Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (2): 194-200    DOI: 10.3866/PKU.WHXB201707262
Article     
Measurement of Vapor Pressure and Vaporization Enthalpy for Ionic Liquids 1-Hexyl-3-methylimidazolium Threonine Salt[C6mim][Thr]by Isothermogravimetric Analysis
TONG Jing, QU Ye, JING Liqiang, LIU Lu, LIU Chunhui
College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
Download:   PDF(1059KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The amino acid ionic liquid (AAIL) 1-hexyl-3-methylimidazolium threonine salt,[C6mim] [Thr], was prepared by the neutralization method and its structure was confirmed by 1H and 13C NMR spectroscopy. Using benzoic acid as the reference material, the vapor pressure and evaporation enthalpy △glHmθ (Tav) of[C6mim] [Thr] were determined by isothermogravimetric analysis at the average temperature (Tav=438.15 K) and △glHmθ (Tav) was found to be (128.5 ±6.0) kJ·mol-1. Using Verevkin's method, the difference between the heat capacities of the vapor and liquid phases, △glCpmθ, was calculated to be -70.8 J·K-1·mol-1. Subsequently, the enthalpy of vaporization for AAIL[C6mim] [Thr] at different temperatures was determined based on the reference enthalpy of vaporization at 298.15 K, △glHmθ (298.15 K)=138.4 kJ·mol-1. This value is 1.6 kJ·mol-1 higher than that predicted by our theoretical model and less than the experimental error (±3.0 kJ·mol-1) of the isothermogravimetric method. These results show that our theoretical model for determining the evaporation enthalpy of ILs is reasonable. In terms of the Clausius-Clapeyron equation, the hypothetical normal boiling point, Tb, was estimated to be 522.07 K. Thus, the evaporation entropy, △glSmθ (T), and the evaporation Gibbs free energy, △glGmθ (T), of[C6mim] [Thr] could be determined for different temperatures. These results showed that △glGmθ (T) decreases as the temperature increases, the evaporation entropy increases with increaseing temperature. Furthermore, the latter is the driving force in the evaporation process of the AAIL[C6mim] [Thr].



Key wordsIonic liquid      Isothermogravimetrical analysis      Enthalpy of vaporization      Vapor pressure      Threonine     
Received: 16 June 2017      Published: 26 July 2017
O642  
Fund:  

The project was supported by the National Natural Science Foundation of China (21273003)

Corresponding Authors: TONG Jing     E-mail: tongjinglnu@sina.com
Cite this article:

TONG Jing, QU Ye, JING Liqiang, LIU Lu, LIU Chunhui. Measurement of Vapor Pressure and Vaporization Enthalpy for Ionic Liquids 1-Hexyl-3-methylimidazolium Threonine Salt[C6mim][Thr]by Isothermogravimetric Analysis. Acta Phys. -Chim. Sin., 2018, 34(2): 194-200.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201707262     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I2/194

(1) Zhang, S. J.; Liu, X. M. Ionic Liquid: From Basic Research to Industrial Applications; Science Press: Beijing, 2006. [张锁江, 吕兴 梅. 离子液体: 从基础研究到工业应用. 北京: 科学出版社, 2006.]
(2) Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8, 621. doi: 10.1038/NMAT2448
(3) Bu, X. X.; Fan, B. H.; Wei, J.; Xing, N. N.; Ma, X. X.; Guan, W. Acta Phys. -Chim. Sin. 2016, 32, 267. [卜晓雪, 樊本汉, 魏杰, 邢楠楠, 马晓雪, 关伟. 物理化学学报, 2016, 32, 267.] doi:10.3866/PKU.WHXB201510303
(4) Tao, G. H.; He, L.; Liu, W. S.; Xu, L.; Xiong, W.; Wang, T.; Kou, Y. Green Chem. 2006, 8, 639. doi: 10.1039/B600813E
(5) Fukumoto, K.; Yoshizawa, M.; Ohno, H. J. Am. Chem. Soc. 2005, 127, 2398. doi: 10.1021/ja043451i
(6) Zhang, S.; Wang, J.; Lu, X.; Zhou, Q. Structures and Interactions of Ionic Liquids; Springer: Heidelberg, 2014.
(7) Fang, D. W.; Tong, J.; Guan, W.; Wang, H.; Yang, J. Z. J. Phys. Chem. B 2010, 114, 13808. doi: 10.1021/jp107452q
(8) Tong, J.; Song, B.; Wang, C. X.; Li, L.; Guan, W.; Fang, D. W.; Yang, J. Z. Ind. Eng. Chem. Res. 2011, 50, 2418. doi: 10.1021/ie101903t
(9) Earle, M. J.; Esperanc, J. M. S. S.; Gilea, M. A.; Lopes, J. N. C.; Rebelo, L. P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. Nature 2006, 439, 831. doi: 10.1038/nature04451
(10) Deyko, A.; Lovelock, K. R.; Corfield, J. A.; Taylor, A. W.; Gooden, P. N.; Villar-Garcia, I. J.; Licence, P.; Jones, R. G.; Krasovskiy, V. G.; Chernikova, E. A.; et al. Phys. Chem. Chem. Phys. 2009, 11, 8544. doi: 10.1039/b908209c
(11) Esperanc, J. M. S. S.; Lopes, J. N. C.; Tariq, M.; Santos, L. M. N. B. F.; Magee, J. W.; Rebelo, L. P. N. J. Chem. Eng. Data 2010, 55, 3. doi: 10.1021/je900458w
(12) Zaitsau, D. H.; Kabo, G. J.; Strechan, A. A.; Paulechka, Y. U.; Tschersich, A.; Verevkin, S. P.; Heintz, A. J. Chem. Phys. A 2006, 110, 7303. doi: 10.1021/jp060896f
(13) Luo, H.; Baker, G. A.; Dai, S. J. Chem. Phys. B 2008, 112, 10077. doi: 10.1021/jp805340f
(14) Heym, F.; Etzold, B. J. M.; Kern, C.; Jess, A. Green Chem. 2011, 13, 1453. doi: 10.1039/C0GC00876A
(15) Verevkin, S. P.; Ralys, R. V.; Zaitsau, D. H.; Emel’yanenko, V. N.; Schick, C. Thermochim. Acta 2012, 538, 55. doi: 10.1016/j.tca.2012.03.018
(16) Tong, J.; Yang, H. X.; Liu, R. J.; Li, C.; Xia, L. X.; Yang. J. Z. J. Phys. Chem. B 2014, 118, 12972. doi: 10.1021/jp509240w
(17) Hong, M.; Liu, R. J.; Yang, H. X.; Guan, W.; Tong, J.; Yang, J. Z. J. Chem. Thermodyn. 2014, 70, 214. doi: 10.1016/j.jct.2013.11.004
(18) Zaitsau, D. H.; Kabo, G. J.; Strechan, A. A.; Paulechka, Y. U.; Tschersich, A.; Verevkin, S. P.; Heintz, A. J. Chem. Phys. A 2006, 110, 7303. doi: 10.1021/jp060896f
(19) Tong, J.; Chen, T. F.; Zhang, D.; Wang, L. F.; Tong, J.; Yang, J. Z. Acta Phys. -Chim. Sin. 2016, 32, 1161. [佟静, 陈滕飞, 张朵, 王林 富, 佟健, 杨家振. 物理化学学报, 2016, 32, 1161.] doi: 10.3866/PKU.WHXB201602232
(20) Li, C.; Yang, H. X.; Liu, R. J.; Yang, Q.; Tong, J.; Yang, J. Z. Acta Phys. -Chim. Sin. 2015, 31, 11. [李驰,杨宏旭,刘入境,杨奇,佟 静,杨家振. 物理化学学报, 2015, 31, 11.] doi: 10.3866/PKU.WHXB201411063
(21) Stewart, L. N. In Proceedings of the Third Toronto Symposium on Thermal Analysis; McAdie, H. G. Ed.; Chemical Institute of Canada: Toronto, 1969; p. 205.
(22) Hinks, D.; Rafiq, M. I.; Price, D. M.; Montero, G. A.; Smith, B. A. Color Technol. 2003, 119, 84. doi: 10.1111/j.1478-4408.2003.tb00155.x
(23) Price, D. M. Thermochim. Acta 2001, 253, 367. doi: 10.1016/S0040-6031(00)00676-6
(24) Verevkin, S. P.; Zaitsau, D. H.; Emel’yanenko, V. N.; Yermalayeu, A. V. J. Phys. Chem. B 2013, 117, 6473. doi: 10.1021/jp311429r
(25) Zaitsau, D. H.; Yernalayeu, A. V.; Emel’yanenko, V. N.; Verevkin, S. P.; Welz-Biermann, U.; Schubert, T. Sci. China Chem. 2012, 55, 1526. doi: 10.1002/cphc.201100879
(26) Paulechka, Y. U.; Zaitsau, D. H.; Kabo, G. J. J. Mol. Liq. 2004, 115, 105. doi: 10.1016/j.molliq.2004.03.002
(27) Zhang, D.; Qu, Y.; Gong, Y. Y.; Tong, J.; Fang, D. W.; Tong, J. J. Chem. Thermodyn. Submitted.
(28) Tong, J.; Liu, L.; Li, H.; Guan, W.; Chen, X. J. Chem. Thermodyn. 2017, 112, 293. doi: 10.1016/j.jct.2017.05.015
(29) Archer, D. G.; Widegren, J. A.; Kirklin, D. R.; Magee, J. W. J. Chem. Eng. Data 2005, 50, 1484. doi: 10.1021/je050136i

[1] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[2] MENG Yan-Shuang, WANG Chen, WANG Lei, WANG Gong-Rui, XIA Jun, ZHU Fu-Liang, ZHANG Yue. Efficient Synthesis of Sulfur and Nitrogen Co-Doped Porous Carbon by Microwave-Assisted Pyrolysis of Ionic Liquid[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1915-1922.
[3] ZHENG Qi-Ge, LIU Hui, XIA Quan, LIU Qing-Shan, MOU Lin. Density, Dynamic Viscosity and Electrical Conductivity of Two Hydrophobic Phosphonium Ionic Liquids[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 736-744.
[4] BAI Jin, CHEN Xin, XI Zhao-Yi, WANG Xiang, LI Qiang, HU Shao-Zheng. Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 611-619.
[5] TONG Jing, LIU Lu, ZHANG Duo, ZHENG Xu, CHEN Xia, YANG Jia-Zhen. Parameters of the Activation of Viscous Flow of Aqueous[C2mim] [Ala][J]. Acta Phys. -Chim. Sin., 2017, 33(3): 513-519.
[6] MA Ren-Jun, GUO Qian-Jin, LI Bo-Xuan, XIA An-Dong. Triplet Excited State Dynamics of Porphyrin in Ionic Liquid [Bmim][BF4][J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2191-2198.
[7] ZHENG Xiao-Di, ZHU Yan-Li, DONG Rui, JIAO Qing-Jie. Effect of Alkyl Imidazole Ionic Liquids CnmimCl (n= 4, 6, 8) on CL-20 Recrystallization[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1950-1959.
[8] WU Yang, YUE Li-Li, LIU Qiao-Zhen, WANG Xia. A Theoretical Study of the Thermodynamic Properties of Imidazolium Acetate Ionic Liquids[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1960-1966.
[9] YUAN Wei-Jin, DONG Zhen, ZHAO Long, YU Tian-Lin, ZHAI Mao-Lin. γ-Ray-Induced Radiolysis of CMPO/[C2mim][NTf2] and Its Effect on Eu3+ Extraction[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2101-2107.
[10] MAI Jun-Lin, SUN De-Lin, QUAN Xue-Bo, LI Li-Bo, ZHOU Jian. Mesoscopic Structure of Nafion-Ionic Liquid Membrane Using Dissipative Particle Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1649-1657.
[11] ZHANG Xiao-Ning, HU Hong-Mei. Investigation of Interfaces of Ionic Liquid via Kelvin Probe Force Microscopy at Room Temperature[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1722-1726.
[12] LI Yan, CHAI Jin-Ling. Dilational Viscoelasticity of Imidazole-Based Surface Active Ionic Liquids at the Air/Water Interface[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1227-1235.
[13] TONG Jing, CHEN Teng-Fei, ZHANG Duo, WANG Lin-Fu, TONG Jian, YANG Jia-Zhen. Molar Surface Gibbs Free Energy of the Aqueous Solution of the Ionic Liquid [C2mim][OAc][J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1161-1167.
[14] SHI Ji-Fu, HUANG Qi-Zhang, WAN Qing-Cui, XU Xue-Qing, LI Chun-Sheng, XU Gang. Sulfide-Based Ionic Liquid Electrolyte Widening the Application Temperature Range of Quantum-Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 822-827.
[15] LIU Qing-Shan, LIU Hui, MOU Lin. Properties of 1-(Cyanopropyl)-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imide[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 617-623.