Please wait a minute...
Acta Physico-Chimica Sinca  2018, Vol. 34 Issue (4): 414-423    DOI: 10.3866/PKU.WHXB201708283
Special Issue: Special Issue for Highly Cited Researchers
Article     
Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity
DU Xinhua, LI Yang, YIN Hui, XIANG Quanjun
College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
Download:   PDF(4707KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Au/TiO2/MoS2 plasmonic composite photocatalysts were synthesized via deposition-precipitation with urea. The photocatalytic activities of the prepared samples were evaluated by performing hydrogen production experiments under Xe lamp irradiation with a 10% (φ, volume fraction) glycerol aqueous solution as the sacrificial agent. The results showed that the optimal content of MoS2 in the Au/TiO2/MoS2 composite is 0.1% (w, mass fraction) and the corresponding H2 production rate was 708.85 μmol·h-1, which was almost 11 times higher than that of TM6.0 with the strongest photocatalytic activity in the all binary TiO2/MoS2 composites. The enhanced photocatalytic activity of the ternary Au/TiO2/MoS2 composites is mainly due to the surface plasmon resonance of the supported Au nanoparticles absorbed on the TiO2/MoS2 layered composite, which show an intense absorption maximum centered around 550-560 nm and induce the photoexcitation of electrons. Meanwhile, the electrons excited by surface plasmon resonance of Au could be injected into the conduction band of TiO2, and they were then transferred to the edges of MoS2 for catalyzing the production of H2.



Key wordsTiO2 nanosheet      Layered structure      Au nanoparticle      Plasma      Photocatalytic H2 production     
Received: 29 June 2017      Published: 28 August 2017
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21403079, 51672099) and Fundamental Research Funds for the Central Universities, China (2662015PY039, 2662015PY210).

Corresponding Authors: XIANG Quanjun     E-mail: xiangqj@mail.hazu.edu.cn
Cite this article:

DU Xinhua, LI Yang, YIN Hui, XIANG Quanjun. Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity. Acta Physico-Chimica Sinca, 2018, 34(4): 414-423.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201708283     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I4/414

(1) Xiang, Q. J.; Cheng, B.; Yu, J. G. Angew.Chem. Int. Ed. 2015, 54, 11350. doi: 10.1002/anie.201411096
(2) Armaroli, N.; Balzani, V. ChemSusChem 2011, 4, 21. doi: 10.1002/cssc.201000182
(3) Sakintuna, B.; Lamaridarkrim, F.; Hirscher, M. Int. J. Hydrog. Energy 2007, 32, 1121. doi: 10.1016/j.ijhydene.2006.11.022
(4) Ni, M.; Leung, D. Y. C.; Leung, M. K. H. Int. J. Hydrog. Energy 2007, 32, 3238. doi: 10.1016/j.ijhydene.2007.04.038
(5) Balat, M. Int. J. Hydrog. Energy 2008, 33, 4013. doi: 10.1016/j.ijhydene.2008.05.047
(6) Muradov, N.; Veziroglu, T. Int. J. Hydrog. Energy 2008, 33, 6804. doi: 10.1016/j.ijhydene.2008.08.054
(7) Navarro, R. M.; Pena, M. A.; Fierro, J. L. Chem. Rev. 2007, 107, 3952. doi: 10.1021/cr0501994
(8) Li, X.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A.; Xie, J. Small 2016, 12, 6640. doi: 10.1002/smll.201600382
(9) Yu, J. G.; Qi, L. F.; Jaroniec, M. J. Phys. Chem. C 2010, 114, 13118. doi: 10.1021/jp104488b
(10) Xiang, Q. J.; Lang, D.; Shen, T. T.; Liu, F. Appl. Catal. B: Environ. 2015, 162, 196. doi: 10.1016/j.apcatb.2014.06.051
(11) Xiang, Q. J.; Cheng, F. Y.; Lang, D. ChemSusChem 2016, 9, 996. doi: 10.1002/cssc.201501702
(12) Wang, X. F.; Cheng, J. J.; Yu, H. G.; Yu, J. G. Dalton. Trans. 2017, 46, 6417. doi: 10.1039/c7dt00773f
(13) Xiang, Q. J.; Lv, K.; Yu, J. G. Appl. Catal. B: Environ. 2010, 96, 557. doi: 10.1016/j.apcatb.2010.03.020
(14) Chen, X. B.; Burda, C. J. Am. Chem. Soc. 2008, 130, 5018. doi: 10.1021/ja711023z
(15) Venieri, D.; Gounaki, I.; Binas, V.; Zachopoulos, A.; Kiriakidis, G.; Mantzavinos, D. Appl. Catal. B: Environ. 2015, 178, 54. doi: 10.1016/j.apcatb.2014.10.052
(16) Wang, X. F.; Li, T. Y.; Yu, R.; Yu, H. G.; Yu, J. G. J. Mater. Chem. A 2016, 4, 8682. doi: 10.1039/c6ta02039a
(17) Li, G.; Chen, M. Q.; Zhao, S. X.; Li, P. W.; Hu, J.; Sang, S. B.; Hou, J. J. Acta Phys. -Chim. Sin. 2016, 32, 2905. [李刚, 陈敏强, 赵世雄, 李朋伟, 胡杰, 桑胜波, 候静静. 物理化学学报, 2016, 32, 2905.] doi: 10.3866/PKU.WHXB201609201
(18) Bouhadoun, S.; Guillard, C.; Dapozze, F.; Singh, S.; Amans, D.; Bouclé, J.; Herlin-Boime, N. Appl. Catal. B: Environ. 2015, 174, 367. doi: 10.1016/j.apcatb.2015.03.022
(19) Ksibi, M.; Rossignol, S.; Tatibouët, J. M.; Trapalis, C. Mater. Lett. 2008, 62, 4204. doi: 10.1016/j.matlet.2008.06.026
(20) Dai, K.; Lu, L.; Liang, C.; Liu, Q.; Zhu, G. Appl. Catal. B: Environ. 2014, 156, 331. doi: 10.1016/j.apcatb.2014.03.039
(21) Xiang, Q. J.; Yu, J. G.; Jaroniec, M. J. Am. Chem. Soc. 2012, 134, 6575. doi: 10.1021/ja3028 46n
(22) Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. Am. Chem. Soc. 2011, 133, 7296. doi: 10.1021/ja201269b
(23) Chen, X. Y.; Lu, D. F.; Huang, J. F.; Lu, Y. F.; Zheng, J. Q. Acta Phys. -Chim. Sin. 2012, 28, 161. [陈孝云, 陆东芳, 黄锦锋, 卢燕风, 郑建强. 物理化学学报, 2012, 28, 161.] doi: 10.3866/PKU.WHXB2012 28161
(24) Hinnemann, B.; Moses, P. G.; Bonde, J.; Jorgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Norskov, J. K. J. Am. Chem. Soc. 2005, 127, 5308. doi: 10.1021/ja0504690
(25) Ma, S.; Xie, J.; Wen, J. Q.; He, K. L.; Li, X.; Liu, W.; Zhang, X. C. Appl. Surf. Sci. 2017, 391, 580. doi: 10.1016/j.apsusc.2016.07.067
(26) Yu, H. G.; Xiao, P.; Wang, P.; Yu, J. G. Appl. Catal. B: Environ. 2016, 193, 217. doi: 10.1016/j.jcis.2010.11.007
(27) Kanda, S.; Akita, T.; Fujishima, M.; Tada, H. J. Colloid Interface Sci. 2011, 354, 607. doi: 10.1016/j.jcis.2010.11.007
(28) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638. doi: 10.1038/nature06964
(29) Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. J. Am. Chem. Soc. 2009, 131, 3152. doi: 10.1021/ja8092373
(30) Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Nanoscale 2011, 3, 3670. doi: 10.1039/c1nr10610d
(31) Wu, Z. Y.; Wang, J.; Zhou, Z. Y.; Zhao, G. H. J. Mater. Chem. A 2017, 5, 12407. doi: 10.1039/c7ta03252h
(32) Wang, G. M.; Feng, H. Q.; Jin, W. H.; Gao, A.; Peng, X.; Li, W.; Wu, H.; Li, Z.; Chu, P. K. Appl. Surf. Sci. 2017, 414, 230. doi: 10.1016/j.apsusc.2017.04.053
(33) Chen, X.; Zhu, H. Y.; Zhao, J. C.; Zheng, Z. F.; Gao, X. P. Angew. Chem. Int. Ed. 2008, 47, 5353. doi: 10.1002/anie.200800602
(34) Tatsuma, T.; Tian Y. J. Am. Chem. Soc. 2005, 127, 7632. doi: 10.1021/ja042192u
(35) Pany, S.; Naik, B.; Martha, S.; Parida, K. ACS. Appl. Mater. Inter. 2014, 6, 839. doi: 10.1021/am403865r
(36) Jovic, V.; Chen, W. T.; Sun, D.; Blackford, M. G.; Idriss, H.; Geoffrey, I. N. J. Catal. 2013, 305, 307. doi: 10.1016/j.jcat.2013.05.031
(37) Liu, Y.; Yu, H.; Wang, H.; Chen, S.; Quan, X. Mater. Res. Bull. 2014, 59, 111. doi: 10.1016/j.materresbull.2014.07.013
(38) Lang, D.; Shen, T. T.; Xiang, Q. J. ChemCatChem 2015, 7, 943. doi: 10.1002/cctc.201403062
(39) Li, X. L.; Li, Y. D. J. Phys. Chem. B 2004, 108, 13893. doi: 10.1021/jp0367575
(40) Zanella, R. J. Catal. 2004, 222, 357. doi: 10.1016/j.jcat.2003.11.005
(41) Xiang, Q. J.; Y, J. G. Chin. J. Catal. 2011, 32, 525. doi: 10.1016/S1872-2067(10)60186-6
(42) Cheng, N.; Tian, J.; Liu, Q.; Ge, C.; Qusti, A. H.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. ACS Appl. Mater. Interfaces 2013, 5, 6815. doi: 10.1021/am401802r

[1] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 247-255.
[2] SUN Shuai-Qi, YI Yan-Hui, WANG Li, ZHANG Jia-Liang, GUO Hong-Chen. Preparation and Performance of Supported Bimetallic Catalysts for Hydrogen Production from Ammonia Decomposition by Plasma Catalysis[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1123-1129.
[3] FAN Xiang-Xiang, HE Xiu-Li, LI Jian-Ping, GAO Xiao-Guang, JIA Jian, QI Zhi-Mei. Fabrication and Surface-Enhanced Raman Scattering Properties of an Ag-Coated Polyimide Nanorod Array[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 1036-1042.
[4] CHEN Xu-Dong, CHEN Zhao-Long, SUN Jing-Yu, ZHANG Yan-Feng, LIU Zhong-Fan. Graphene Glass: Direct Growth of Graphene on Traditional Glasses[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 14-27.
[5] LIU Jin-Long, LIU Sheng, GUO Jian-Chao, HUA Chen-Yi, CHEN Liang-Xian, WEI Jun-Jun, HEI Li-Fu, WANG Jing-Jing, FENG Zhi-Hong, LIU Qing, LI Cheng-Ming. Formation Mechanism of the H-terminated Diamond Surface[J]. Acta Physico-Chimica Sinca, 2015, 31(9): 1741-1746.
[6] REN Zhong-Hua, LU Yue-Xiang, YUAN Hang, WANG Zhe, YU Bo, CHEN Jing. Charge-Transfer Reactions at the Interface between Atmospheric- Pressure Microplasma Anode and Ionic Solution[J]. Acta Physico-Chimica Sinca, 2015, 31(7): 1215-1218.
[7] WANG Hao, SONG Ling-Jun, LI Xing-Hu, YUE Li-Meng. Hydrogen Production from Partial Oxidation of Methane by Dielectric Barrier Discharge Plasma Reforming[J]. Acta Physico-Chimica Sinca, 2015, 31(7): 1406-1412.
[8] QIAO Zhi, XIE Xin-Jian, XUE Jun-Ming, LIU Hui, LIANG Li-Min, HAO Qiu-Yan, LIU Cai-Chi. Optimization of Intrinsic Silicon Passivation Layers in nc-Si:H/c-Si Silicon Heterojunction Solar Cells[J]. Acta Physico-Chimica Sinca, 2015, 31(6): 1207-1214.
[9] LU Li-Ping, LI Jiao, WU Jing, KANG Tian-Fang, CHENG Shui-Yuan. Effects of Gold Nanoparticles on Quantum Dot Electrochemiluminescence Obtained Using a DNA Electrochemiluminescence Sensor[J]. Acta Physico-Chimica Sinca, 2015, 31(3): 483-488.
[10] HE Zhi-Qiao, TONG Li-Li, ZHANG Zhi-Peng, CHEN Jian-Meng, SONG Shuang. Ag/Ag2WO4 Plasmonic Catalyst for Photocatalytic Reduction of CO2 under Visible Light[J]. Acta Physico-Chimica Sinca, 2015, 31(12): 2341-2348.
[11] LU Xiao-Lin, ZHOU Jie, LI Bo-Lin. Nonlinear Optical Responses of Thiol Chains in Different Confined States[J]. Acta Physico-Chimica Sinca, 2014, 30(12): 2342-2348.
[12] LI Yu-Ling, KAN Cai-Xia, WANG Chang-Shun, LIU Jin-Sheng, XU Hai-Ying, NI Yuan, XU Wei, KE Jun-Hua, SHI Da-Ning. Surface Plasmon Resonance Coupling Effect of Assembled Gold Nanorods Based on the FDTD Simulation[J]. Acta Physico-Chimica Sinca, 2014, 30(10): 1827-1836.
[13] YANG Da-Wei, CHEN Chao, XIE Qing-Ji, YAO Shou-Zhuo. Comparison of Enzymatic Activities and Electroactivities of Adsorbed Glucose Oxidase on Several Nanomaterial-Modified Electrodes[J]. Acta Physico-Chimica Sinca, 2013, 29(08): 1727-1734.
[14] CHANG Da-Lei, LI Xiao-Song, ZHAO Tian-Liang, ZHU Ai-Min. Diagnosis of Emission Spectra on Chemical Vapor Deposition of TiO2 System with Atmospheric-Pressure Radio Frequency Plasma[J]. Acta Physico-Chimica Sinca, 2013, 29(03): 625-630.
[15] WANG Yan-Yan, JIANG Yan-Xia, SUSHAAndrei, ROGACH Andrey, SUN Shi-Gang. Effect of pH and Au Nanoparticles on Cytochrome c Investigated by Electrochemistry and UV-Vis Absorption Spectroscopy[J]. Acta Physico-Chimica Sinca, 2012, 28(05): 1127-1133.