Please wait a minute...
Acta Physico-Chimica Sinca  2018, Vol. 34 Issue (5): 503-513    DOI: 10.3866/PKU.WHXB201709252
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
ARTICLE     
Revealing Molecular Electronic Structure via Analysis of Valence Electron Density
Tian LU*(),Qinxue CHEN
Download: HTML     PDF(3997KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Numerous real space functions have been purposed so far for unveiling chemically interesting molecular electronic structure characteristics, such as chemical bonds, lone pairs, and multicenter electronic conjugations. Among these analysis methods, electron localization function (ELF), Laplacian of electron density (∇2ρ), and deformation density (ρdef) were widely employed in practical research work. It is well known that the analysis of total molecular electron density is not sufficient for revealing much information about the molecular electronic structure like the above-mentioned methods. However, in this work, using several instances and by comparing with the ELF, ∇2ρ, and ρdef values, we show that it is possible to explore molecular electronic structure characteristics if one solely focuses on investigating the valence electron density distribution. It is found that for most cases, analysis of the very simple valence electron density conveys analogous information as ELF, ∇2ρ and ρdef analyses, with additional advantage of reduced computational complexity. We hope that this work will bring chemists' attention to the high importance of valence electron density, which has been largely ignored for a long time. It should also be noticed that the valence electron density analysis is not free from drawbacks, and when this method is unable to provide an informative picture, one has to use other analysis methods.



Key wordsElectron density      Wavefunction analysis      Chemical bond      Electron localization Function      Atoms in molecules      Density functional theory      Laplacian of electron density      Deformation density     
Received: 31 August 2017      Published: 25 September 2017
MSC2000:  O641  
Corresponding Authors: Tian LU     E-mail: sobereva@sina.com
Cite this article:

Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density. Acta Physico-Chimica Sinca, 2018, 34(5): 503-513.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201709252     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I5/503

 
 
 
 
 
 
 
 
 
 
1 Koch W. ; Holthausen M. C. A Chemist's Guide to Density Functional Theory; Wiley-VCH Verlag GmbH: Weinheim, Germany 2001, pp.24- 28.
2 Parr R. G. ; Yang W. J. Am. Chem. Soc. 1984, 106, 4049.
3 Fu R. ; Lu T. ; Chen F. W. Acta Phys. -Chim. Sin. 2014, 30, 628.
3 付蓉; 卢天; 陈飞武. 物理化学学报, 2014, 30, 628.
4 Cao J. S. ; Ren Q. ; Chen F. W. ; Lu T. Sci. China Chem. 2015, 45, 1281.
4 曹静思; 任庆; 陈飞武; 卢天. 中国科学:化学, 2015, 45, 1281.
5 Lu T. ; Chen F. W. Acta Phys. -Chim. Sin. 2012, 28, 1.
5 卢天; 陈飞武. 物理化学学报, 2012, 28, 1.
6 Bader F. W. Atoms in Molecules: A Quantum Theory New York, USA: Oxford University Press, 1994.
7 Matta C. F. ; Boyd R. J. The Quantum Theory of Atoms in Molecules-from Solid State to DNA and Drug Design; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany 2007.
8 Lu T. ; Chen F. J. Phys. Chem. A 2013, 117, 3100.
9 Gillespie R. J. ; Popelier P. L. A. Chemical Bonding and Molecular Geometry-From Lewis to Electron Densities New York, NY, USA: Oxford University Press, 2001, pp. 163- 180.
10 Becke A. D. ; Edgecombe K. E. J. Chem. Phys. 1990, 92, 5397.
11 Lu T. ; Chen F. W. Acta Phys. -Chim. Sin. 2011, 27, 2786.
11 卢天; 陈飞武. 物理化学学报, 2011, 27, 2786.
12 Poater J. ; Duran M. ; Solà M. ; Silvi B. Chem. Rev. 2005, 105, 3911.
13 Manzetti S. ; Lu T. RSC Adv. 2013, 3, 25881.
14 Manzetti S. ; Lu T. ; Behzadi H. ; Estrafili M. D. ; Thi H. L. T. ; Vach H. RSC Adv. 2015, 5, 78192.
15 Emamian S. ; Lu T. ; Moeinpour F. RSC Adv. 2015, 5, 62248.
16 Schmider H. L. ; Becke A. D. J. Mol. Struct. THEOCHEM 2000, 527, 51.
17 Astakhov A. A. ; Tsirelson V. G. Chem. Phys. 2014, 435, 49.
18 De Silva P. ; Corminboeuf C. J. Chem. Theory Comput. 2014, 10, 3745.
19 Jacobsen H. Chem. Phys. Lett. 2013, 582, 144.
20 Hirshfeld F. L. Theor. Chim. Acta 1977, 44, 129.
21 Lu T. ; Chen F. J. Theor. Comp. Chem. 2012, 11, 163.
22 Dunitz J. D. ; Schweizer W. B. ; Seiler P. Helv. Chim. Acta 1983, 66, 123.
23 Eisenstein M. Acta Crystallogr. Sect. B 1979, 35, 2614.
24 Cai Y. ; Luo S. ; Wang Z. ; Xiong J. ; Gu H. J. Materiomics 2017, 3, 130.
25 Cameron T. S. ; Borecka B. ; Kwiatkowski W. J. Am. Chem. Soc. 1994, 116, 1211.
26 Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Scalmani G. ; Barone V. ; Petersson G. A. ; Nakatsuji H. ; et al Gaussian 16; Gaussian Inc.: Wallingford, CT 2016.
27 Stephens P. J. ; Devlin F. J. ; Chabalowski C. F. ; Frisch M. J. J. Phys. Chem. 1994, 98, 11623.
28 Weigend F. ; Ahlrichs R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
29 Lu T. ; Chen F. J. Comput. Chem. 2012, 33, 580.
30 Website of Multiwfn program(accessed Aug 15, 2017).Website of Multiwfn program. http://sobereva.com/multiwfn(accessed Aug 15, 2017).
31 Multiwfn Manualversion 3.4, Section 3.7.4, available at, (accessed Aug 15, 2017).Multiwfn Manual, version 3.4, Section 3.7.4, available at http://sobereva.com/multiwfn(accessed Aug 15, 2017).
32 Zhao Y. ; Truhlar D. Theor. Chem. Acc. 2008, 120, 215.
33 Wüest A. ; Merkt F. J. Chem. Phys. 2003, 118, 8807.
34 Santos J. C. ; Andres J. ; Aizman A. ; Fuentealba P. J. Chem. Theory Comput. 2005, 1, 83.
35 Politzer P. ; Lane P. ; Concha M. C. ; Ma Y. ; Murray J. S. J. Mol. Model. 2007, 13, 305.
36 Clark T. WIREs: Comp. Mol. Sci. 2013, 3, 13.
37 Kozuch S. ; Martin J. M. L. J. Chem. Theory Comput. 2013, 9, 1918.
38 Jensen F. Introduction to Computational Chemistry; John Wiley & Sons: West Sussex, UK 2007, pp.487- 492.
39 Silvi B. ; Savin A. Nature 1994, 371, 683.
40 Fuentealba P. ; Chamorro E. ; Santos J. C. Understanding and Using the Electron Localization Function. In Theoretical Aspects of Chemical Reactivity; Toro-Labbé, A., Ed., Elsevier B.V.: Amsterdam, The Netherlands 2007, p. 57.
41 Bratsch S. G. J. Chem. Educ. 1985, 62, 101.
42 Cotton F. A. ; Murillo C. A. ; Walton R. A. Multiple Bonds between Metal Atoms; Springer Science and Business Media, Inc.: New York, USA 2005.
[1] HEIDAR-ZADEH Farnaz, AYERS Paul W.. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 514-518.
[2] SAVIN Andreas. Chemical Bonding and Interpretation of Time-Dependent Electronic Processes with Maximum Probability Domains[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 528-536.
[3] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 256-262.
[4] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 263-269.
[5] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 303-313.
[6] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 270-277.
[7] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[8] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1803-1810.
[9] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1310-1323.
[10] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1171-1180.
[11] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1043-1050.
[12] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1010-1016.
[13] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 769-779.
[14] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 530-538.
[15] WANG Wei, TAN Kai. Structure and Electronic Properties of Single Walled Nanotubes from AlAs(111) Sheets: A DFT Study[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 548-553.