of China(21573180);National Natural Science Foundation of China(91545204)
Corresponding Authors: Mingshu CHEN     E-mail: chenms@xmu.edu.cn
Cite this article:

Mingshu CHEN. Toward Understanding the Nature of the Active Sites and Structure-Activity Relationships of Heterogeneous Catalysts by Model Catalysis Studies. Acta Phys. -Chim. Sin., 2017, 33(12): 2424-2437.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201707171     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2424

Fig 1 (a) Model catalysis system combined with an in situ high pressure cell (Goodman)4; (b) Schematic diagram of the sample system for model catalysis study. Step 1-3, the gas bag is vacuumed, the reaction mixtures are inflated into the gas bag and then compressed into the GC. And a typical GC peak profile for the full analysis of the reaction products27
Fig 2 A typical experiment to measure CO oxidation rate by monitoring the total pressure change. (a) Total pressure decrease and change in the O2/CO ratio as a function of reaction time. (b) CO2 formation rate and the change in the partial pressures of O2 and CO as function of reaction time 36
Fig 3 A schematic diagram of the experimental setup for the home build in situ IRAS 37
Fig 4 (a) Plots of the total pressure and reaction temperature as a function of the reaction time for CO oxidation in a batch reactor. (b) IR spectra for a PdO surface, gas phase 18OC16O, and the sum spectrum of PdO + 18OC16O. (c) The ratio of the average IR intensity of the band at 648 and 644 cm-1 to that of 677 cm-1 as a function of the reaction time37
Fig 5 In situ IRAS for CO oxidation on a polycrystalline Pd. (a) High wavenumber region for gas pahse CO, CO2 and surface CO. (b) Low wavenumber region for observing the bending modes of CO2 and the changes of the surface37
Fig 6 Comparison of CO oxidation on different active surfaces of Pt-group metals39
Fig 7 Catalytic activity for CO oxidation as a function of Au coverage on the Mo(112)-(8 × 2)-TiOx25, and compared with high surface-area TiO2 supported Au nanoparticles
Fig 8 In situ IRAS spectra depict the formation and reduction of the Pd surface-oxide during the oxidation of CH4 at 643 K on a polycrystalline Pd thin foil 75
Fig 9 The changes of the total pressure, partial pressure and reaction rate as functions of the reaction time for CH4 oxidation on a polycrystalline Pd thin foil at 643 K 75
Fig 10 The changes of the total pressure and reaction rate as functions of the reaction time for (a) CH4 oxidation on Pt, (b) CO oxidation on Pd 75
Fig 11 HREEL spectra for the VOx/Pt(111) with various VOx coverages87
Fig 12 Propane oxidation activities as a function of the VOx coverage at 373, 423, and 473 K, respectively 27 C3H8:O2 = 1:1, Ptotal = 4 Torr
Fig 13 IRAS spectra for the 0.9 and 3 ML VOx/Pt(111) exposed to different gases
Fig 14 Vinyl acetate formation rates as a function of Pd coverage on Au(100) and Au(111) 26
Fig 15 (a) The effect of Pt particle size on dehydrocycliza-tion of n-heptane. (b) Concentration of the CUS sites99
1 Somorjai, G. A.; Li, Y. Introduction to Surface Chemistry and Catalysis; John Wiley & Sons: NJ, USA, 2010.
2 Ertl G. ; Freund H.-J. Phys. Today 1999, 52 (32)
3 Freund H.-J. ; van Santen R. A. ; Neurock M. ; Boudart M. ; Mullins C. B. ; Norskov J. K. Elementary Steps and Mechanisms: Sections 5.1–5.2. Handbook of Heterogeneous Catalysis; Wiley-VCH Verlag GmbH: Weinheim, Germany 2008, pp.911- 1051.
4 (a) Goodman, D. W. Surf. Sci.1994, 299, 837. 10.1016/0039-6028(94)90701-3
4 (b) Goodman, D. W. J. Phys. Chem. 1996, 100, 13090. 10.1021/jp953755e
5 Cremer P. S. ; Su X. C. ; Somorjai G. A. ; Shen Y. R. J. Mol. Catal. A 1998, 131 (225)
6 Spencer N. D. ; Schoonmaker R. C. ; Somorjai G. A. J. Catal. 1982, 74, 129.
7 (a) Goodman, D. W.; Kelley, R. D.; Madey, T. E.; Yates, J. T., Jr. J. Catal. 1980, 63, 226. 10.1016/0021-9517(80)90075-5
7 (b) Goodman, D. W. J. Vac. Sci. Technol. 1982, 20, 522. 10.1116/1.571422
8 Ertl G. Angew. Chem. Int. Ed. 2008, 47, 3524.
9 Grunze M. ; Bozso F. ; Ertl G. ; Weiss M. Appl. Surf. Sci. 1978, 1, 241.
10 Bozso F. ; Ertl G. ; Weiss M. J. Catal. 1977, 50, 519.
11 Strongin D. R. ; Carrazza J. ; Bare S.R. ; Somorjai G.A. J. Catal. 1987, 103, 213.
12 Kelley R. D. ; Goodman D. W. Surf. Sci. 1982, 123, L743.
13 Belton D. N. ; Sun Y. M. ; White J. M. J. Phys. Chem. 1984, 88, 1690.
14 Ocal C. ; Ferrer S. J. Chem. Phys. 1986, 84, 6474.
15 Bradford M. C. J. ; Vannice M. A. Catal. Lett. 1997, 48, 31.
16 Martynova Y. ; Shaikhutdinov S. ; Freund H.-J. ChemCatChem. 2013, 5, 2162.
17 Willinger M. G. ; Zhang W. ; Bondarchuk O. ; Shaikhutdinov S. ; Freund H.-J. ; Schl gl R. Angew. Chem. Int. Ed. 2014, 53, 5998.
18 Fu Q. ; Li W. X. ; Yao Y. X. ; Liu H. Y. ; Su H. Y. ; Ma D. ; Gu X. K. ; Chen L.M. ; Wang Z. ; Zhang H. ; et al Science 2010, 328, 1141.
19 Chen G. X. ; Zhao Y. ; Fu G. ; Duchesne P. N. ; Gu L. ; Zheng Y. P. ; Weng X. F. ; Chen M. S. ; Zhang P. ; Pao C. W. ; et al Science 2014, 344, 495.
20 Yao Y. X. ; Fu Q. ; Zhang Y.Y. ; Weng X. F. ; Li H. ; Chen M. S. ; Jin L. ; Dong A. Y. ; Mu R.T. ; Jiang P. ; et al Proc. Natl. Acad. Sci. USA 2014, 111, 17023.
21 Zhang Y. H. ; Weng X. F. ; Li H. ; Li H. B. ; Wei M. M. ; Xiao J. P. ; Liu Z. ; Chen M. S. ; Fu Q. ; Bao X. H. Nano Lett. 2015, 15, 3616.
22 Valden M. ; Pak S. ; Lai X. ; Goodman D.W. Catal. Lett. 1998, 56 (7)
23 Chen M. S. ; Goodman D. W. J. Phys. Conden. Matter. 2008, 20, 264013.
24 Schauermann S. ; Nilius N. ; Shaikhutdinov S. ; Freund H.-J. Acc. Chem. Res. 2013, 46, 1673.
25 Chen M. S. ; Goodman D. W. Science 2004, 306, 252.
26 Chen M. S. ; Kumar D. ; Yi C. W. ; Goodman D. W. Science 2005, 310, 291.
27 Zheng Y. P. ; Zhang L. H. ; Wang S. L. ; Tang Z. Y. ; Ding D. ; Chen M. S. ; Wan H. L. Langmuir 2013, 29, 9090.
28 Langmuir I. Trans. Faraday Soc. 1922, 17, 621.
29 Berlowitz P. J. ; Peden C. H. F. ; Goodman D. W. J. Phys. Chem. 1988, 92, 5213.
30 Engel T. ; Ertl G. Adv. Catal. 1979, 28, 1.
31 Campbell C. T. ; Ertl G. ; Kuipers H. ; Segner J. J. Chem. Phys. 1980, 73, 5862.
32 Kim S. H. ; Mendez J. ; Wintterlin J. ; Ertl G. Phys. Rev. B 2005, 72, 155414.
33 Stuve E. M. ; Madix R. J. ; Brundle C. R. Surf. Sci. 1984, 146, 155.
34 Ozensoy E. ; Meier D. C. ; Goodman D. W. J. Phys. Chem. B 2002, 106, 9367.
35 Kuhn W. K. ; Szanyi J. ; Goodman D. W. Surf. Sci. 1992, 274, L611.
36 Chen M. S. ; Cai Y. ; Yan Z. ; Gath K. K. ; Axnanda S. ; Goodman D. W. Surf. Sci. 2007, 601, 5326.
37 Chen M. S. ; Wang X. V. ; Zhang L. H. ; Tang Z. Y. ; Wan H. L. Langmuir 2010, 26, 18113.
38 Chen M. S. ; Zheng Y. P. ; Wan H. L. Top. Catal. 2013, 56, 1299.
39 Weng X. F. ; Yuan X. ; Li H. ; Li X. K. ; Chen M. S. ; Wan H. L. Sci. China Chem. 2015, 58, 174.
40 Hendriksen B. L. M. ; Bobaru S. C. ; Frenken J. W. M. Surf. Sci. 2004, 552, 229.
41 Hendriksen B. L. M. ; Frenken J. W. M. Phys. Rev. Lett. 2002, 89, 046101.
42 Ackermann M. D. ; Pedersen T. M. ; Hendriksen B. L. M. ; Robach O. ; Bobaru S.C. ; Popa I. ; Quiros C. ; Kim H. ; Hammer B. ; Ferrer S. ; et al Phys. Rev. Lett. 2005, 95, 255505.
43 Toyoshima R. ; Yoshida M. ; Monya Y. ; Suzuki K. ; Mun B. S. ; Amemiya K. ; Mase K. ; Kondoh H. J. Phys. Chem. Lett. 2012, 3, 3182.
44 Butcher D. R. ; Grass M. E. ; Zeng Z. H. ; Aksoy F. ; Bluhm H. ; Li W. X. ; Mun B. S. ; Somorjai G. A. ; Liu Z. J. Am. Chem. Soc. 2011, 133, 20319.
45 Alayon E. M. C. ; Singh J. ; Nachtegaal M. ; Harfouche M. ; van Bokhoven J. A. J. Catal. 2009, 263, 228.
46 Chung J. Y. ; Aksoy F. ; Grass M. E. ; Kondoh H. ; Ross J. P. ; Liu Z. ; Mun B. S. Surf. Sci. 2009, 603, L35.
47 Toyoshima R. ; Yoshida M. ; Monya Y. ; Suzuki K. ; Amemiya K. ; Mase K. ; Mun BS. ; Kondoh H. J. Phys. Chem. C 2013, 117, 20617.
48 Goodman D. W. ; Peden C. H. F. ; Chen M. S. Surf. Sci. 2007, 601, L124.
49 McClure S. M. ; Goodman D.W. Chem. Phys. Lett. 2009, 469, 1.
50 Gao F. ; Cai Y. ; Gath K. K. ; Wang Y. ; Chen M. S. ; Guo Q. L. ; Goodman D. W. J. Phys. Chem. C 2009, 113, 182.
51 Huang W. X. ; Zhai R. S. ; Bao X. H. Appl. Surf. Sci. 2000, 158, 287.
52 Zheng G. ; Altman E. I. Surf. Sci. 2002, 504, 253.
53 Lundgren E. ; Gustafson J. ; Mikkelsen A. ; Andersen J. N. ; Stierle A. ; Dosch H. ; Todorova M. ; Rogal J. ; Reuter K. ; Scheffler M. Phys. Rev. Lett. 2004, 92, 46101.
54 Dumbuya K. ; Cabailh G. ; Lazzari R. ; Jupille J. ; Ringel L. ; Pistor M. ; Lytken O. ; Steinruck H. P. ; Gottfried J. M. Catal. Today 2012, 20
55 Haruta M. ; Kobayashi T. ; Sano H. ; Yamada N. Chem. Lett. 1987, 16, 405.
56 Haruta M. ; Date M. Appl. Catal. A 2001, 222, 427.
57 Haruta M. ; Tsubota S. ; Kobayashi T. ; Kageyama H. ; Genet M. J. ; Delmon B. J. Catal. 1993, 144, 175.
58 Haruta M. Catal. Today 1997, 36, 153.
59 Valden M. ; Lai X. ; Goodman D. W. Science 1998, 281, 1647.
60 Qiao B. T. ; Liang J. X. ; Wang A. Q. ; Liu J. Y. ; Zhang T. ; Chin J. Catal. 2016, 37, 1580.
60 乔波涛; 梁锦霞; 王爱琴; 刘景月; 张涛. 催化学报, 2016, 37, 1580.
61 Chen M. S. ; Goodman D. W. Surf. Sci. 2005, 574, 259.
62 Chen M. S. ; Cai Y. ; Yan Z. ; Goodman D. W. J. Am. Chem. Soc. 2006, 128, 341.
63 Chen M. S. ; Goodman D. W. Acc. Chem. Res. 2006, 39, 739.
64 Chen M. S. ; Goodman D. W. Top. Catal. 2007, 44, 41.
65 Chen M. S. ; Luo K. ; Kumar D. ; Wallace W. T. ; Yi C. W. ; Gath K. K. ; Goodman D. W. Surf. Sci. 2007, 601, 632.
66 Chen M. S. ; Goodman D. W. Chem. Soc. Rev. 2008, 37, 1860.
67 Kung M. C. ; Davis R. J. ; Kung H. H. J. Phys. Chem. C 2007, 111, 11767.
68 Wang Z. W. ; Wang X. V. ; Zeng D. Y. ; Chen M. S. ; Wan H. L. Catal. Today 2011, 160, 144.
69 Li X. K. ; Ma D. D. ; Zheng Y. P. ; Zhang H. ; Ding D. ; Chen M.S. ; Wan H.L. Acta Phys. -Chim. Sin. 2015, 31, 1753.
69 李晓坤; 马冬冬; 郑燕萍; 张宏; 丁丁; 陈明树; 万惠霖. 物理化学学报, 2015, 31, 1753.
70 Zheng W. W. ; Chen M.S. ; Lin W. H. Chem. Record 2002, 2, 102.
71 Wei J. ; Iglesia E. J. Phys. Chem. B 2004, 108, 1094.
72 Hicks R. F. ; Qi H. ; Young M. L. ; Lee R. G. J. Catal. 1990, 122, 295.
73 Chin Y. H. ; Buda C. ; Neurock M. ; Iglesia E. J. Am. Chem. Soc. 2011, 133, 15958.
74 Weng W. Z. ; Chen M. S. ; Yan Q. G. ; Wu T. H. ; Chao Z. S. ; Liao Y. Y. ; Wan H. L. Catal. Today 2000, 63, 317.
75 Weng X. F. ; Ren H. J. ; Chen M. S. ; Wan H. L. ACS Catal. 2014, 4, 2598.
76 Ciuparu D. ; Altman E. ; Pfefferle L. J. Catal. 2001, 203, 64.
77 Monteiro R. S. ; Zemlyanov D. ; Storey J. M. ; Ribeiro F. H. J. Catal. 2001, 199, 291.
78 Chen M. S. ; Weng W. Z. ; Wan H. L. J. Mol. Catal. B 2000, 14, 6.
79 Chen M. S. ; Weng W. Z. ; Wan H. L. ; Chin J. Catal. 1998, 19, 542.
80 Chen M. S. ; Weng W. Z. ; Wan H. L. Acta Phys. -Chim. Sin. 1999, 15, 938.
80 陈明树; 翁维正; 万惠霖. 物理化学学报, 1999, 15, 938.
81 Chen M. S. ; Weng W. Z. ; Wan H. L. ; Xu P. P. J. Xiamen Univ. 1999, 38, 556.
82 Avila M. S. ; Vignatti C. I. ; Apesteguia C. R. ; Rao V. V. ; Chary K. ; Garetto T. F. Catal. Lett. 2010, 134, 118.
83 Yazawa Y. ; Yoshida H. ; Komai S. ; Hattori T. Appl. Catal. A 2002, 233, 113.
84 Yao Y. F. Y. Ind. Eng. Chem. Prod. Res. Dev. 1980, 19, 293.
85 Garetto T. F. ; Rincón E. ; Apestegu??a C. R. Appl. Catal. B 2004, 48, 167.
86 Tang Z. Y. ; Wang S. L. ; Zhang L. L. ; Ding D. ; Chen M. S. ; Wan H. L. Phys. Chem. Chem. Phys. 2013, 15, 12124.
87 Lin Y. ; Xu C. Y. ; Chen M. S. J. Xiamen Univ. 2013, 52, 68.
87 林瑛; 徐超毅; 陈明树. 厦门大学学报(自然科学版), 2013, 52, 68.
88 Kao C.-L. ; Madix R. J. J. Phys. Chem. B 2002, 106, 8248.
89 Min E. Z. ; Du Z.X. Petroleum Petrochem. Today 2002, 10, 1.
89 闵恩泽; 杜泽学. 当代石油石化, 2002, 10, 1.
90 Huang J. J. ; Song Y. Y. ; Ma D. D. ; Zheng Y. P. ; Chen M. S. ; Wan H. L. ; Chin J. Catal. 2017, 38, 1229.
91 Hu, J.; Song, Y. Y.; Huang, J. J.; Li, Y. Y.; Chen, M. S.; Wan, H. L. Chem. A Eur. J. 2017. 10.1002/chem.201701697
92 Han Y. F. ; Wang J. H. ; Kumar D. ; Yan Z. ; Goodman D. W. J. Catal. 2005, 232, 467.
93 Chen M. S. ; Goodman D. W. ; Chin J. Catal. 2008, 29, 1178.
94 Chusuei, C.C.; Lai, X.F.; Luo, K.; Guo, Q. L.; Goodman, D.W. Preparation of Thin-Film Alumina for Catalytic Activity Studies. In Thin Films: Preparation, Characterization, Applications; Soriaga M. P. Eds. Springer: NY, USA, 2002; p. 253.
95 Chen M. S. ; Santra A. K. ; Goodman D. W Phys. Rev. B 2004, 69, 155404.
96 Guo Q. ; Oh W. S. ; Goodman D. W Surf. Sci. 1999, 437, 49.
97 Meriaudeau P. ; Naccache C. Catal. Rev.-Sci. Eng. 1997, (39), 5.
98 Lundwall M. J. ; McClure S. M. ; Goodman D. W. J. Phys. Chem. C 2010, 114, 7904.
99 Lundwall M. J. ; McClure S. M. ; Wang W. X. ; Wang Z. J. ; Chen M. S. ; Goodman D. J. Phys. Chem. C 2012, 116, 18155.
100 Gillespie W. D. ; Herz R. K. ; Petersen E. E. ; Somorjai G. A. J. Catal. 1981, 70, 147.
[1] Lina YANG,Li HUANG,Xueyang SONG,Wenxue HE,Yong JIANG,Zhihu SUN,Shiqiang WEI. In situ Study of Formation Kinetics of Au Nanoclusters during HCl and Dodecanethiol Etching[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 762-769.
[2] Xue-Hui HUANG,Xiao-Hui SHANG,Peng-Ju NIU. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1462-1473.
[3] Hassan GOLMOHAMMADI,Zahra DASHTBOZORGI,Sajad KHOOSHECHIN. Prediction of Blood-to-Brain Barrier Partitioning of Drugs and Organic Compounds Using a QSPR Approach[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1160-1170.
[4] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[5] Yong-Bing GU,Qiu-Xia CAI,Xian-Lang CHEN,Zhen-Zhan ZHUANG,Hu ZHOU,Gui-Lin ZHUANG,Xing ZHONG,Dong-Hai MEI,Jian-Guo WANG. Theoretical Insights into Role of Interface for CO Oxidation on Inverse Al2O3/Au(111) Catalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1674-1680.
[6] Yong-Chang JIA,Shu-Yuan WANG,Lian MENG,Ji-Qing LU,Meng-Fei LUO. Effects of Zr Addition on CO and CH4 Catalytic Oxidation over PdO/PdO/Ce1-xPdxO2-δ Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1801-1809.
[7] Wei-Xin HUANG,Kun QIAN,Zong-Fang WU,Shi-Long CHEN. Structure-Sensitivity of Au Catalysis[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 48-60.
[8] Xiao-Kun. LI,Dong-Dong. MA,Yan-Ping. ZHENG,Hong. ZHANG,Ding. DING,Ming-Shu. CHEN,Hui-Lin. WAN. Performance of CO Oxidation over Highly Dispersed Gold Catalyst on TiOx/SiO2 Composite Supports[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1753-1760.
[9] QIAN Hai-Cheng, KANWAL Shahid, JIA Qing-Zhu, WANG Qiang, JI Hui-Fen, ZHU Zhi-Chen, XIA Shu-Qian, MA Pei-Sheng. Norm Index-Based Quantitative Structure-Activity Relationship to Predict β-Cyclodextrin Complex Binding Constants[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 893-898.
[10] Hai-Chun. LIU,Shuai. LU,Ting. RAN,Yan-Min. ZHANG,Jin-Xing. XU,Xiao. XIONG,An-Yang. XU,Tao. LU,Ya-Dong. CHEN. Accurate Activity Predictions of B-Raf Type II Inhibitors via Molecular Docking and QSAR Methods[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2191-2206.
[11] LÜ Yong-Ge, LI Yong, TA Na, SHEN Wen-Jie. Morphology-Controlled Synthesis of Co3O4 Nanocubes and Their Catalytic Performance in CO Oxidation[J]. Acta Phys. -Chim. Sin., 2014, 30(2): 382-388.
[12] LIANG Qian, ZHAO Zhen, LIU Jian, WEI Yue-Chang, JIANG Gui-Yuan, DUAN Ai-Jun. Pd Nanoparticles Deposited on Metal-Organic Framework of MIL-53(Al):an Active Catalyst for CO Oxidation[J]. Acta Phys. -Chim. Sin., 2014, 30(1): 129-134.
[13] SUN Jing-Fang, GE Cheng-Yan, YAO Xiao-Jiang, CAO Yuan, ZHANG Lei, TANG Chang-Jin, DONG Lin. Preparation of NiO/CeO2 Catalysts by Solid State Impregnation and Their Application in CO Oxidation[J]. Acta Phys. -Chim. Sin., 2013, 29(11): 2451-2458.
[14] SUN Sang-Dun, MI Si-Qi, YOU Jing, YU Ji-Liang, HU Song-Qing, LIU Xin-Yong. HQSAR Study and Molecular Design of Benzimidazole Derivatives as Corrosion Inhibitors[J]. Acta Phys. -Chim. Sin., 2013, 29(06): 1192-1200.
[15] LI Na, CHEN Qiu-Yan, LUO Meng-Fei, LU Ji-Qing. Kinetics Study of CO Oxidation Reaction over Pt/TiO2 Catalysts[J]. Acta Phys. -Chim. Sin., 2013, 29(05): 1055-1062.