Please wait a minute...
Acta Physico-Chimica Sinca  2018, Vol. 34 Issue (5): 476-482    DOI: 10.3866/PKU.WHXB201709151
ARTICLE     
Syntheses and Luminescent Properties of Coordination Polymers Based on 1, 2, 4-Triazole-Substituted Resorcin[4]arene
Xue HAN,Jin YANG*(),Yingying LIU,Jianfang MA*()
Download: HTML     PDF(1953KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Two new coordination polymers, namely, [[Zn2(TTR4A)(L)2]·DMF·4H2O]n (compound 1) and [[Co(TTR4A)Cl2]·DMA·H2O]n (compound 2), have been synthesized under solvothermal conditions (TTR4A = tetrakis(1, 2, 4-triazol-ylmethylresorcin[4]arene), L = 4, 4'-biphenyldicarboxylic acid, DMF = N, N-dimethylformamide and DMA = N, N-dimethylacetamide). Crystal structures of the coordination compounds 1 and 2 were determined by single-crystal X-ray diffraction analyses, and further characterized by infrared spectra, elemental analyses, powder X-ray diffraction, and thermogravimetric analyses. In coordination compound 1, four L ligands bridge four adjacent Zn(Ⅱ) atoms to generate macrocyclic Zn4L4 units, which are further linked by the TTR4A ligands into a one-dimensional chain structure. In coordination compound 2, four 1, 2, 4-triazole groups of each TTR4A ligand bridge four Co(Ⅱ) atoms to form a two-dimensional layer structure. Furthermore, studies on the luminescent properties of compound 1 in solid state at room temperature reveal that it exhibits an intense emission peak. Luminescent-sensing detections for Fe3+, Cr2O72−, and nitrobenzene solvents were also investigated by using compound 1 as the potential luminescent sensor.



Key wordsResorcin[4]arene      Crystal structure      Coordination polymer      Fluorescence      Fluorescent response     
Received: 14 August 2017      Published: 15 September 2017
MSC2000:  O641  
Fund:  the National Natural Science Foundation of China(21471029)
Corresponding Authors: Jin YANG,Jianfang MA     E-mail: yangj808@nenu.edu.cn;majf247@yahoo.com
Cite this article:

Xue HAN,Jin YANG,Yingying LIU,Jianfang MA. Syntheses and Luminescent Properties of Coordination Polymers Based on 1, 2, 4-Triazole-Substituted Resorcin[4]arene. Acta Physico-Chimica Sinca, 2018, 34(5): 476-482.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201709151     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I5/476

Fig 1 TTR4A and L ligands used in this work
Item Value
Compound 1 2
Empirical formula C79H73N13O21Zn2 C52H55N13O10Cl2Co
Formula weight 1671.24 1151.91
Crystal system triclinic tetragonal
Space group P1 P4/nnc
T/K 293(2) 293(2)
Wavelength/nm 0.071069 0.071069
a/nm 1.48533(3) 1.38685(4)
b/nm 1.72809(4) 1.38685(4)
c/nm 1.83513(3) 3.1593(2)
α/(°) 105.0588(16) 90
β/(°) 90.6554(16) 90
γ/(°) 109.524(2) 90
Z 2 4
Density(calculated)/(Mg·m3) 1.302 1.144
F(000) 1732 2164
Volume/nm3 4.2619(4) 6.0764(5)
R indices (all data) R1 = 0.1067, R1 = 0.1385,
wR2 = 0.2248 wR2 = 0.3034
Table 1 Crystal data and structure refinements for compounds 1 and 2.
Fig 2 (a) Coordination environments of Zn(Ⅱ) ions in 1. Symmetry codes: #1x + 1, -y, -z + 2; #2 x -1, y, z -1; #3 x + 1, y, z + 1. (b) View of the coordination modes of the TTR4A. (c) View of the chain of the compound 1.
Fig 3 (a) Coordination environment of Co(Ⅱ) ion in compound 2. Symmetry codes: #1x + 1/2, -y + 1/2, z; #2y + 1/2, x, z; #3 y, -x + 1/2, z. (b) View of the coordination mode of the TTR4A in compound 2. (c) View of the 2D layer of compound 2.
Fig 4 Solid-state emission spectrum for 1 at room temperature (λex = 350 nm).
Fig 5 Emission intensities for 1 in aqueous solutions of different metal cations.
Fig 6 Emission intensities for 1 in aqueous solutions of different anions.
Fig 7 Fluorescence spectra and Emission intensities for compound 1 in different small molecules of solvents.
Fig 8 Fluorescence titration of compound 1 dispersed in DMF with nitrobenzene concentration varying from 100 to 2000 g·m-3.
1 Baeyer A Chem. Ber. 1872, 5 (2), 1094.
2 Gutsche C. D. J.Org. Chem. 1978, 43 (25), 4905.
3 Andreetti G. D. ; Ungaro R. ; Pochini A. J.Chem. Soc., Chem. Comm. 1979, No. 22, 1005.
4 Tunstad L. M. ; Tucker J.A. ; Dalcanale E. ; Weiser J. ; Bryant J.A. ; Sgerman J. C. ; Helgeson R. C. ; Knobler C. B. ; Cram D. J. J. Org. Chem. 1989, 54 (6), 1305.
5 Zhao S. S. ; Yang J. ; Liu Y. Y. ; Ma J. F Inorg. Chem. 2016, 55 (5), 2261.
6 Zhang S. T. ; Yang J. ; Wu H. ; Liu Y.Y. ; Ma J.F. Chem. Eur. J. 2015, 21 (44), 1.
7 Sanz S. ; Ferreira K. ; Mcintosh R. D. ; Dalgarno S. J. ; Brechin E. K Chem. Commun. 2011, 47 (32), 9042.
8 Dong Y. B. ; Shi H. Y. ; Yang J. ; Liu Y. Y. ; Ma J. F Cryst. Growth Des. 2015, 15 (3), 1546.
9 Cook T. R. ; Zheng Y. R. ; Stang P. J Chem. Rev. 2013, 113 (1), 734.
10 Pei W. Y. ; Xu G. ; Yang J. ; Wu H. ; Chen B. ; Zhou W. ; Ma J. F. J. Am. Chem. Soc. 2017, 139 (22), 7648.
11 Lv L. L. ; Yang J. ; Zhang H. M. ; Liu Y. Y. ; Ma J. F Inorg. Chem. 2015, 54 (4), 1744.
12 Kovačević N. ; Kokalj A. J.Phys. Chem. C 2011, 115 (49), 24189.
13 Liu B. ; Yang J. ; Yang G. C. ; Ma J. F Inorg. Chem. 2013, 52 (1), 84.
14 Clainche L. L. ; Giorgi M. ; Reinaud O. Eur. J. Inorg. Chem. 2000, 2000 (9), 1931.
15 Memon S. ; Bhatti A. A. ; Bhatti A. A. ; Ocak ü. ; Ocak M. J Iran. Chem. Soc. 2015, 12 (10), 1739.
16 Hu Z. ; Lustig W. P. ; Zhang J. ; Zhang H. ; Wang H ; Teat S.J. ; Gong Q. ; Rudd N. D. ; Li J. J. Am. Chem. Soc. 2015, 137 (51), 16209.
17 Zhou J. ; Li H. ; Zhang H. ; Li H. ; Shi W. ; Cheng P Adv. Mater. 2015, 27 (44), 7072.
18 Gao R. C. ; Guo F. S. ; Bai N. N. ; Long Y. L. ; Yang F. ; Liang J. Y. ; Li Z. J. ; Wang Y. Y. Inorg. Chem. 2016, 55 (21), 11323.
19 Chen F. ; Wang Z. Y. ; Zhang Y. Y. ; Yu. K. H. ; Weng L. X. ; Wei W Acta phys. -Chem. Sin. 2017, 33 (7), 1446.
19 陈凡; 王中跃; 张艳艳; 余柯涵; 翁丽星; 韦玮. 物理化学学报, 2017, 33 (7), 1446.
20 Wang H. ; Wang X. M Acta Phys. -Chim. Sin. 2016, 32 (5), 1267.
20 王菡; 王晓敏. 物理化学学报, 2016, 32 (5), 1267.
21 Wen G. X. ; Wu Y. P. ; Dong W. W. ; Zhao J. ; Li D. S. ; Zhang J Inorg. Chem. 2016, 55 (20), 10114.
22 Hu Y. J. ; Yang. J ; Liu Y. Y. ; Song. S. ; Ma. J. F. Cryst. Growth Des. 2015, 15 (8), 3822.
23 Sheldrick G. M SHELXL-97, Programs for X-ray Crystal Structure Solution: University of Göttingen, Göttingen Germany 1997.
24 Sheldrick G. M SHELXL-97, Programs for X-ray Crystal Structure Refinement; University of Göttingen, Göttingen Germany 1997.
25 Spek A. L. J. Appl. Crystallogr. 2003, 36, 7.
26 Ding C. ; Li X. ; Ding Y. ; Li X. ; Ng S. W. ; Xie Y Cryst. Growth Des. 2012, 12 (7), 3465.
27 Zeng F. ; Ni J. ; Wang Q. ; Ding Y. ; Ng S. W. ; Zhu W. ; Xie Y Cryst. Growth Des. 2010, 10 (4), 1611.
28 Zha Q. ; Ding C. ; Rui X. ; Xie Y Cryst. Growth Des. 2013, 13 (10), 4583.
29 Zheng Q. ; Yang F. ; Deng M. ; Ling Y. ; Liu X. ; Chen Z. ; Wang Y. ; Weng L. ; Zhou Y Inorg. Chem. 2013, 52 (18), 10368.
30 Qu K. ; Wang J. ; Ren J. ; Qu. X. Chem. Eur. J. 2013, 19 (22), 7243.
31 Wang J. ; Li Y. ; Patel N. G. ; Zhang G. ; Zhou D. ; Pang Y Chem. Commun. 2014, 50 (82), 12258.
32 Xu H. ; Hu Z. C. ; Cao C. S. ; Zhao B Inorg. Chem. 2015, 54 (10), 4585.
33 Jin S. S. ; Han X ; Yang J. ; Zhang H. M. ; Liu X. L. ; Ma J. F. J. Lumin. 2017, 188, 346.
34 Zhou Y. ; Allen B. ; Reed J. M. ; Zou S. J. Phys. Chem. A 2014, 118 (39), 8971.
35 Hao Z. ; Song X. ; Zhu M. ; Meng X. ; Zhao S. ; Su S ; Yang W. ; Song S. ; Zhang H. J.Mater. Chem. A 2013, 1 (36), 11043.
36 Tian D. ; Li Y. ; Chen R. Y. ; Chang Z. ; Wang G. Y. ; Bu X. H. J.Mater. Chem. A 2014, 2 (5), 1465.
[1] Jiao LIU,Jicun HUO,Min ZHANG,Xiandui DONG. Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 424-436.
[2] BAI Guang-Yue, LIU Jun-Ling, WANG Jiu-Xia, WANG Yu-Jie, LI Yan-Na, ZHAO Yang, YAO Mei-Huan. Enzymatic Superactivity and Conformational Change of α-CT Induced by Cationic Gemini Surfactant[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 976-983.
[3] SCHLERETH, Andrew NOOMUNA Panae, GAO Pei. Mesoscale Protein Patterning on a Self-Assembled Monolayer Coated Silicon Surface through Nanosphere Lithography[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 810-815.
[4] ZHAO Shun-Sheng, LI Lan-Lan, LIU Xiang-Rong, DING Zuo-Cheng, YANG Zai-Wen. Crystal Structure, Thermal Decomposition and Interaction with CT-DNA of Three 2-Hydroxy-1-naphthaldehyde Acyl Hydrazones[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 356-363.
[5] YAN Ren, LAI Lu, XU Zi-Qiang, JIANG Feng-Lei, LIU Yi. Thermodynamics of the Interactions between Quantum Dots and Proteins[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2377-2387.
[6] CAO Shi, ZENG Li-Li, XIE Jing, WAN Shi-Gang, Li Dan, ZHANG Hui. Supramolecular Helical Chirality of Schiff Base Copper(Ⅱ) Complexes and Their Chiroptical Spectroscopy[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2480-2490.
[7] PENG Xue-Feng, LEI Yong, LIU Zhen, JI Xia-Xia, FAN Chang-Jun, YANG Xiao-Hui. Sensitized, Thermally Activated, Delayed Fluorescence Devices Based on a Polymer Host Material[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2369-2376.
[8] WANG Rong, DUAN Ming, XIONG Yan, SONG Xian-Yu, FANG Shen-Wen. Aggregation Behaviour of Reversed Demulsifiers SP169 and DMEA169 in Aqueous Solution[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1482-1488.
[9] LI Song, LIU Fu-Feng, YU Lin-Ling, ZHAO Yan-Jiao, DONG Xiao-Yan. Dual Effect of Thioflavin T on the Nucleation Kinetics of Amyloid β-Protein 40[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1391-1396.
[10] HE Tian, YUE Ke-Fen, CHEN San-Ping, ZHOU Chun-Sheng, YAN Ni. Synthesis, Structure and Thermodynamics/Kinetics Analysis of Three Different Interpenetrating Zinc(II) Coordination Architectures[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1397-1403.
[11] ZHOU Qian, YU Jian-Qiang, ZHAO Li-Bo, LI De-Sheng, WU Kui, ZHU Jian-Hua, YUAN Jing-He, FANG Xiao-Hong. Super-Resolution Optical Subtraction Microscopy Using Optical Scattering Imaging[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1123-1128.
[12] HU Shu, GAI Bao-Dong, CAO Zhan-Li, GUO Jing-Wei, WANG Fan. Experimental and Theoretical Evaluation of the Absorption Coefficients of Excimer Pairs of Sodium with Noble Gases and Alkanes[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 848-854.
[13] HUO Jian-Xia, SONG Su-Wei, JIN Cheng-Wei, REN Ning, GENG Li-Na, ZHANG Jian-Jun. Synthesis, Characterization, Thermal Decomposition Mechanism and Properties of the [Eu(4-MOBA)3(terpy)(H2O)]2 Complex[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 901-906.
[14] BIAN Gao-Feng, HUANG Hua, ZHAN Ling-Ling, Lü Xiao-Jing, CAO Feng, ZHANG Cheng, ZHANG Yu-Jian. Reversible Piezochromism and Protonation Stimuli-Response of (Z)-2-Cyano-3-(3,4-dimethoxyphenyl)acrylamide[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 589-594.
[15] XIE Hu-Jun, LIU Cheng-Cheng, SUN Qiang, GU Qing, LEI Qun-Fang, FANGWen-Jun. The Interactions between Quaternary Ammonium Cationic Surfactants and Bovine Serum Albumin[J]. Acta Physico-Chimica Sinca, 2016, 32(12): 2951-2960.