Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (6): 639-649    DOI: 10.3866/PKU.WHXB201710231
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
ARTICLE     
Aromaticity Study of Benzene-Fused Fulvene Derivatives Using the Information-Theoretic Approach in Density Functional Reactivity Theory
Donghai. YU1,Chunying. RONG1,*(),Tian. LU2,Frank. DE PROFT3,*(),Shubin. LIU4,*()
1 Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
2 Beijing Kein Research Center for Natural Sciences, Beijing 100022, P. R. China
3 Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
4 Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA
Download: HTML     PDF(1604KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Although a large variety of aromatic systems have been unveiled in the literature, justifying their origin of stability and understanding their nature of aromaticity is still an unaccomplished task. In this work, using tools recently developed by us within the density functional reactivity theory framework, where we employ simple density functionals to quantify molecular structural and reactivity properties, we examine the aromaticity concept from a different perspective. Using six quantities from the information-theoretic approach, namely, the Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, Onicescu information energy, information gain, and relative Rényi entropy, and four aromaticity descriptors, namely, the aromatic stabilization energy (ASE) index, the harmonic oscillator model of aromaticity (HOMA) index, the aromatic fluctuation (FLU) index, and the nucleus-independent chemical shift (NICS) index, we systematically examined the correlations between substituted fulvene derivatives fused with one, two, and three benzene rings. Among the 14 benzofulvene derivatives studied in this work, there were seven single-fused, four double-fused, and three triple-fused benzofulvene derivatives. Our results show that the aromaticity indexes are often well correlated with one another. The same is true for information-theoretic quantities. Moreover, these correlations are valid across all series of benzofulvene derivatives with different ring structures. The cross-correlations between information-theoretic quantities and aromaticity indexes were usually strong. However, two completely opposite patterns were observed; as a consequence, these correlations are not valid across all series of benzofulvene derivatives. The nature of these correlations depends on the nature of the ring structure. The two groups of systems, each obeying the same cross-correlation patterns, have a total number of 4n + 2 and 4n π electrons, respectively, which are in agreement with Hückel's rule of aromaticity and antiaromaticity. Compared with the results obtained for systems without a benzene fused ring, the correlation patterns of these quantities were always found to be the same, both with and without fused benzene rings. This suggests that, despite benzene's aromaticity, its fusion with a fulvene moiety does not modify the aromaticity and antiaromaticity of the fulvene ring. These results confirm that the fusion of benzene rings with a fulvene moiety has no influence on the aromatic nature of the fulvene moiety. Thus, the aromaticity and antiaromaticity of benzene-fused fulvene derivatives are solely determined by the fulvene moiety. These results should provide a new understanding of the origin and nature of aromaticity and antiaromaticity.



Key wordsAromaticity      Antiaromaticity      Benzofulvene      Information-theoretic approach      Density functional reactivity theory     
Received: 31 August 2017      Published: 23 October 2017
MSC2000:  O641  
Fund:  CYR and SBL acknowledge support from the National Natural Science Foundation of China (21503076) and Hunan Provincial Natural Science Foundation of China (2017JJ3201). DHY acknowledges the support from the Hunan Provincial Innovation Foundation for Postgraduates (CX2017B179), and China Scholarship Council (201706720015). FDP acknowledges the Research Foundation Flanders (FWO) for continuous support to his group and the Vrije Universiteit Brussel for support, among other through a Strategic Research Program awarded to his group. Finally, FDP acknowledges the Francqui foundation for a position as Francqui Research Professor
Corresponding Authors: Chunying. RONG,Frank. DE PROFT,Shubin. LIU     E-mail: rongchunying@aliyun.com;fdeprof@vub.ac.be;shubin@email.unc.edu
Cite this article:

Donghai. YU,Chunying. RONG,Tian. LU,Frank. DE PROFT,Shubin. LIU. Aromaticity Study of Benzene-Fused Fulvene Derivatives Using the Information-Theoretic Approach in Density Functional Reactivity Theory. Acta Phys. -Chim. Sin., 2018, 34(6): 639-649.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201710231     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I6/639

 
 
R ben_5M diben_5M triben_5M
FLU HOMA NICS(1) FLU HOMA NICS(1) FLU HOMA NICS(1)
BOH 0.0403 ?0.346 0.38 0.0469 ?0.492 ?0.31 0.0478 ?0.510 0.49
OH
CC? 0.0195 0.308 ?10.55 0.0376 ?0.008 ?5.36 0.0393 0.051 ?4.06
CCH 0.0371 ?0.158 ?0.26 0.0451 ?0.293 ?0.68 0.0462 ?0.269 0.19
CF3 0.0422 ?0.390 0.90 0.0471 ?0.446 0.06 0.0480 ?0.443 0.88
CH2? 0.0132 0.501 ?13.11 0.0285 0.232 ?11.01 0.0305 0.342 ?9.04
CH3 0.0349 ?0.143 ?3.79 0.0449 ?0.371 ?1.69 0.0462 ?0.367 ?6.62
CMe3 0.0350 ?0.180 ?4.23 0.0456 ?0.521 ?1.77 0.0470 ?0.545 -0.89
CN 0.0411 ?0.295 2.56 0.0462 ?0.323 0.33 0.0472 ?0.293 1.16
COCH3 0.0399 ?0.333 0.80 0.0464 ?0.410 ?0.40 0.0475 ?0.430 ?10.59
CONH2 0.0422 ?0.378 3.07 0.0464 ?0.461 ?0.56 0.0478 ?0.462 1.29
COO? 0.0269 0.133 ?7.95 0.0424 ?0.244 ?3.36 0.0440 ?0.249 ?2.24
F 0.0353 ?0.098 ?3.48 0.0448 ?0.291 ?1.68 0.0460 ?0.283 ?0.80
H 0.0376 ?0.254 ?2.32 0.0457 ?0.375 ?1.27 0.0468 ?0.384 ?0.43
NH? 0.0133 0.492 ?13.40 0.0290 0.209 ?10.44 0.0310 0.307 ?8.63
NH2 0.0237 0.241 ?8.21 0.0406 ?0.151 ?3.68 0.0419 ?0.120 ?2.69
NH3+ 0.0445 ?0.463 4.70 0.0473 ?0.395 1.44 0.0478 ?0.371 2.26
NMe2 0.0221 0.259 ?10.05 0.0412 ?0.179 ?3.22 0.0416 ?0.201 ?2.91
NN+ 0.0439 ?0.690 34.97 0.0440 ?0.077 6.71 0.0431 0.109 7.82
NO 0.0418 ?0.367 4.60 0.0460 ?0.302 1.77 0.0469 ?0.253 2.59
NO2 0.0441 ?0.443 5.81 0.0473 ?0.472 1.28 0.0479 ?0.434 2.12
O? 0.0135 0.482 ?13.54 0.0305 0.192 ?9.17 0.0324 0.280 ?7.59
OCH3 0.0296 0.078 ?5.74 0.0426 ?0.200 ?2.57 0.0439 ?0.175 ?1.62
OH 0.0306 0.049 ?5.42 0.0424 ?0.234 ?10.42 0.0443 ?0.197 ?1.53
SiMe3 0.0384 ?0.275 ?1.69 0.0463 ?0.476 ?0.95 0.0476 ?0.514 ?0.13
 
R SS IF SGBP IG E2 E3 R2r R3r
BOHOH 4.4829 245.1063 38.8793 0.0543 31.5428 1121.2822 6.1091 6.3374
CC? 4.5418 244.9663 39.0275 0.0757 31.5371 1120.6045 6.1526 6.3957
CCH 4.4744 245.0641 38.8932 0.0562 31.5437 1121.2004 6.1131 6.3420
CF3 4.4673 245.1003 38.8764 0.0540 31.5432 1121.2000 6.1084 6.3374
CH2? 4.6211 244.8765 39.1738 0.0983 31.5264 1119.9828 6.1984 6.4723
CH3 4.4939 245.0347 38.9380 0.0636 31.5423 1120.9906 6.1280 6.3633
CMe3 4.4968 245.0363 38.9284 0.0624 31.5387 1120.9683 6.1256 6.3590
CN 4.4578 245.0926 38.8598 0.0518 31.5444 1121.2255 6.1040 6.3309
COCH3 4.4726 245.0581 38.8926 0.0571 31.5424 1121.0921 6.1148 6.3451
CONH2 4.4814 245.0667 38.9013 0.0583 31.5417 1121.0984 6.1171 6.3483
COO? 4.5150 245.0264 38.9685 0.0673 31.5404 1120.9081 6.1356 6.3735
F 4.4859 245.0372 38.9434 0.0638 31.5431 1120.8937 6.1283 6.3649
H 4.4878 245.0667 38.9178 0.0603 31.5448 1121.1277 6.1213 6.3550
NH? 4.6174 244.8919 39.1718 0.0985 31.5278 1120.0090 6.1983 6.4627
NH2 4.5208 244.9561 39.0083 0.0740 31.5369 1120.5191 6.1488 6.3905
NH3+ 4.4516 245.0889 38.8613 0.0537 31.5433 1121.1175 6.1074 6.3382
NMe2 4.5136 244.9473 38.9950 0.0725 31.5363 1120.5264 6.1458 6.3859
NN+ 4.4090 245.1885 38.7622 0.0389 31.5470 1121.5526 6.0774 6.2987
NO 4.4596 245.1216 38.8595 0.0513 31.5459 1121.3488 6.1032 6.3309
NO2 4.4642 245.1404 38.8472 0.0491 31.5407 1121.1714 6.0986 6.3238
O? 4.6033 244.9199 39.1589 0.0965 31.5338 1120.2884 6.1945 6.4588
OCH3 4.5030 244.9991 38.9784 0.0690 31.5412 1120.7626 6.1389 6.3783
OH 4.5095 244.9777 38.9896 0.0715 31.5385 1120.5941 6.1437 6.3847
SiMe3 4.4876 245.0740 38.9044 0.0585 31.5428 1121.2225 6.1177 6.3487
 
FLU HOMA NICS(1) FLU HOMA NICS(1) FLU HOMA NICS(1)
ben_5M ben_6M? ben_6M+
FLU 1.0000 1.0000 1.0000
HOMA ?0.9940 1.0000 ?0.9910 1.0000 ?0.9938 1.0000
NICS(1) 0.9724 ?0.9701 1.0000 0.8019 ?0.8384 1.0000 0.9797 ?0.9621 1.0000
diben_5M diben_6M? diben_6M+
FLU 1.0000 1.0000 1.0000
HOMA ?0.9441 1.0000 ?0.9740 1.0000 ?0.9661 1.0000
NICS(1) 0.8150 ?0.6633 1.0000 0.8891 -0.9016 1.0000 0.9767 ?0.9360 1.0000
triben_5M triben_6M? triben_6M+
FLU 1.0000 1.0000 1.0000
HOMA ?0.9332 1.0000 ?0.8715 1.0000 ?0.9200 1.0000
NICS(1) 0.6408 ?0.4329 1.0000 0.1092 ?0.4427 1.0000 0.9092 ?0.7900 1.0000
 
SS IF SGBP IG E2 E3 R2r R3r
ben_5M
SS 1.0000
IF ?0.9471 1.0000
SGBP 0.9948 ?0.9702 1.0000
IG 0.9947 ?0.9696 0.9992 1.0000
E2 ?0.9786 0.9696 ?0.9833 ?0.9869 1.0000
E3 ?0.9594 0.9871 ?0.9795 ?0.9798 0.9847 1.0000
R2r 0.9958 ?0.9662 0.9990 0.9999 ?0.9863 ?0.9774 1.0000
R3r 0.9816 ?0.8909 0.9675 0.9721 ?0.9580 ?0.9214 0.9753 1.0000
diben_5M
SS 1.0000
IF ?0.9261 1.0000
SGBP 0.9884 ?0.9633 1.0000
IG 0.9857 ?0.9647 0.9991 1.0000
E2 ?0.9375 0.8955 ?0.9241 ?0.9270 1.0000
E3 ?0.9414 0.9732 ?0.9692 ?0.9719 0.9505 1.0000
R2r 0.9862 ?0.9647 0.9993 1.0000 ?0.9267 ?0.9714 1.0000
R3r 0.9862 ?0.9542 0.9967 0.9982 ?0.9313 ?0.9689 0.9981 1.0000
triben_5M
SS 1.0000
IF ?0.8998 1.0000
SGBP 0.9830 ?0.9491 1.0000
IG 0.9783 ?0.9541 0.9987 1.0000
E2 ?0.9063 0.8730 ?0.8824 ?0.8859 1.0000
E3 ?0.9127 0.9755 ?0.9512 ?0.9560 0.9279 1.0000
R2r 0.9793 ?0.9534 0.9990 1.0000 ?0.8858 ?0.9552 1.0000
R3r 0.9765 ?0.9446 0.9959 0.9977 ?0.8852 ?0.9535 0.9977 1.0000
 
FLU HOMA NICS(1) FLU HOMA NICS(1) FLU HOMA NICS(1)
ben_5M diben_5M triben_5M
SS ?0.9800 0.9598 ?0.9468 ?0.9258 0.7663 ?0.9208 ?0.8924 0.6897 ?0.8073
IF 0.9811 ?0.9796 0.9887 0.8468 ?0.7226 0.9224 0.8389 ?0.7058 0.6386
SGBP ?0.9916 0.9786 ?0.9681 ?0.9233 0.7866 ?0.9357 ?0.9097 0.7469 ?0.7596
IG ?0.9900 0.9750 ?0.9652 ?0.9278 0.7935 ?0.9332 ?0.9150 0.7550 ?0.7442
E2 0.9842 ?0.9709 0.9531 0.9004 ?0.7444 0.8685 0.8208 ?0.6057 0.7108
E3 0.9873 ?0.9875 0.9768 0.8995 ?0.7834 0.9216 0.8741 ?0.7356 0.6661
R2r ?0.9886 0.9729 ?0.9620 ?0.9268 0.7916 ?0.9336 ?0.9141 0.7531 ?0.7465
R3r ?0.9405 0.9142 ?0.8849 ?0.9395 0.8089 ?0.9270 ?0.9278 0.7733 ?0.7415
ben_6M- diben_6M- triben_6M-
SS 0.9045 ?0.9308 0.9716 0.9432 ?0.9589 0.9707 0.3285 ?0.6403 0.9580
IF ?0.6453 0.6958 ?0.8921 ?0.7761 0.7154 ?0.8402 ?0.2750 0.1878 ?0.3545
SGBP 0.8956 ?0.9253 0.9676 0.9466 ?0.9392 0.9683 0.3791 ?0.6250 0.9345
IG 0.8823 ?0.9138 0.9693 0.9459 ?0.9340 0.9628 0.4233 ?0.6426 0.9026
E2 ?0.8782 0.9095 ?0.9631 ?0.9187 0.9431 ?0.9753 ?0.2855 0.6076 ?0.9502
E3 ?0.8277 0.8622 ?0.9311 ?0.9051 0.8931 ?0.9613 ?0.3631 0.5492 ?0.8543
R2r 0.7574 ?0.7883 0.9639 0.9189 ?0.9189 0.9789 0.3745 ?0.6142 0.9199
R3r 0.2681 ?0.2823 0.6240 0.4325 ?0.4975 0.6965 ?0.2247 ?0.1158 0.7079
ben_6M+ diben_6M+ triben_6M+
SS ?0.9495 0.9359 ?0.9330 ?0.8933 0.8911 ?0.9307 ?0.8230 0.7441 ?0.9432
IF 0.9789 ?0.9709 0.9714 0.9464 ?0.9418 0.9643 0.8915 ?0.8448 0.9245
SGBP ?0.9701 0.9588 ?0.9589 ?0.9309 0.9290 ?0.9626 ?0.8605 0.7936 ?0.9653
IG ?0.9713 0.9586 ?0.9617 ?0.9390 0.9301 ?0.9695 ?0.8650 0.7839 ?0.9715
E2 0.7295 ?0.7414 0.6680 0.6489 ?0.6957 0.6566 0.6057 ?0.6360 0.5358
E3 0.9156 ?0.9177 0.8926 0.9003 ?0.9189 0.9092 0.8063 ?0.8102 0.7934
R2r ?0.9715 0.9587 ?0.9620 ?0.9381 0.9296 ?0.9688 ?0.8640 0.7843 ?0.9709
R3r ?0.9669 0.9531 ?0.9585 ?0.9356 0.9240 ?0.9685 ?0.8492 0.7617 ?0.9697
 
 
 
 
1 Solà M. Front. Chem. 2017, 5, 1.
2 Herndon W. C. ; Mills N. S. J. Org. Chem. 2005, 70, 8492.
3 Skov A. B. ; Broman S. L. ; Gertsen A. S. ; Elm J. ; Jevric M. ; Cacciarini M. ; Kadziola A. ; Mikkelsen K. V. ; Nielsen M. B. Chem. -Eur. J. 2016, 22, 14567.
4 Aihara J. -I. J. Am. Chem. Soc. 2006, 128, 2873.
5 Cyrański M. K. Chem. Rev. 2005, 105, 3773.
6 Feixas F. ; Matito E. ; Poater J. ; Solà M. Chem. Soc. Rev. 2015, 44, 6434.
7 Sumita A. ; Gasonoo M. ; Boblak K. J. ; Ohwada T. ; Klumpp D. A. Chem. -Eur. J. 2017, 23, 2566.
8 Szczepanik D. W. ; Solà M. ; Andrzejak M. ; Pawe?ek B. ; Dominikowska J. ; Kuku?ka M. ; Dyduch K. ; Krygowski T. M. ; Szatylowicz H. J. Comput. Chem. 2017, 38, 1640.
9 Liu J. Z. ; Ma J. ; Zhang K. ; Ravat P. ; Machata P. ; Avdoshenko S. ; Hennersdorf F. ; Komber H. ; Pisula W. Weigand J. J., et al. J. Am. Chem. Soc. 2017, 139, 7513.
10 Yoon Z. S. ; Osuka A. ; Kim D. Nat. Chem. 2009, 1, 113.
11 Frederickson C. K. ; Zakharov L. N. ; Haley M. M. J. Am. Chem. Soc. 2016, 138, 16827.
12 Boldyrev A. I. ; Popov I. A. ; Starikova A. A. ; Steglenko D. V. Chem. -Eur. J. 2017.
13 Marcos E. ; Anglada J. M. ; Torrent-Sucarrat M. J. Org. Chem. 2014, 79, 5036.
14 St?pień M. ; Latos-Gra?yński L. ; Sprutta N. ; Chwalisz P. ; Szterenberg L. Angew. Chem. 2007, 119, 8015.
15 Szyszko B. ; Sprutta N. ; Chwalisz P. ; St?pień M. ; Latos-Gra?yński L. Chem. -Eur. J. 2014, 20, 1985.
16 Mobius K. ; Plato M. ; Klihm G. ; Laurich C. ; Savitsky A. ; Lubitz W. ; Szyszko B. ; Stepien M. ; Latos-Grazynski L. Phys. Chem. Chem. Phys. 2015, 17, 6644.
17 M?bius K. ; Savitsky A. ; Lubitz W. ; Plato M. Appl. Magn. Reson. 2016, 47, 757.
18 Marcos E. ; Anglada J. M. ; Torrent-Sucarrat M. J. Phys. Chem. C 2012, 116, 24358.
19 Rosenberg M. ; Dahlstrand C. ; Kils K. ; Ottosson H. Chem. Rev. 2014, 114, 5379.
20 Ottosson H. Nat. Chem. 2012, 4, 969.
21 Liew J. Y. ; Brown J. J. ; Moore E. G. ; Schwalbe M. Chem. -Eur. J. 2016, 22, 16178.
22 Naskar S. ; Das M. ACS Omega 2017, 2, 1795.
23 van Leeuwen T. ; Pol J. ; Roke D. ; Wezenberg S. J. ; Feringa B. L. Org. Lett. 2017, 19, 1402.
24 Feixas F. ; Matito E. ; Poater J. ; Solà M. WIREs: Comput. Mol. Sci. 2013, 3, 105.
25 Bühl M. ; Hirsch A. Chem. Rev. 2001, 101, 1153.
26 El Bakouri O. ; Duran M. ; Poater J. ; Feixas F. ; Sola M. Phys. Chem. Chem. Phys. 2016, 18, 11700.
27 Zhu C. Q. ; Yang C. X. ; Wang Y. H. ; Lin G. ; Yang Y. H. ; Wang X. Y. ; Zhu J. ; Chen X. Y. ; Lu X. ; Liu G. ;et al Sci. Adv. 2016, 2, e1601031.
28 Ayub R. ; Bakouri O. E. ; Jorner K. ; Solà M. ; Ottosson H. J. Org. Chem. 2017, 82, 6327.
29 Suzuki S. ; Morita Y. ; Fukui K. ; Sato K. ; Shiomi D. ; Takui T. ; Nakasuji K. J. Am. Chem. Soc. 2006, 128, 2530.
30 Chen Z. F. ; Wannere C. S. ; Corminboeuf C. ; Puchta R. ; von Ragué Schleyer P. Chem. Rev. 2005, 105, 3842.
31 Schleyer P. v. R. ; Maerker C. ; Dransfeld A. ; Jiao H. ; van Eikema Hommes N. J. R. J. Am. Chem. Soc. 1996, 118, 6317.
32 Fallah-Bagher-Shaidaei H. ; Wannere C. S. ; Corminboeuf C. ; Puchta R. ; Schleyer P. v. R. Org. Lett. 2006, 8, 863.
33 Krygowski T. M. ; Szatylowicz H. ; Stasyuk O. A. ; Dominikowska J. ; Palusiak M. Chem. Rev. 2014, 114, 6383.
34 Poater J. ; Fradera X. ; Duran M. ; Solà M. Chem. -Eur. J. 2003, 9, 400.
35 Matito E. ; Duran M. ; Solà M. J. Chem. Phys. 2005, 122, 014109.
36 Hong Y. ; Oh J. ; Sung Y. M. ; Tanaka Y. ; Osuka A. ; Kim D. Angew. Chem. Int. Ed. 2017, 56, 2932.
37 Feixas F. ; Matito E. ; Poater J. ; Solà M. J. Comput. Chem. 2008, 29, 1543.
38 Yu D. H. ; Rong C. Y. ; Lu T. ; Chattaraj P. K. ; De Proft F. ; Liu S. B. Phys. Chem. Chem. Phys. 2017, 19, 18635.
39 Liu S. B. Acta Phys. -Chim. Sin. 2016, 32, 98.
40 Liu S. B. Acta Phys. -Chim. Sin. 2009, 25, 590.
41 Zhao L. L. ; Grande-Aztatzi R. ; Foroutan-Nejad C. ; Ugalde J. M. ; Frenking G. ChemistrySelect 2017, 2, 863.
42 Ciesielski A. ; Krygowski T. M. ; Cyranski M. K. ; Balaban A. T. Phys. Chem. Chem. Phys. 2011, 13, 3737.
43 Bernasconi C. F. ; Wenzel P. J. J. Org. Chem. 2010, 75, 8422.
44 Mo Y. R. ; Schleyer P. v. R. Chem. -Eur. J. 2006, 12, 2009.
45 Gershoni-Poranne R. ; Stanger A. Chem. Soc. Rev. 2015, 44, 6597.
46 De Oliveira B. G. Phys. Chem. Chem. Phys. 2013, 15, 37.
47 Zhu J. ; An K. ; Schleyer P. v. R. Org. Lett. 2013, 15, 2442.
48 Cyra?ski M. K. ; Krygowski T. M. ; Katritzky A. R. ; Schleyer P. v. R. J. Org. Chem. 2002, 67, 1333.
49 Krygowski T. M. ; Cyrański M. K. Chem. Rev. 2001, 101, 1385.
50 Alvarez-Thon L. ; Mammino L. Int. J. Quantum Chem. 2017, 117, e25382.
51 Karadakov P. B. ; Hearnshaw P. ; Horner K. E. J. Org. Chem. 2016, 81, 11346.
52 Boll M. ; Hilker T. A. ; Salomon G. ; Omran A. ; Nespolo J. ; Pollet L. ; Bloch I. ; Gross C. Science 2016, 353, 1257.
53 Sundholm D. ; Fliegl H. ; Berger R. J. F. WIREs: Comput. Mol. Sci. 2016, 6, 639.
54 Liu S. B. J. Chem. Phys. 2007, 126, 191107.
55 Liu S. B. ; Rong C. Y. ; Wu Z. M. ; Lu T. Acta Phys. -Chim. Sin. 2015, 2057
56 Noorizadeh S. ; Shakerzadeh E. Comput. Theor. Chem. 2011, 964, 141.
57 M?llerstedt H. ; Piqueras M. C. ; Crespo R. ; Ottosson H. J. Am. Chem. Soc. 2004, 126, 13938.
58 Becke A. D. J. Chem. Phys. 1993, 98, 5648.
59 Lee C. ; Yang W. ; Parr R. G. Phys. Rev. B 1988, 37, 785.
60 Francl M. M. ; Pietro W. J. ; Hehre W. J. ; Binkley J. S. ; Gordon M. S. ; DeFrees D. J. ; Pople J. A. J. Chem. Phys. 1982, 77, 3654.
61 Rassolov V. A. ; Ratner M. A. ; Pople J. A. ; Redfern P. C. ; Curtiss L. A. J. Comput. Chem. 2001, 22, 976.
62 Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Scalmani G. ; Barone V. ; Mennucci B. ; Petersson G. A. et al Gaussian 09, Revision E. 01 Gaussian Inc.: Wallingford, CT, USA, 2013.
63 Kudin K. N. ; Scuseria G. E. ; Cancès E. J. Chem. Phys. 2002, 116, 8255.
64 Lu T. ; Chen F. W. J. Comput. Chem. 2012, 33, 580.
65 Becke A. D. J. Chem. Phys. 1988, 88, 2547.
66 Richard F. ; Bader R. Atoms in Molecules: a Quantum Theory; Oxford University Press, Oxford, UK 1990.
67 Hirshfeld F. L. Theor. Chim. Acta 1977, 44, 129.
68 Zhou X. Y. ; Rong C. Y. ; Lu T. ; Liu S. B. Acta Phys. -Chim. Sin. 2014, 30, 2055.
69 Liu S. B. J. Phys. Chem. A 2015, 119, 3107.
70 Kohn W. ; Sham L. J. Phys. Rev. 1965, 140, A1133.
71 Zhao D. B. ; Rong C. Y. ; Ying D. L. ; Liu S. B. J. Theor. Comput. Chem. 2013, 12, 1350034.
72 Wu W. J. ; Wu Z. M. ; Rong C. Y. ; Lu T. ; Huang Y. ; Liu S. B. J. Phys. Chem. A 2015, 119, 8216.
73 Wu Z. M. ; Rong C. Y. ; Lu T. ; Ayers P. W. ; Liu S. B. Phys. Chem. Chem. Phys. 2015, 17, 27052.
74 Huang Y. ; Rong C. Y. ; Zhang R. Q. ; Liu S. B. J. Mol. Model. 2016, 23, 3.
75 Liu S. B. ; Rong C. Y. ; Lu T. Phys. Chem. Chem. Phys. 2017, 19, 1496.
76 Zhou X. Y. ; Rong C. Y. ; Lu T. ; Zhou P. P. ; Liu S. B. J. Phys. Chem. A 2016, 120, 3634.
77 Noorizadeh S. ; Shakerzadeh E. Phys. Chem. Chem. Phys. 2010, 12, 4742.
78 Snyder G. J. J. Phys. Chem. A 2012, 116, 5272.
79 Halton B. Eur. J. Org. Chem. 2005, 2005, 3391.
[1] Yanfang SHEN,Longjiu CHENG. Electronic Stability of Eight-electron Tetrahedral Pd4 Clusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 830-836.
[2] Shu-Bin LIU. Information-Theoretic Approach in Density Functional Reactivity Theory[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 98-118.
[3] Shu-Bin. LIU,Chun-Ying. RONG,Ze-Min. WU,Tian. LU. Rényi Entropy, Tsallis Entropy and Onicescu Information Energy in Density Functional Reactivity Theory[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2057-2063.
[4] LIU Liang-Hong, ZHANG Peng-Fei, HUANG Ying. Molecular Acidity of Singly and Doubly Substituted Phenols: Predictions from Density Functional Reactivity Theory and Hammett Constants[J]. Acta Phys. -Chim. Sin., 2013, 29(03): 508-515.
[5] WU Lin-Feng, LI Fei-Fei, ZHANG Cong-Jie. Structure and Stability of Compounds with Planar Pentacoordinate Carbons and Planar Tetracoordinate Carbons[J]. Acta Phys. -Chim. Sin., 2012, 28(05): 1113-1119.
[6] XU Hui-Ying, WANG Wei. Interaction between Mg-Porphyrin and Nitrogen, Oxygen Heterocyclic Compounds[J]. Acta Phys. -Chim. Sin., 2011, 27(11): 2565-2570.
[7] LIU Yu-Ning, LIU Zi-Zhong, LI Wei-Qi, LIU Dong-Sheng, GE Xiang-Wei. Structures and Aromaticities of Complexes (1,3,5-C3P3H3)M and (1,3,5-C3P3H3)2M (M=Ti, V, Cr)[J]. Acta Phys. -Chim. Sin., 2011, 27(10): 2282-2290.
[8] GONG Liang-Fa, WU Xin-Min, LI Wei, QI Chuan-Song. Stability and Aromaticity of XB6+ (X=C, Si, Ge, Sn, Pb) Clusters[J]. Acta Phys. -Chim. Sin., 2011, 27(04): 831-836.
[9] LIANG Jing-Xia, JIA Wen-Hong, ZHANG Cong-Jie, CAO Ze-Xing. Unusual Boron-Carbon Compounds Containing Planar Tetracoordinate and Pentacoordinate Carbons[J]. Acta Phys. -Chim. Sin., 2009, 25(09): 1847-1852.
[10] QIU Wei-Wei; LIN Meng-Hai. Aromaticity of Transition-Metal Clusters Nbn, Con (n≤4) and NbxCoy (x+y≤8)[J]. Acta Phys. -Chim. Sin., 2008, 24(09): 1573-1578.
[11] WANG Wei, SHAO Shi-Qun, ZHOU Hui, TENG Qi-Wen. Molecular Recognition and Spectroscopic Properties of Cyclobis(paraquat-p-anthracene)[J]. Acta Phys. -Chim. Sin., 2008, 24(09): 1631-1636.
[12] LI Zhi-Wei; ZHAO Cun-Yuan; CHEN Liu-Ping. Structures and Aromaticities of As-5, [As5M]-, and [As5MAs5]2- (M=Ti, Zr, Hf)[J]. Acta Phys. -Chim. Sin., 2008, 24(05): 755-759.
[13] SUN Wen-Xiu; ZHANG Cong-Jie. ATheoretical Study on a Kind of Novel Diboron Organic Compound with a Planar Tetracoordinate Carbon[J]. Acta Phys. -Chim. Sin., 2008, 24(01): 32-36.
[14] Zhou Li-Xin, Mang Chao-Yong, Zhang Yong-Fan. Gas-phase Acidity and Aromaticity of 1,2-dithiosquaric Acid[J]. Acta Phys. -Chim. Sin., 2000, 16(01): 15-21.