Please wait a minute...
Acta Phys. -Chim. Sin.
Special Issue: Toward_Atomically_Precise_Nanoclusters_and_Nanoparticles
Accepted manuscript     
Thiolate-Protected Hollow Gold Nanospheres
XU Wenwu, GAO Yi
Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
Download:   PDF(900KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

We present the atomic structure of thiolate-protected hollow Au nanosphere (HAuNS), Au60(SR)2020, with high symmetry and stability based on the grand unified model (GUM; Nat. Commun. 2016, 7, 13574) and density-functional theory (DFT) calculations. Using C20 fullerene (with Ih symmetry) as a template, 20 tetrahedral Au4 units were used to replace the C atoms of C20, and three Au atoms of each Au4 were fused with three neighboring Au4 units by sharing one Au atom to form an icosahedral Au50 fullerene cage as the inner core. Subsequently, the unfused Au atom in each Au4 was bonded with the[-RS-Au-SR-] staple to form the completely hollow Au60(SR)2020 nanosphere. Therefore, the Au60(SR)2020 is composed of an icosahedral Au50 fullerene hollow cage (constructed by fusing 20 tetrahedral Au4 units) with 10[-RS-Au-SR-] staples, obeying the "divide and protect" rule. Each Au4 unit has 2e valence electrons, namely, the tetrahedral Au4(2e) elementary block in the grand unified model. The DFT calculations showed that this hollow Au60(SR)2020 nanosphere had a large HOMO-LUMO (HOMO:the highest occupied molecular orbital; LUMO:the lowest unoccupied molecular orbital) gap (1.3 eV) and a negative nucleus-independent chemical shift (NICS) value (-5) at the center of the hollow cage, indicating its high chemical stability. Furthermore, the NICS values in the center of the tetrahedral Au4 units were much more negative than that in the center of the hollow cage, revealing that the overall stability of Au60(SR)2020 likely stemmed from the local stability of each tetrahedral Au4 unit. The harmonic vibrational frequencies were all positive, suggesting that the HAuNS corresponded to the local minimum of the potential energy surface. In addition, the bilayer HAuNS was designed by fusing the tetrahedral Au4 layers, indicating the feasibility of tuning the thickness of the shell of HAuNS. In bilayer HAuNS, each tetrahedral Au4 unit in the first layer shared four Au atoms, while those in the second layer shared one Au atom. The other three Au atoms of each tetrahedral unit bonded with the SR groups, demonstrating that each tetrahedral Au4 unit has 2e valence electrons (namely the tetrahedral Au4(2e) elementary block in GUM). The HOMO-LUMO gap of the bilayer Au140(SH)60 nanosphere is 1.5 eV, indicating its chemical stability. The thicknesses of the shells in monolayer and bilayer HAuNS are about 0.2 and 0.4 nm, respectively. This process could be easily understood in terms of the local stabilities of the tetrahedral Au4(2e) elementary block in GUM. Finally, the design of larger HAuNS, Au180(SR)60, has also been presented. The HOMO-LUMO gap of Au180(SH)60 was 0.9 eV, which showed that it was also a stable HAuNS. This work provides a new strategy to controllably design the HAuNS.



Key wordsThiolate-protected hollow Au nanosphere      Density-functional theory      Grand unified model      “Divide and protect&rdquo      rule      Nucleus-independent chemical shift     
Received: 11 October 2017      Published: 06 November 2017
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (11504396, 21773287).

Corresponding Authors: GAO Yi     E-mail: gaoyi@sinap.ac.cn
Cite this article:

XU Wenwu, GAO Yi. Thiolate-Protected Hollow Gold Nanospheres. Acta Phys. -Chim. Sin., 0, (): 0-0.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201711061     OR     http://www.whxb.pku.edu.cn/Y0/V/I/0

(1) Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Acc. Chem. Res. 2008, 41, 1587. doi:10.1021/ar800018v
(2) Dreaden, E. C.; Mackey, M. A.; Huang, X.; Kangy, B.; El-Sayed, M.A. Chem. Soc. Rev. 2010, 40, 3391. doi:10.1039/C0CS00180E
(3) Kennedy, L. C.; Bickford, L. R.; Lewinski, N. A.; Coughlin, A. J.; Hu, Y.; Day, E. S.; West, J. L.; Drezek, R. A. Small 2011, 7, 169. doi: 10.1002/smll.201000134
(4) Melancon, M. P.; Zhou, M.; Li, C. Acc. Chem. Res. 2011, 44, 947. doi: 10.1021/ar200022e
(5) Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. Chem. Soc. Rev. 2012, 41, 2740. doi:10.1021/ar200022e
(6) Doane, T. L.; Burda, C. Chem. Soc. Rev. 2012, 41, 2885. doi: 10.1039/C2CS15260F
(7) Johansson, M. P.; Sundholm, D.; Vaara, J. Angew. Chem. Int. Ed.2004, 43, 2678. doi:10.1039/C2CS15260F
(8) Gao Y.; Zeng, X. C. J. Am. Chem. Soc. 2005, 127, 3698. doi: 10.1021/ja050435s
(9) Bulusu, S.; Li, X.; Wang, L. S.; Zeng, X. C. Proc. Natl. Acad. Sci. 2006, 103, 8326. doi:10.1021/ja050435s
(10) Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell D. A.; Kornberg, R. D. Science 2007, 318, 430. doi: 10.1126/science.1148624
(11) Das, A.; Liu, C.; Byun, H. Y.; Nobusada, K.; Zhao, S.; Rosi, N. L.; Jin, R. Angew. Chem. Int. Ed. 2015, 54, 3140. doi: 10.1002/ange.201410161
(12) Chen, S.; Wang, S.; Zhong, J.; Song, Y.; Zhang, J.; Sheng, H.; Pei, Y.; Zhu, M. Angew. Chem. Int. Ed. 2015, 54, 3145. doi: 10.1002/anie.201410295
(13) Zeng, C.; Liu, C.; Chen, Y.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc.2014, 136, 11922. doi:10.1021/ja506802n
(14) Das, A.; Li, T.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin R. J. Am. Chem. Soc. 2013, 135, 18264. doi:10.1021/ja409177s
(15) Crasto, D.; Barcaro, G.; Stener, M.; Sementa, L.; Fortunelli, A.; Dass, A. J. Am. Chem. Soc. 2014, 136, 14933. doi:10.1021/ja507738e
(16) Das, A.; Li, T.; Li, G.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R. Nanoscale 2014, 6, 6458. doi:10.1039/C4NR01350F
(17) Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130, 5883. doi:10.1021/ja801173r
(18) Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. J. Am. Chem. Soc. 2008, 130, 3754. doi:10.1021/ja800561b
(19) Zeng, C.; Li, T.; Das, A.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135, 10011. doi:10.1021/ja404058q
(20) Chen, Y.; Liu, C.; Tang, Q.; Zeng, C.; Higaki, T.; Das, A.; Jiang, D.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2016, 138, 1482. doi: 10.1021/ja404058q
(21) Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Häkkinen, H. J. Am. Chem. Soc. 2014, 136, 5000. doi:10.1021/ja412141j
(22) Zeng, C.; Qian, H.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R.N.; Whetten, R. L.; Landman, U.; Jin, R. Angew. Chem. Int. Ed. 2012, 51, 13114. doi:10.1002/ange.201207098
(23) Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. J. Am. Chem. Soc. 2010, 132, 8280. doi:10.1002/ange.201207098
(24) Tian, S.; Li, Y.; Li, M.; Yuan, J.; Yang, J.; Wu, Z.; Jin, R. Nat. Commun. 2015, 6, 8667. doi:10.1038/ncomms9667
(25) Zeng, C.; Chen, Y.; Liu, C.; Nobusada, K.; Rosi, N. L.; Jin, R. Sci. Adv. 2015, 1, e1500425. doi:10.1126/sciadv.1500425
(26) Chen, Y.; Zeng, C.; Liu, C.; Kirschbaum, K.; Gayathri, C.; Gil, R. R.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2015, 137, 10076. doi: 10.1021/jacs.5b05378
(27) Dass, A.; Theivendran, S.; Nimmala, P. R.; Kumara, C.; Jupally, V. R.; Fortunelli, A.; Sementa, L.; Barcaro, G.; Zuo, X.; Noll, B. C.; J. Am. Chem. Soc. 2015, 137, 4610. doi:10.1021/ja513152h
(28) Zeng, C.; Chen, Y.; Kirschbaum, K.; Appavoo, K.; Sfeir, M. Y.; Jin, R. Sci. Adv. 2015, 1, e1500045. doi:10.1126/sciadv.1500045
(29) Zeng, C.; Chen, Y.; Kirschbaum, K.; Lambright, K.; Jin, R. Science 2016, 354, 1580-1584. doi:10.1126/science.aak9750
(30) Häkkinen, H.; Walter, M.; Gronbeck, H. J. Phys. Chem. B 2006, 110, 9927. doi:10.1021/jp0619787
(31) Häkkinen, H. Nat. Chem. 2012, 4, 443. doi:10.1021/jp0619787
(32) Pei, Y.; Zeng, X. C. Nanoscale 2012, 4, 4054. doi: 10.1039/C2NR30685A
(33) Jin, R. Nanoscale, 2015, 7, 1549. doi:10.1039/C4NR05794E
(34) Liu, C.; Pei, Y.; Sun, H.; Ma, J. J. Am. Chem. Soc. 2015, 137, 15809. doi: 10.1021/jacs.5b09466
(35) Jiang, D.; Overbury, S. H.; Dai, S. J. Am. Chem. Soc. 2013, 135, 8786. doi: 10.1021/ja402680c
(36) Pei, Y.; Gao, Y.; Shao, N.; Zeng, X. C. J. Am. Chem. Soc. 2009, 131, 13619. doi:10.1021/ja905359b
(37) Pei, Y.; Tang, J.; Tang, X.; Huang, Y.; Zeng, X. C. J. Phys. Chem. Lett.2015, 6, 1390. doi:10.1021/acs.jpclett.5b00364
(38) Pei, Y.; Pal, R.; Liu, C.; Gao, Y.; Zhang, Z.; Zeng, X. C. J. Am. Chem. Soc. 2012, 134, 3015. doi:10.1021/ja208559y
(39) Akola, J.; Walter, M.; Whetten, R. L.; Häkkinen, H.; Grönbeck, H. J. Am. Chem. Soc. 2008, 130, 3756. doi:10.1021/ja800594p
(40) Pei, Y.; Gao, Y.; Zeng, X. C. J. Am. Chem. Soc. 2008, 130, 7830. doi: 10.1021/ja802975b
(41) Malola, S.; Lehtovaara, L.; Knoppe, S.; Hu, K.; Palmer, R. E.; Bürgi, T.; Häkkinen, H. J. Am. Chem. Soc. 2012, 134, 19560. doi: 10.1021/ja309619n
(42) Pei, Y.; Lin, S. S.; Su, J.; Liu, C. J. Am. Chem. Soc. 2013, 135, 19060. doi: 10.1021/ja409788k
(43) Xu, W. W.; Gao, Y.; Zeng, X. C. Sci. Adv. 2015, 1, e1400211. doi: 10.1126/sciadv.1400211
(44) Zhou, Y.; Li, Z. M.; Zheng K.; Li, G. Acta Phys. -Chim. Sin. 2018, (inpress)[周洋, 李志敏, 郑凯, 李杲. 物理化学学报, 2018, (in press)]doi:10.3866/PKU.WHXB201709292
(45) Zhu, M.; Li, M. B.; Yao, C. H.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L.W.; Wu, Z. Acta Phys. -Chim. Sin. 2018, (in press)[祝敏, 李漫波, 姚传好, 夏楠, 赵燕, 闫楠, 廖玲文, 伍志鲲. 物理化学学报, 2018, (in press)] doi:10.3866/PKU.WHXB201710091
(46) Sun, G. D.; Kang, X.; Jin, S.; Li, X. W.; Hu, D. Q.; Wang, S. X.; Zhu, M. Z. Acta Phys. -Chim. Sin. 2018, (in press)[孙国栋, 康熙, 金山, 李小武, 胡大乔, 汪恕欣, 朱满洲. 物理化学学报, 2018, (in press)]doi:10.3866/PKU.WHXB201710124
(47) Tominaga, C.; Hikosou, D.; Osaka, I.; Kawasak, H. Acta Phys. -Chim. Sin. 2018, (in press)[Tominaga, C.; Hikosou, D.; Osaka, I.; Kawasak, H. 物理化学学报, 2018, (in press)]doi:10.3866/PKU.WHXB201710271
(48) Liu, M. H. Acta Phys. -Chim. Sin. 2018, (in press).[刘鸣华. 物理化学学报, 2018, (in press)]doi:10.3866/PKU.WHXB201710301
(49) Xu, W. W.; Zhu, B.; Zeng, X. C.; Gao, Y. Nat. Commun. 2016, 7, 13574. doi:10.1038/ncomms13574
(50) Xu, W. W.; Zeng, X. C.; Gao, Y. Chem. Phys. Lett. 2017, 675, 35. doi: 10.1016/j.cplett.2017.03.001
(51) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, revision A.02; Gaussian, Inc.:Wallingford CT, 2009.
(52) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi:10.1103/PhysRevLett.77.3865
(53) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
(54) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. doi: 10.1063/1.448799
(55) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. doi: 10.1063/1.448800
(56) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. doi: 10.1063/1.448975
(57) Schleyer, P. von R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van E.Hommes, N. J. R. J. Am. Chem. Soc. 1996, 118, 6317. doi: 10.1021/ja960582d
(58) Cheng, L.; Yuan, Y.; Zhang, X.; Yang, J. Angew. Chem. Int. Ed. 2013, 52, 9035. doi:10.1002/anie.201302926
(59) Xu, W. W.; Li, Y.; Gao, Y.; Zeng, X. C. Nanoscale 2016, 8, 7396. doi: 10.1039/C6NR00272B
(60) Delley, B. J. Chem. Phys. 1990, 92, 508. doi:10.1063/1.458452
(61) Delley, B. J. Chem. Phys. 2003, 113, 7756. doi: 10.1063/1.1316015

[1] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[3] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[4] DING Xiaoqin, DING Junjie, LI Dayu, PAN Li, PEI Chengxin. Toxicity Prediction of Organoph Osphorus Chemical Reactivity Compounds Based on Conceptual DFT[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 314-322.
[5] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[6] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[7] XU Wei-Yun, WANG Li-Li, MI Yi-Ming, ZHAO Xin-Xin. Effect of Adsorption of Fe Atoms on the Structure and Properties of WS2 Monolayer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1765-1772.
[8] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[9] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.
[10] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.
[11] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.
[12] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 769-779.
[13] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.
[14] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 530-538.
[15] WANG Wei, TAN Kai. Structure and Electronic Properties of Single Walled Nanotubes from AlAs(111) Sheets: A DFT Study[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 548-553.