Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (2): 185-193    DOI: 10.3866/PKU.WHXB201707175
ARTICLE     
Effects of Polyethyleneimine on the Conformation and Binding Capability of Human Serum Albumin
Bangzhi WEI,Zhiyong GUO,Fan WANG,Aimin HUANG,Lin MA*()
Download: HTML     PDF(1098KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

For a better understanding of the cytotoxicity of polyethyleneimine (PEI), which has long been considered as the "golden standard" for polymeric gene delivery carriers, on the molecular basis, UV-Vis absorption, fluorescence, circular dichroism, dynamic light scattering and zeta-potential measurements were conducted to reveal the interaction between the PEI of average molecular weight 1.8 and 25 kDa (denoted as PEI1.8k and PEI25k, respectively) and human serum albumin (HSA). The effects of interactions on the conformation of HSA and its binding capability to the model compounds, 8-anilino-1-naphthalenesulfonic acid (ANS) and quercetin, were also evaluated. PEI was found to bind to HSA and induce an alteration in the secondary and tertiary structures of the protein and its binding capability toward small compounds. The complex formation with PEI resulted in a more compact and hydrophobic conformation of HSA, accompanying an increase in α-helix content in the case of PEI1.8k and PEI25k at low concentrations. The binding efficacy of ANS and quercetin to HSA was reduced by competitive binding with PEI, however increased by the conformational change of the protein. Higher-molecular-weight PEI was found to interact with HSA more favorably. It was also more efficient in perturbing the conformation and the binding capability of the protein.



Key wordsGene carrier      Polyethyleneimine      Human serum albumin      Conformation      Binding capability     
Received: 19 June 2017      Published: 17 July 2017
MSC2000:  O641  
  O648  
Fund:  the National Natural Science Foundation of China(21373062)
Corresponding Authors: Lin MA     E-mail: malinzju@163.com
Cite this article:

Bangzhi WEI,Zhiyong GUO,Fan WANG,Aimin HUANG,Lin MA. Effects of Polyethyleneimine on the Conformation and Binding Capability of Human Serum Albumin. Acta Phys. -Chim. Sin., 2018, 34(2): 185-193.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201707175     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I2/185

Fig 1 Absorption spectra of HSA in PBS containing PEI at pH 7.4. (a) PEI25k, (b) PEI1.8k. cHSA = 5 × 10-6 mol·L-6; cPEI/(mg·mL-1): (1) 0, (2) 0.01, (3) 0.02, (4) 0.05, (5) 0.1, (6) 0.2, (7) 0.5, (8) 1.0.
Fig 2 PEI concentration dependence of peak position λmax (solid line) and absorbance maximum Amax (dash line) of amide group of HSA in PBS at pH 7.4. (■□) PEI25k, (●○) PEI1.8k. cHSA = 5 × 10-6 mol·L-1.
Fig 3 PEI concentration dependence of absorbance of HSA-PEI25k solution at 280 nm (■) and 500 nm (○). cHSA = 5 × 10-6 mol·L-1.
Fig 4 PEI concentration dependence of zeta potential of HSA in PBS at pH 7.4. (■) PEI25k, (○) PEI1.8k. cHSA = 5 × 10-6 mol·L-1.
Fig 5 PEI concentration dependence of mean hydrodynamic diameter Dhy for HSA-PEI solution. (■) PEI25k, (○) PEI1.8k. cHSA = 5 × 10-6 mol·L-1.
Fig 6 Influence of PEI25k on fluorescence emission of HSA in PBS at pH 7.4. λex = 295 nm, cHSA = 5 × 10-6 mol·L-1; cPEI/(mg·mL-1): (1) 0, (2) 0.01, (3) 0.02, (4) 0.05, (5) 0.1, (6) 0.2, (7) 0.5, (8) 1.0.
Fig 7 PEI concentration dependence of ellipticity of HSA at 222 nm, θ222, in PBS at pH 7.4. (■) PEI25k, (○) PEI1.8k. cHSA = 5 × 10-6 mol·L-1.
Fig 8 PEI concentration dependence of ANS fluorescence emission maximum in PBS at pH 7.4. (■) PEI25k, (○) PEI1.8k. λex = 388 nm, cANS = 5 × 10-6 mol·L-1.
Fig 9 PEI concentration dependence of fluorescence maximum intensity of ANS in PBS (pH 7.4) in the presence of HSA. (■) PEI25k, (○) PEI1.8k. λex = 388 nm, cHSA = 5 × 10-6 mol·L-1, cANS = 5 × 10-6 mol·L-1.
Fig 10 Fluorescence emission of quercetin in PBS containing PEI at pH 7.4. (a) PEI25k, (b) PEI1.8k. λex = 465 nm, cQue = 5 × 10-6 mol·L-1; cPEI/(mg·mL-1): (1) 0, (2) 0.01, (3) 0.02, (4) 0.05, (5) 0.1, (6) 0.2, (7) 0.4, (8) 0.6, (9) 0.8, (10) 1.0.
Fig 11 Fluorescence emission of quercetin in PBS containing HSA and PEI at pH 7.4. (a) PEI25k, (b) PEI1.8k. λex = 465 nm, cQue = 5 × 10-6 mol·L-1, cHSA = 5 × 10-6 mol·L-1; cPEI/(mg·mL-1): (1) 0, (2) 0.01, (3) 0.02, (4) 0.05, (5) 0.1, (6) 0.2, (7) 0.4, (8) 0.6, (9) 0.8, (10) 1.0.
Fig 12 PEI concentration dependence of B (solid line) and C (dash line) factor for deconvolution of fluorescence emission of quercetin in PBS (pH 7.4) in the presence of HSA. (■□) PEI25k, (●○) PEI1.8k. λex = 465 nm, cHSA = 5 × 10-6 mol·L-1, cQue = 5 × 10-6 mol·L-1.
1 Yin H. ; Kanasty R. L. ; Eltoukhy A. A. ; Vegas A. J. ; Dorkin J. R. ; Anderson D. G. Nat. Rev. Genet. 2014, 15, 541.
2 Giacca M. ; Zacchigna S. J. Control. Release 2012, 161, 377.
3 Tiera M. J. ; Shi Q. ; Winnik F. M. ; Fernandes J. C. Curr. Gene Ther. 2011, 11, 288.
4 Ibraheem D. ; Elaissari A. ; Fessi H. Int. J. Pharm. 2014, 459, 70.
5 Neu M. ; Fischer D. ; Kissel T. J. Gene Med. 2005, 7, 992.
6 Sawant R. R. ; Sriraman S. K. ; Navarro G. ; Biswas S. ; Dalvi R. A. Torchilin V. P. Biomaterials 2012, 33, 3942.
7 Dong H. F. ; Ding L. ; Yan F. ; Ji H. X. ; Ju H. X. Biomaterials 2011, 32, 3875.
8 Yamano S. ; Dai J. ; Hanatani S. ; Haku K. ; Yamanaka T. ; Ishioka M. ; Takayama T. ; Yuvienco C. ; Khapli S. ; Moursi A. M. ; Montclare J. K. Biomaterials 2014, 35, 1705.
9 Moghimi S. M. ; Symonds P. ; Murray J. C. ; Hunter A. C. ; Debska G. ; Szewczyk A. Mol. Ther. 2005, 11, 990.
10 Larsen A. K. ; Malinska D. ; Koszela-Piotrowska I. ; Parhamifar L. ; Hunter A. C. ; Moghimi S. M. Mitochondrion 2012, 12, 162.
11 Zhong D. ; Jiao Y. ; Zhang Y. ; Zhang W. ; Li N. ; Zuo Q. ; Wang Q. ; Xue W. ; Liu Z. Biomaterials 2013, 34, 294.
12 Pan T. ; Xiao Z.-D. ; Huang P.-M. J. Lumin. 2009, 129, 741.
13 Kragh-Hansen U. Pharmacol. Rev. 1981, 33 (1), 17.
14 Ghuman J. ; Zunszain P. A. ; Petitpas I. ; Bhattacharya A. A. ; Otagiri M. ; Curry S. J. Mol. Biol. 2005, 353, 38.
15 Wu J. ; Zhao C. ; Hu R. ; Lin W. ; Wang Q. ; Zhao J. ; Bilinovich S. M. ; Leeper T. C. ; Li L. ; Cheung H. M. ; Chen S. ; Zheng J. Acta Biomater. 2014, 10, 751.
16 Almeida N. L. ; Oliveira C. L. P. ; Torriani I. L. ; Loh W. Colloids Surf. B 2004, 38, 67.
17 Bekale L. ; Agudelo D. ; Tajmir-Riahi H. A. Colloids Surf. B 2015, 130, 141.
18 Xiao F. ; Gu M. ; Liang Y. ; Li L. ; Luo Y. ; Spectrochim. Acta Part A 2014, 118, 1106.
19 Bekale L. ; Agudelo D. ; Tajmir-Riahi H. A. Colloids Surf. B 2015, 125, 309.
20 Sekowski S. ; Buczkowski A. ; Palecz B. ; Gabryelak T. ; Spectrochim. Acta Part A 2011, 81, 706.
21 Haouz A. ; El Mohsni S. ; Zentz C. ; Merola F. ; Alpert B. Eur. J. Biochem. 1999, 264, 250.
22 Beaven G. H. ; Holiday E. R. Adv. Protein Chem. 1952, 7, 319.
23 Rosenheck K. ; Doty P. Proc. Natl. Acad. Sci. USA 1961, 47 (11), 1775.
24 Donovan J. W. J. Biol. Chem. 1969, 244, 1961.
25 Mazzaferro L. ; Breccia J. D. ; Andersson M. M. ; Hitzmann B. ; Hatti-Kaul R. Int. J. Biol. Macromol. 2010, 47, 15.
26 Yasuhara K. ; Tsukamoto M. ; Tsuji Y. ; Kikuchi J. Colloids Surf. A 2012, 415, 460.
27 Sabín J. ; Vázquez-Vázquez C. ; Prieto G. ; Bordi F. ; Sarmiento F. Langmuir 2012, 28, 10534.
28 Nguyen T. T. ; Shklovskii B. I. Phys. A 2001, 293, 324.
29 Nguyen T. T. ; Shklovskii B. I. J. Chem. Phys. 2001, 114, 5905.
30 Pfau A. ; Schrepp W. ; Horn D. Langmuir 1999, 15, 3219.
31 Andersson M. M. ; Hatti-Kaul R. J.Phys. Chem. B 2000, 104, 3660.
32 Lakowicz J. R. Principles of Fluorescence Spectroscopy 2nd ed Plenum Press: New York, 1999, pp 185- 486.
33 Burstein E. A. ; Vedenkina N. S. ; Ivkova M. N. Photochem. Photobiol. 1973, 18, 263.
34 Carter D. C. ; Ho J. X. Adv. Protein Chem. 1994, 45, 153.
35 He X. M. ; Carter C. D. Nature 1992, 358, 209.
36 Johnson W. C. Ann. Rev. Biophys. Biophys. Chem. 1988, 17, 145.
37 Brahms S. ; Brahms J. ; Spach G. ; Brack A. Proc. Natl. Acad. Sci. USA 1977, 74 (8), 3208.
38 Seedher N. ; Agarwal P. J. Lumin. 2010, 130, 1841.
39 Daniel E. ; Weber G. Biochemistry 1966, 5, 1893.
40 Gasymov O. K. ; Glasgow B. J. Biochim. Biophys. Acta 2007, 1774, 403.
41 Kuznetsova I. M. ; Sulatskaya A. I. ; Povarova O. I. ; Turoverov K. K. PLOS ONE 2012, 7 (7), e40845.
42 Dufour C. ; Dangles O. Biochim. Biophys. Acta 2005, 1721, 164.
43 Wolfbeis O. S. ; Begum M. ; Geiger H. Z. Naturforsch. 1984, 39b, 231.
44 Dangles O. ; Dufour C. ; Bret S. J. Chem. Soc., Perkin Trans. 1999, 2, 737.
45 Falkovskaia E. ; Sengupta P. K. ; Kasha M. Chem. Phys. Lett. 1998, 297, 109.
46 Sengupta P. K. ; Kasha M. Chem. Phys. Lett. 1979, 68 (2-3), 382.
[1] Ze YU,Xiaohong LI,Yunchao LI,Mingfu YE. K+ Concentration-Dependent Conformational Change of Pb2+-Stabilized G-quadruplex[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1293-1298.
[2] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.
[3] Hai-Long CHEN,Hong-Tao BIAN,Jun-Rong ZHENG. Determining 3D Molecular Conformations with Ultrafast Multiple-Dimensional Vibrational Spectroscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 40-62.
[4] Shi-Wen XU,Dong-Qiang LIN,Shan-Jing YAO. Evaluation of Molecular Binding Modes on Site Ⅱ of Human Serum Albumin[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1819-1828.
[5] Xian-Mei MENG,Shao-Long ZHANG,Qing-Gang ZHANG. Effect of the Allosteric Inhibitor Efavirenz on HIV-1 Reverse Transcriptase by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 436-444.
[6] Shi-Wen XU,Dong-Qiang LIN,Shan-Jing YAO. Molecular Simulations on Dynamic Binding of Ibuprofen onto Site II of Human Serum Albumin: One Potential Way Analysis[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2811-2818.
[7] Hong-Chen SHEN,Ji-Yong DING,Li LI,Fu-Feng LIU. Effect of Y220C Mutant on the Conformational Transition of p53C Probed by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2620-2627.
[8] Qing-Lian GUO,Ling-Li PAN,Li-Yun YANG,Huan HE,Ye-Zhong ZHANG,Yi LIU. Thermodynamics of the Interaction of Imidacloprid with Human Serum Albumin[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 274-282.
[9] FU Zhao-Ming, WANG Ming-Yang, ZHANG Yan-Xing, ZHANG Na, YANG Zong-Xian. First-Principles Study on the Microstructure of Triple-Phase Boundaries in the Ni/Yttria-Stabilized Zirconia Anode[J]. Acta Phys. -Chim. Sin., 2014, 30(6): 1055-1060.
[10] HE Wen-Ying, YAO Xiao-Jun, HUA Ying-Jie, HUANG Guo-Lei, WU Xiu-Li, LI Xiao-Bao, HAN Chang-Ri, SONG Xiao-Ping . Effect of Kolavenic Acid on the Structure of Human Serum Albumin[J]. Acta Phys. -Chim. Sin., 2014, 30(11): 2142-2148.
[11] LIU Yuan, LONG Mei, XIE Meng-Xia. Mechanism of Interaction between Chrysin and Different Configurations of Human Serum Albumin[J]. Acta Phys. -Chim. Sin., 2013, 29(12): 2647-2654.
[12] ZHANG Bing-Bing, ZHAO Cong, WANG Xue-Song, HE Lei, DU Wei-Hong. Effects of 4-Hydroxyproline Stereochemistry on α-Conotoxin Solution Conformation[J]. Acta Phys. -Chim. Sin., 2013, 29(05): 1080-1087.
[13] BAI Shu, LI Hao, ZHANG Lin. Standing Orientation of Lysozymes Induced by Electrostatically Repulsive Surface[J]. Acta Phys. -Chim. Sin., 2013, 29(04): 849-857.
[14] DONG Xiao-Yan, DU Wen-Jie, LIU Fu-Feng. Molecular Dynamics Simulation and Binding Free Energy Calculation of the Conformational Transition of Amyloid Peptide 42 Inhibited by Peptide Inhibitors[J]. Acta Phys. -Chim. Sin., 2012, 28(11): 2735-2744.
[15] PENG Yu-Ling, WANG Shu-Jun, FU Li, ZHANG Cheng-Gen, LIU Xin-Gang. Synthesis of Tailed Porphyrin Modified with Nicotinic Acid and Interactions with Human Serum Albumin[J]. Acta Phys. -Chim. Sin., 2012, 28(05): 1054-1062.