Please wait a minute...
Acta Physico-Chimica Sinca  2018, Vol. 34 Issue (5): 492-496    DOI: 10.3866/PKU.WHXB201709221
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
ARTICLE     
Phase Space View of Ensembles of Excited States
Ágnes NAGY*()
Download: HTML     PDF(245KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The density functional theory and its extension to ensembles of excited states can be formalized as thermodynamics. However, these theories are not unique because one of their key quantities, the kinetic energy density, can be defined in several ways. Usually, the everywhere positive gradient form is applied; however, other forms are also acceptable, provided they integrate to the true kinetic energy. Recently, a kinetic energy density of the ground-state theory maximizing the information entropy has been proposed. Here, ensemble kinetic energy density, leading to extremum information entropy, is derived via constrained search. The corresponding ensemble temperature is found to be constant.



Key wordsEnsemble of excited states      Kinetic energy density      Constrained search      Ensemble temperature     
Received: 11 August 2017      Published: 22 September 2017
Fund:  The project was supported by the National Research, Development and Innovation Fund of Hungary, Financed under the 123988 Funding Scheme(51335008)
Corresponding Authors: ágnes NAGY     E-mail: anagy@phys.unideb.hu
Cite this article:

Ágnes NAGY. Phase Space View of Ensembles of Excited States. Acta Physico-Chimica Sinca, 2018, 34(5): 492-496.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201709221     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I5/492

1 Hohenberg P. ; Kohn W. Phys. Rev. 1964, 136, B864.
2a Gunnarsson O. ; Lundqvist B. I. Phys. Rev. B 1976, B13, 4274.
2b Gunnarsson O. ; Jonson M. ; Lundqvist B. I. Phys. Rev. B 1979, 20, 3136.
3 von Barth U. Phys. Rev. A 1979, 20, 1693.
4 Theophilou A.K. J. Phys. C 1978, C12, 5419.
5a Gross E. K. U. ; Oliveira L.N. ; Kohn W. Phys. Rev. A 1988, 37, 2805.
5b Gross E. K. U. ; Oliveira L.N. ; Kohn W. Phys. Rev. A 1988, 37, 2809.
5c Gross E. K. U. ; Oliveira L.N. ; Kohn W. Phys. Rev. A 1988, 37, 2821.
6 Nagy á. Phys. Rev. A 1990, 42, 4388.
7 Nagy á. J. Phys. B 1991, 24, 4691.
8 Nagy á. ; Andrejkovics I. J.Phys. B 1994, 27, 233.
9 Nagy á. Int. J. Quantum. Chem. 1995, 56, 225.
10 Nagy á. J. Phys. B 1996, 29, 389.
11 Nagy á. Int. J. Quantum. Chem. 1995, 29 (Suppl.), 297.
12 Nagy á. Adv. Quantum. Chem. 1997, 29, 159.
13 Nagy á. Phys. Rev. A 1994, 49, 3074.
14 Nagy á. Int. J. Quantum. Chem. 1998, 69, 247.
15 G?rling A. Phys. Rev. A 1996, 54, 3912.
16a G?rling A. ; Levy M. Phys. Rev. B 1993, 47, 13105.
16b G?rling A. ; Levy M. Phys. Rev. A 1994, 50, 196.
16c G?rling A. ; Levy M. Int. J. Quantum. Chem. 1995, 29 (Suppl.), 93.
17 Nagy á. Int. J. Quantum. Chem. 1998, 70, 681.
18 Levy M. ; Nagy á. Phys. Rev. Lett. 1999, 83, 4361.
19 Nagy á. ; Levy M. Phys. Rev. A 2001, 63, 052502.
20 Ayers P. W. ; Levy M. ; Nagy á. Phys. Rev. A 2012, 85, 042518.
21 Ayers P. W. ; Levy M. ; Nagy á. J. Chem. Phys. 2015, 143, 191101.
22 Gross E. U. K. ; Dobson J. F. ; Petersilka M. Density Functional Theory. In Topics in Current Chemistry; Nalewajski R., Ed. Springer-Verlag: Heidelberg, Germany 1996, Vol. 81, p. 81.
23 Casida M. F. Recent Advances in the Density Functional Methods. in Recent Advances in Computational Chemistry; Chong D. P., Ed. World Scientific: Singapore 1996, Vol. 1, p. 155.
24 Ghosh S. K. ; Berkowitz M. ; Parr R. G. Proc. Natl. Acad. Sci. USA 1984, 81, 8028.
25 Ghosh S. K. ; Parr R. G. Phys.Rev. A 1986, 34, 785.
26 Ghosh S. K. ; Berkowitz M. J.Chem. Phys. 1985, 83, 2976.
27 Parr R. G. ; Rupnik K. ; Ghosh S. K. Phys. Rev. Lett. 1986, 56, 1555.
28 Lee C. ; Parr R. G. Phys. Rev. A 1987, 35, 2377.
29 Rong C. Y. ; Lu T. ; Chattaraj P. K. ; Liu S. B. Indian J. Chem. A 2014, 53, 970.
30 Gadre S. R. ; Bendale R. D. Int. J. Quant. Chem. 1985, 28, 311.
31 Gadre S. R. ; Sears S. B. ; Chakravorty S. J. ; Bendale R. D. Phys. Rev. A 1985, 32, 2602.
32 Gadre S. R. Phys. Rev. A 1984, 30, 620.
33 Gadre S. R. ; Kulkani S. A. ; Shrivastava I. H. Chem. Phys. Lett. 1990, 166, 445.
34 Gadre S. R. ; Bendale R. D. ; Gejii S. P. Chem. Phys. Lett. 1985, 117, 138.
35 Nagy á. ; Parr R. G. Proc. Ind. Acad. Sci. Chem. Sci. 1984, 106, 217.
36 Nagy á. ; Parr R. G. J.Mol. Struct. (Theochem) 2000, 501, 101.
37 Nagy á. ; Parr R. G. Int. J. Quantum Chem. 1996, 58, 323.
38 Nagy á. Proc. Ind. Acad. Sci. (Chem. Sci) 1994, 106, 251.
39 Nagy á. Reviews of Modern Quantum Chemistry; Sen, K. D. Ed World Scientific: Singapore 2002, Vol. Ⅰ, p. 413.
40 Nagy á. J. Mol. Struct. Theochem 2010, 943, 48.
41 Nagy á. Indian J. Chem. A 2014, 53, 965.
42 Nagy á. Int. J. Quantum Chem. 2017, 117, e5396.
43 Levy M. Proc. Natl. Sci. USA 1979, 76, 6002.
44 Lieb H. Int. J. Quantum Chem. 1982, 24, 243.
[1] LU Tian, CHEN Fei-Wu. Meaning and Functional Form of the Electron Localization Function[J]. Acta Physico-Chimica Sinca, 2011, 27(12): 2786-2792.