Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (12): 2424-2437    DOI: 10.3866/PKU.WHXB201707171
REVIEW     
Toward Understanding the Nature of the Active Sites and Structure-Activity Relationships of Heterogeneous Catalysts by Model Catalysis Studies
CHEN Mingshu
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Download:   PDF(835KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Understanding the nature of the active sites and the relationship between the catalyst structure and its performance are fundamental aspects of heterogeneous catalysis. With the development of modern surface science techniques, atomically resolved surface structures of heterogeneous catalysts and their properties can be studied with ease. Combined with an in situ high pressure cell, model catalysis studies can provide convincing information about the relationship between the catalyst structure and its performance. In this mini-review, several case studies of model catalysts have been summarized, including those of the active surfaces for CO and alkane oxidation using the Pt group metals as catalysts, the active site of gold nanoparticles for CO oxidation, synergistic effects between VOx and Pt for propane oxidation, promotional effects of Au in Pd-Au catalysts for vinyl acetate synthesis, structure-sensitivity of n-heptane dehydrocyclization on model oxide-supported Pt, as well as several significant improvements of the model catalysis techniques.



Key wordsModel catalysis study      Structure-activity      CO oxidation      Alkanes oxidation      In situ spectroscopy     
Received: 17 June 2017      Published: 17 July 2017
O643  
Fund:  

The project was supported by the National Basic Research Program of China (973 program:2013CB933102) and National Natural Science Foundation of China (21273178,21573180,91545204).

Corresponding Authors: CHEN Mingshu     E-mail: chenms@xmu.edu.cn
Cite this article:

CHEN Mingshu. Toward Understanding the Nature of the Active Sites and Structure-Activity Relationships of Heterogeneous Catalysts by Model Catalysis Studies. Acta Phys. -Chim. Sin., 2017, 33(12): 2424-2437.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201707171     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I12/2424

(1) Somorjai, G. A.; Li, Y. Introduction to Surface Chemistry and Catalysis; John Wiley & Sons: NJ, USA, 2010.
(2) Ertl, G.; Freund, H.-J. Phys. Today 1999, 52, 32. doi: 10.1063/1.882569.
(3) Freund, H.-J.; van Santen, R. A.; Neurock, M.; Boudart, M.; Mullins, C. B.; Norskov, J. K. Elementary Steps and Mechanisms: Sections 5.1–5.2. Handbook of Heterogeneous Catalysis; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008; pp. 911–1051.
(4) (a) Goodman, D. W. Surf. Sci. 1994, 299, 837. doi: 10.1016/0039-6028(94)90701-3 (b) Goodman, D. W. J. Phys. Chem. 1996, 100, 13090. doi: 10.1021/jp953755e
(5) Cremer, P. S.; Su, X. C.; Somorjai, G. A.; Shen, Y. R. J. Mol. Catal. A 1998, 131, 225. doi: 10.1016/S1381-1169(97)00268-9
(6) Spencer, N. D.; Schoonmaker, R. C.; Somorjai, G. A. J. Catal. 1982, 74, 129. doi: 10.1016/0021-9517(82)90016-1
(7) (a) Goodman, D. W.; Kelley, R. D.; Madey, T. E.; Yates, J. T., Jr. J. Catal. 1980, 63, 226. doi: 10.1016/0021-9517(80)90075-5 (b) Goodman, D. W. J. Vac. Sci. Technol. 1982, 20, 522. doi: 10.1116/1.571422
(8) Ertl, G. Angew. Chem. Int. Ed. 2008, 47, 3524. doi: 10.1002/anie.200800480
(9) Grunze, M.; Bozso, F.; Ertl, G.; Weiss, M. Appl. Surf. Sci. 1978, 1, 241. doi: 10.1016/0378-5963(78)90017-X
(10) Bozso, F.; Ertl, G.; Weiss, M. J. Catal. 1977, 50, 519. doi: 10.1016/0021-9517(77)90063-X
(11) Strongin, D. R.; Carrazza, J.; Bare, S.R.; Somorjai, G.A. J. Catal. 1987, 103, 213. doi: 10.1016/0021-9517(87)90109-6
(12) Kelley, R. D.; Goodman, D. W. Surf. Sci. 1982, 123, L743.
(13) Belton, D. N.; Sun, Y. M.; White, J. M. J. Phys. Chem. 1984, 88, 1690. doi: 10.1021/j150653a005
(14) Ocal, C.; Ferrer, S. J. Chem. Phys. 1986, 84, 6474. doi: 10.1063/1.450743
(15) Bradford, M. C. J.; Vannice, M. A. Catal. Lett. 1997, 48, 31. doi: 10.1023/A:1019022903491
(16) Martynova, Y.; Shaikhutdinov, S.; Freund, H.-J. ChemCatChem. 2013, 5, 2162. doi: 10.1002/cctc.201300212
(17) Willinger, M. G.; Zhang, W.; Bondarchuk, O.; Shaikhutdinov, S.; Freund, H.-J.; Schlögl, R. Angew. Chem. Int. Ed. 2014, 53, 5998. doi: 10.1002/anie.201400290
(18) Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H.; et al. Science 2010, 328, 1141. doi: 10.1126/science.1188267
(19) Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W.; et al. Science 2014, 344, 495. doi: 10.1126/science.1252553
(20) Yao, Y. X.; Fu, Q., Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P.; et al. Proc. Natl. Acad. Sci. USA 2014, 111, 17023. doi: 10.1073/pnas.1416368111
(21) Zhang, Y. H.; Weng, X. F.; Li, H.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Liu, Z.; Chen, M. S.; Fu, Q.; Bao, X. H. Nano Lett. 2015, 15, 3616. doi: 10.1021/acs.nanolett.5b01205
(22) Valden, M.; Pak, S.; Lai, X.; Goodman, D. W. Catal. Lett. 1998, 56, 7. doi: 10.1023/A:1019028205985.
(23) Chen, M. S.; Goodman, D. W. J. Phys. Conden. Matter. 2008, 20, 264013. doi: 10.1088/0953-8984/20/26/264013
(24) Schauermann, S.; Nilius, N.; Shaikhutdinov, S.; Freund, H.-J. Acc. Chem. Res. 2013, 46, 1673. doi: 10.1021/ar300225s
(25) Chen, M. S.; Goodman, D. W. Science 2004, 306, 252. doi: 10.1126/science.1102420
(26) Chen, M. S.; Kumar, D.; Yi, C. W.; Goodman, D. W. Science 2005, 310, 291. doi: 10.1126/science.1115800
(27) Zheng, Y. P.; Zhang, L. H.; Wang, S. L.; Tang, Z. Y.; Ding, D.; Chen, M. S.; Wan, H. L. Langmuir 2013, 29, 9090. doi: 10.1021/la401256z
(28) Langmuir, I. Trans. Faraday Soc. 1922, 17, 621.
(29) Berlowitz, P. J.; Peden, C. H. F.; Goodman, D. W. J. Phys. Chem. 1988, 92, 5213. doi: 10.1021/j100329a030
(30) Engel, T.; Ertl, G.; Adv. Catal. 1979, 28, 1. doi: 10.1016/S0360-0564(08)60133-9
(31) Campbell, C. T.; Ertl, G.; Kuipers, H.; Segner, J. J. Chem. Phys. 1980, 73, 5862. doi: 10.1063/1.440029
(32) Kim, S. H.; Mendez, J.; Wintterlin, J.; Ertl, G. Phys. Rev. B 2005, 72, 155414. doi: 10.1103/PhysRevB.72.155414
(33) Stuve, E. M.; Madix, R. J.; Brundle, C. R. Surf. Sci. 1984, 146, 155. doi: 10.1016/0039-6028(84)90235-8
(34) Ozensoy, E.; Meier, D. C.; Goodman, D. W. J. Phys. Chem. B 2002, 106, 9367. doi: 10.1021/jp020519c
(35) Kuhn, W. K.; Szanyi, J.; Goodman, D. W. Surf. Sci. 1992, 274, L611. doi: 10.1016/0039-6028(92)90834-S
(36) Chen, M. S.; Cai, Y.; Yan Z.; Gath, K. K.; Axnanda, S.; Goodman, D. W. Surf. Sci. 2007, 601, 5326. doi: 10.1016/j.susc.2007.08.019
(37) Chen, M. S.; Wang, X. V.; Zhang, L. H.; Tang, Z. Y.; Wan, H. L. Langmuir 2010, 26, 18113. doi: 10.1021/la103140w
(38) Chen, M. S.; Zheng, Y. P.; Wan, H. L. Top. Catal. 2013, 56, 1299. doi: 10.1007/s11244-013-0140-0
(39) Weng, X. F.; Yuan, X.; Li, H.; Li, X. K.; Chen, M. S.; Wan H. L. Sci. China Chem. 2015, 58, 174. doi: 10.1007/s11426-014-5277-6
(40) Hendriksen, B. L. M.; Bobaru, S. C.; Frenken, J. W. M. Surf. Sci. 2004, 552, 229. doi: 10.1016/j.susc.2004.01.025
(41) Hendriksen, B. L. M.; Frenken, J. W. M. Phys. Rev. Lett. 2002, 89, 046101. doi: 10.1103/PhysRevLett.89.046101
(42) Ackermann, M. D.; Pedersen, T. M.; Hendriksen, B. L. M.; Robach, O.; Bobaru, S. C.; Popa, I.; Quiros, C.; Kim, H.; Hammer, B.; Ferrer, S.; et al. Phys. Rev. Lett. 2005, 95, 255505. doi: 10.1103/PhysRevLett.95.255505
(43) Toyoshima, R.; Yoshida, M.; Monya, Y.; Suzuki, K.; Mun, B. S.; Amemiya, K.; Mase, K.; Kondoh, H. J. Phys. Chem. Lett. 2012, 3, 3182. doi: 10.1021/jz301404n
(44) Butcher, D. R.; Grass, M. E.; Zeng, Z. H.; Aksoy, F.; Bluhm, H.; Li, W. X.; Mun, B. S.; Somorjai, G. A.; Liu, Z. J. Am. Chem. Soc. 2011, 133, 20319. doi: 10.1021/ja207261s
(45) Alayon, E. M. C.; Singh, J.; Nachtegaal, M.; Harfouche, M.; van Bokhoven, J. A. J. Catal. 2009, 263, 228. doi: 10.1016/j.jcat.2009.02.010
(46) Chung, J. Y.; Aksoy, F.; Grass, M. E.; Kondoh, H.; Ross, J. P.; Liu, Z.; Mun, B. S. Surf. Sci. 2009, 603, L35. doi: 10.1016/j.susc.2009.01.016
(47) Toyoshima, R.; Yoshida, M.; Monya, Y.; Suzuki, K.; Amemiya, K.; Mase, K.; Mun, BS.; Kondoh, H. J. Phys. Chem. C 2013, 117, 20617. doi: 10.1021/jp4054132
(48) Goodman, D. W.; Peden, C. H. F.; Chen, M. S. Surf. Sci. 2007, 601, L124. doi: 10.1016/j.susc.2007.08.003
(49) McClure, S. M.; Goodman, D. W. Chem. Phys. Lett. 2009, 469, 1. doi: 10.1016/j.cplett.2008.12.066
(50) Gao, F.; Cai, Y.; Gath, K. K.; Wang, Y.; Chen, M. S.; Guo, Q. L.; Goodman, D. W. J. Phys. Chem. C 2009, 113, 182. doi: 10.1021/jp8077979
(51) Huang, W. X.; Zhai, R. S.; Bao, X. H. Appl. Surf. Sci. 2000, 158, 287. doi: 10.1016/S0169-4332(00)00010-6
(52) Zheng, G.; Altman, E. I. Surf. Sci. 2002, 504, 253. doi: 10.1016/S0039-6028(02)01104-4
(53) Lundgren, E.; Gustafson, J.; Mikkelsen, A.; Andersen, J. N.; Stierle, A.; Dosch, H.; Todorova, M.; Rogal, J.; Reuter, K.; Scheffler, M. Phys. Rev. Lett. 2004, 92, 46101. doi: 10.1103/PhysRevLett.92.046101
(54) Dumbuya, K.; Cabailh, G.; Lazzari, R.; Jupille, J.; Ringel, L.; Pistor, M.; Lytken, O.; Steinruck, H. P.; Gottfried, J. M. Catal. Today 2012, 181, 20. doi: 10.1016/j.cattod.2011.09.035
(55) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 16, 405. doi: 10.1246/cl.1987.405
(56) Haruta, M.; Date, M. Appl. Catal. A 2001, 222, 427. doi: 10.1016/S0926-860X(01)00847-X
(57) Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. J. Catal. 1993, 144, 175. doi: 10.1006/jcat.1993.1322
(58) Haruta, M. Catal. Today 1997, 36, 153. doi: 10.1016/S0920-5861(96)00208-8
(59) Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647. doi: 10.1126/science.281.5383.1647
(60) Qiao, B. T.; Liang, J. X.; Wang, A. Q.; Liu, J. Y.; Zhang, T. Chin. J. Catal. 2016, 37, 1580. [乔波涛, 梁锦霞, 王爱琴, 刘景月, 张涛. 催化学报, 2016, 37, 1580.] doi: 10.1016/S1872-2067(16)62529-9
(61) Chen, M. S.; Goodman, D. W. Surf. Sci. 2005, 574, 259. doi: 10.1016/j.susc.2004.10.036
(62) Chen, M. S.; Cai, Y.; Yan, Z.; Goodman, D. W. J. Am. Chem. Soc. 2006, 128, 341. doi: 10.1021/ja0557536
(63) Chen, M. S.; Goodman, D. W. Acc. Chem. Res. 2006, 39, 739. doi: 10.1021/ar040309d
(64) Chen, M. S.; Goodman, D. W. Top. Catal. 2007, 44, 41. doi: 10.1007/s11244-007-0276-x
(65) Chen, M. S.; Luo, K.; Kumar, D.; Wallace, W. T.; Yi, C. W.; Gath, K. K.; Goodman, D. W. Surf. Sci. 2007, 601, 632. doi: 10.1016/j.susc.2006.10.042
(66) Chen, M. S.; Goodman, D. W. Chem. Soc. Rev. 2008, 37, 1860. doi: 10.1039/b707318f
(67) Kung, M. C.; Davis, R. J.; Kung, H. H. J. Phys. Chem. C 2007, 111, 11767. doi: 10.1021/jp072102i
(68) Wang, Z. W.; Wang, X. V.; Zeng, D. Y.; Chen, M. S.; Wan, H. L. Catal. Today 2011, 160, 144. doi: 10.1016/j.cattod.2010.07.006
(69) Li, X. K.; Ma, D. D.; Zheng, Y. P.; Zhang, H.; Ding, D.; Chen, M. S. Wan, H. L. Acta Phys. -Chim. Sin. 2015, 31, 1753. [李晓坤, 马冬冬, 郑燕萍, 张宏, 丁丁, 陈明树, 万惠霖. 物理化学学报, 2015, 31, 1753.] doi: 10.3866/PKU.WHXB201507091
(70) Zheng, W. W.; Chen, M. S. Lin, W. H. Chem. Record 2002, 2, 102.
(71) Wei, J.; Iglesia, E. J. Phys. Chem. B 2004, 108, 4094. doi: 10.1021/jp036985z
(72) Hicks, R. F.; Qi, H.; Young, M. L.; Lee, R. G. J. Catal. 1990, 122, 295. doi: 10.1016/0021-9517(90)90283-P
(73) Chin, Y. H.; Buda, C.; Neurock, M.; Iglesia, E. J. Am. Chem. Soc. 2011, 133, 15958. doi: 10.1021/ja202411v
(74) Weng, W. Z.; Chen, M. S.; Yan, Q. G.; Wu, T. H.; Chao, Z. S.; Liao, Y. Y.; Wan, H. L. Catal. Today 2000, 63, 317. doi: 10.1016/S0920-5861(00)00475-2
(75) Weng, X. F.; Ren, H. J.; Chen, M. S.; Wan, H. L. ACS Catal. 2014, 4, 2598. doi: 10.1021/cs500510x
(76) Ciuparu, D.; Altman, E.; Pfefferle, L. J. Catal. 2001, 203, 64. doi: 10.1006/jcat.2001.3331
(77) Monteiro, R. S.; Zemlyanov, D.; Storey, J. M.; Ribeiro, F. H. J. Catal. 2001, 199, 291. doi: 10.1006/jcat.2001.3176
(78) Chen, M. S.; Weng, W. Z.; Wan, H. L. J. Mol. Catal. B 2000, 14, 6.
(79) Chen, M. S.; Weng, W. Z.; Wan, H. L. Chin. J. Catal. 1998, 19, 542.
(80) Chen, M. S.; Weng, W. Z.; Wan, H. L. Acta Phys. -Chim. Sin. 1999, 15, 938. [陈明树, 翁维正, 万惠霖. 物理化学学报, 1999, 15, 938.] doi: 10.3866/PKU.WHXB19991014
(81) Chen, M. S.; Weng, W. Z.; Wan, H. L.; Xu, P. P. J. Xiamen Univ. 1999, 38, 556.
(82) Avila, M. S.; Vignatti, C. I.; Apesteguia, C. R.; Rao, V. V.; Chary, K.; Garetto, T. F. Catal. Lett. 2010, 134, 118. doi: 10.1007/s10562-009-0204-8
(83) Yazawa, Y.; Yoshida, H.; Komai, S.; Hattori, T. Appl. Catal. A 2002, 233, 113. doi: 10.1016/S0926-860X(02)00129-1
(84) Yao, Y. F. Y. Ind. Eng. Chem. Prod. Res. Dev. 1980, 19, 293.
(85) Garetto, T. F.; Rincón, E.; Apesteguía, C. R. Appl. Catal. B 2004, 48, 167. doi: 10.1016/j.apcatb.2003.10.004
(86) Tang, Z. Y.; Wang, S. L.; Zhang, L. L.; Ding, D.; Chen, M. S.; Wan, H. L. Phys. Chem. Chem. Phys. 2013, 15 , 12124. doi: 10.1039/c3cp50712b
(87) Lin, Y.; Xu, C. Y.; Chen, M. S. J. Xiamen Univ. 2013, 52, 68. [林瑛, 徐超毅, 陈明树. 厦门大学学报(自然科学版). 2013, 52, 68.]
(88) Kao, C.-L.; Madix, R. J. J. Phys. Chem. B 2002, 106, 8248. doi: 10.1021/jp020706a.
(89) Min, E. Z.; Du, Z. X. Petroleum Petrochem. Today 2002, 10, 1. [闵恩泽, 杜泽学. 当代石油石化. 2002, 10, 1.]
(90) Huang, J. J.; Song, Y. Y.; Ma, D. D.; Zheng, Y. P.; Chen, M. S.; Wan, H. L. Chin. J. Catal. 2017, 38, 1229. doi: 10.1016/S1872-2067(17)62857-2
(91) Hu, J.; Song, Y. Y.; Huang, J. J.; Li, Y. Y.; Chen, M. S.; Wan, H. L. Chem. A Eur. J. 2017. doi: 10.1002/chem.201701697
(92) Han, Y. F.; Wang, J. H.; Kumar, D.; Yan, Z.; Goodman, D. W. J. Catal. 2005, 232, 467. doi: 10.1016/j.jcat.2005.04.001
(93) Chen, M. S.; Goodman, D. W. Chin. J. Catal. 2008, 29, 1178.
(94) Chusuei, C.C.; Lai, X.F.; Luo, K.; Guo, Q. L.; Goodman, D.W. Preparation of Thin-Film Alumina for Catalytic Activity Studies. In Thin Films: Preparation, Characterization, Applications; Soriaga M. P. Eds. Springer: NY, USA, 2002; p. 253.
(95) Chen, M. S.; Santra, A. K.; Goodman D. W. Phys. Rev. B 2004, 69, 155404. doi: 10.1103/PhysRevB.69.155404
(96) Guo, Q.; Oh, W. S.; Goodman D. W. Surf. Sci. 1999, 437, 49. doi: 10.1016/S0039-6028(99)00678-0
(97) Meriaudeau, P.; Naccache, C. Catal. Rev.-Sci. Eng. 1997, 39, 5. doi: 10.1080/01614949708006467
(98) Lundwall, M. J.; McClure, S. M.; Goodman, D. W. J. Phys. Chem. C 2010, 114, 7904. doi: 10.1021/jp9119292
(99) Lundwall, M. J.; McClure, S. M.; Wang, W. X.; Wang, Z. J.; Chen, M. S.; Goodman, D. J. Phys. Chem. C 2012, 116, 18155. doi: 10.1021/jp301824c
(100) Gillespie, W. D.; Herz, R. K.; Petersen, E. E.; Somorjai, G. A. J. Catal. 1981, 70, 147. doi: 10.1016/0021-9517(81)90324-9

[1] HUANG Xue-Hui, SHANG Xiao-Hui, NIU Peng-Ju. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1462-1473.
[2] GOLMOHAMMADI Hassan, DASHTBOZORGI Zahra, KHOOSHECHIN Sajad. Prediction of Blood-to-Brain Barrier Partitioning of Drugs and Organic Compounds Using a QSPR Approach[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1160-1170.
[3] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[4] JIA Yong-Chang, WANG Shu-Yuan, MENG Lian, LU Ji-Qing, LUO Meng-Fei. Effects of Zr Addition on CO and CH4 Catalytic Oxidation over PdO/PdO/Ce1-xPdxO2-δ Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1801-1809.
[5] GU Yong-Bing, CAI Qiu-Xia, CHEN Xian-Lang, ZHUANG Zhen-Zhan, ZHOU Hu, ZHUANG Gui-Lin, ZHONG Xing, MEI Dong-Hai, WANG Jian-Guo. Theoretical Insights into Role of Interface for CO Oxidation on Inverse Al2O3/Au(111) Catalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1674-1680.
[6] HUANG Wei-Xin, QIAN Kun, WU Zong-Fang, CHEN Shi-Long. Structure-Sensitivity of Au Catalysis[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 48-60.
[7] LI Xiao-Kun, MA Dong-Dong, ZHENG Yan-Ping, ZHANG Hong, DING Ding, CHEN Ming-Shu, WAN Hui-Lin. Performance of CO Oxidation over Highly Dispersed Gold Catalyst on TiOx/SiO2 Composite Supports[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1753-1760.
[8] QIAN Hai-Cheng, KANWAL Shahid, JIA Qing-Zhu, WANG Qiang, JI Hui-Fen, ZHU Zhi-Chen, XIA Shu-Qian, MA Pei-Sheng. Norm Index-Based Quantitative Structure-Activity Relationship to Predict β-Cyclodextrin Complex Binding Constants[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 893-898.
[9] LIU Hai-Chun, LU Shuai, RAN Ting, ZHANG Yan-Min, XU Jin-Xing, XIONG Xiao, XU An-Yang, LU Tao, CHEN Ya-Dong. Accurate Activity Predictions of B-Raf Type II Inhibitors via Molecular Docking and QSAR Methods[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2191-2206.
[10] LÜ Yong-Ge, LI Yong, TA Na, SHEN Wen-Jie. Morphology-Controlled Synthesis of Co3O4 Nanocubes and Their Catalytic Performance in CO Oxidation[J]. Acta Phys. -Chim. Sin., 2014, 30(2): 382-388.
[11] LIANG Qian, ZHAO Zhen, LIU Jian, WEI Yue-Chang, JIANG Gui-Yuan, DUAN Ai-Jun. Pd Nanoparticles Deposited on Metal-Organic Framework of MIL-53(Al):an Active Catalyst for CO Oxidation[J]. Acta Phys. -Chim. Sin., 2014, 30(1): 129-134.
[12] SUN Jing-Fang, GE Cheng-Yan, YAO Xiao-Jiang, CAO Yuan, ZHANG Lei, TANG Chang-Jin, DONG Lin. Preparation of NiO/CeO2 Catalysts by Solid State Impregnation and Their Application in CO Oxidation[J]. Acta Phys. -Chim. Sin., 2013, 29(11): 2451-2458.
[13] SUN Sang-Dun, MI Si-Qi, YOU Jing, YU Ji-Liang, HU Song-Qing, LIU Xin-Yong. HQSAR Study and Molecular Design of Benzimidazole Derivatives as Corrosion Inhibitors[J]. Acta Phys. -Chim. Sin., 2013, 29(06): 1192-1200.
[14] LI Na, CHEN Qiu-Yan, LUO Meng-Fei, LU Ji-Qing. Kinetics Study of CO Oxidation Reaction over Pt/TiO2 Catalysts[J]. Acta Phys. -Chim. Sin., 2013, 29(05): 1055-1062.
[15] WANG Zhi-Ming, HAN Na, YUAN Zhe-Ming, WU Zhao-Hua. Feature Selection for High-Dimensional Data Based on Ridge Regression and SVM and Its Application in Peptide QSAR Modeling[J]. Acta Phys. -Chim. Sin., 2013, 29(03): 498-507.