Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (7): 770-775    DOI: 10.3866/PKU.WHXB201711061
Special Issue: Toward_Atomically_Precise_Nanoclusters_and_Nanoparticles
ARTICLE     
Thiolate-Protected Hollow Gold Nanospheres
Wenwu XU,Yi GAO*()
Download: HTML     PDF(1148KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

We present the atomic structure of thiolate-protected hollow Au nanosphere (HAuNS), Au60(SR)20, with high symmetry and stability based on the grand unified model (GUM; Nat. Commun. 2016, 7, 13574) and density-functional theory (DFT) calculations. Using C20 fullerene (with Ih symmetry) as a template, 20 tetrahedral Au4 units were used to replace the C atoms of C20, and three Au atoms of each Au4 were fused with three neighboring Au4 units by sharing one Au atom to form an icosahedral Au50 fullerene cage as the inner core. Subsequently, the unfused Au atom in each Au4 was bonded with the [―RS―Au―SR―] staple to form the completely hollow Au60(SR)20 nanosphere. Therefore, the Au60(SR)20 is composed of an icosahedral Au50 fullerene hollow cage (constructed by fusing 20 tetrahedral Au4 units) with 10 [―RS―Au―SR―] staples, obeying the "divide and protect" rule. Each Au4 unit has 2e valence electrons, namely, the tetrahedral Au4(2e) elementary block in the grand unified model. The DFT calculations showed that this hollow Au60(SR)20 nanosphere had a large HOMO–LUMO (HOMO: the highest occupied molecular orbital; LUMO: the lowest unoccupied molecular orbital) gap (1.3 eV) and a negative nucleus-independent chemical shift (NICS) value (−5) at the center of the hollow cage, indicating its high chemical stability. Furthermore, the NICS values in the center of the tetrahedral Au4 units were much more negative than that in the center of the hollow cage, revealing that the overall stability of Au60(SR)20 likely stemmed from the local stability of each tetrahedral Au4 unit. The harmonic vibrational frequencies were all positive, suggesting that the HAuNS corresponded to the local minimum of the potential energy surface. In addition, the bilayer HAuNS was designed by fusing the tetrahedral Au4 layers, indicating the feasibility of tuning the thickness of the shell of HAuNS. In bilayer HAuNS, each tetrahedral Au4 unit in the first layer shared four Au atoms, while those in the second layer shared one Au atom. The other three Au atoms of each tetrahedral unit bonded with the SR groups, demonstrating that each tetrahedral Au4 unit has 2e valence electrons (namely the tetrahedral Au4(2e) elementary block in GUM). The HOMO-LUMO gap of the bilayer Au140(SH)60 nanosphere is 1.5 eV, indicating its chemical stability. The thicknesses of the shells in monolayer and bilayer HAuNS are about 0.2 and 0.4 nm, respectively. This process could be easily understood in terms of the local stabilities of the tetrahedral Au4(2e) elementary block in GUM. Finally, the design of larger HAuNS, Au180(SR)60, has also been presented. The HOMO-LUMO gap of Au180(SH)60 was 0.9 eV, which showed that it was also a stable HAuNS. This work provides a new strategy to controllably design the HAuNS.



Key wordsThiolate-protected hollow Au nanosphere      Density-functional theory      Grand unified model      "Divide and protect" rule      Nucleus-independent chemical shift     
Received: 11 October 2017      Published: 06 November 2017
MSC2000:  O641  
Fund:  the National Natural Science Foundation of China(11504396);the National Natural Science Foundation of China(21773287)
Corresponding Authors: Yi GAO     E-mail: gaoyi@sinap.ac.cn
Cite this article:

Wenwu XU,Yi GAO. Thiolate-Protected Hollow Gold Nanospheres. Acta Phys. -Chim. Sin., 2018, 34(7): 770-775.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201711061     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I7/770

 
Property Au60(SH)20 Au50 core Au42 Au32
Diameter (nm) ~1.7 ~0.8 ~1.1 ~0.9
Symmetry point group D5d Ih Ih Ih
HOMO/LUMO gap (eV) 1.3/2.4 / 0.4/0.9 1.6/2.3
Vibrational frequency (cm−1)
lowest
highest
8 *
2586 *
8 *
192 *
12/7
156/143
25/25
142/130
NICS
at center of cage
at center of tetrahedral Au4
−5/−5
−25/−25
/
/
118/141
/
−78/−84
/
 
 
 
 
1 Skrabalak S. E. ; Chen J. ; Sun Y. ; Lu X. ; Au L. ; Cobley C. M. ; Xia Y. Acc. Chem. Res. 2008, 41, 1587.
2 Dreaden E. C. ; Mackey M. A. ; Huang X. ; Kangy B. ; El-Sayed M. A. Chem. Soc. Rev. 2010, 40, 3391.
3 Kennedy L. C. ; Bickford L. R. ; Lewinski N. A. ; Coughlin A. J. ; Hu Y. ; Day E. S. ; West J. L. ; Drezek R. A. Small 2011, 7, 169.
4 Melancon M. P. ; Zhou M. ; Li C. Acc. Chem. Res. 2011, 44, 947.
5 Dreaden E. C. ; Alkilany A. M. ; Huang X. ; Murphy C. J. ; El-Sayed M. A. Chem. Soc. Rev. 2012, 41, 2740.
6 Doane T. L. ; Burda C. Chem. Soc. Rev. 2012, 41, 2885.
7 Johansson M. P. ; Sundholm D. ; Vaara J. Angew. Chem. Int. Ed. 2004, 43, 2678.
8 Gao Y. ; Zeng X. C. J. Am. Chem. Soc. 2005, 127, 3698.
9 Bulusu S. ; Li X. ; Wang L. S. ; Zeng X. C. Proc. Natl. Acad. Sci. USA 2006, 103, 8326.
10 Jadzinsky P. D. ; Calero G. ; Ackerson C. J. ; Bushnell D. A. ; Kornberg R. D. Science 2007, 318, 430.
11 Das A. ; Liu C. ; Byun H. Y. ; Nobusada K. ; Zhao S. ; Rosi N. L. ; Jin R. Angew. Chem. Int. Ed. 2015, 54, 3140.
12 Chen S. ; Wang S. ; Zhong J. ; Song Y. ; Zhang J. ; Sheng H. ; Pei Y. ; Zhu M. Angew. Chem. Int. Ed. 2015, 54, 3145.
13 Zeng C. ; Liu C. ; Chen Y. ; Rosi N. L. ; Jin R. J. Am. Chem. Soc. 2014, 136, 11922.
14 Das A. ; Li T. ; Nobusada K. ; Zeng C. ; Rosi N. L. ; Jin R. J. Am. Chem. Soc. 2013, 135, 18264.
15 Crasto D. ; Barcaro G. ; Stener M. ; Sementa L. ; Fortunelli A. ; Dass A. J. Am. Chem. Soc. 2014, 136, 14933.
16 Das A. ; Li T. ; Li G. ; Nobusada K. ; Zeng C. ; Rosi N. L. ; Jin R. Nanoscale 2014, 6, 6458.
17 Zhu M. ; Aikens C. M. ; Hollander F. J. ; Schatz G. C. ; Jin R. J. Am. Chem. Soc. 2008, 130, 5883.
18 Heaven M. W. ; Dass A. ; White P. S. ; Holt K. M. ; Murray R. W. J. Am. Chem. Soc. 2008, 130, 3754.
19 Zeng C. ; Li T. ; Das A. ; Rosi N. L. ; Jin R. J. Am. Chem. Soc. 2013, 135, 10011.
20 Chen Y. ; Liu C. ; Tang Q. ; Zeng C. ; Higaki T. ; Das A. ; Jiang D. ; Rosi N. L. ; Jin R. J. Am. Chem. Soc. 2016, 138, 1482.
21 Crasto D. ; Malola S. ; Brosofsky G. ; Dass A. ; H?kkinen H. J. Am. Chem. Soc. 2014, 136, 5000.
22 Zeng C. ; Qian H. ; Li T. ; Li G. ; Rosi N. L. ; Yoon B. ; Barnett R. N. ; Whetten R. L. ; Landman U. ; Jin R. Angew. Chem. Int. Ed. 2012, 51, 13114.
23 Qian H. ; Eckenhoff W. T. ; Zhu Y. ; Pintauer T. ; Jin R. J. Am. Chem. Soc. 2010, 132, 8280.
24 Tian S. ; Li Y. ; Li M. ; Yuan J. ; Yang J. ; Wu Z. ; Jin R. Nat. Commun. 2015, 6, 8667.
25 Zeng C. ; Chen Y. ; Liu C. ; Nobusada K. ; Rosi N. L. ; Jin R. Sci. Adv. 2015, 1, e1500425.
26 Chen Y. ; Zeng C. ; Liu C. ; Kirschbaum K. ; Gayathri C. ; Gil R. R. ; Rosi N. L. ; Jin R. J. Am. Chem. Soc. 2015, 137, 10076.
27 Dass A. ; Theivendran S. ; Nimmala P. R. ; Kumara C. ; Jupally V. R. ; Fortunelli A. ; Sementa L. ; Barcaro G. ; Zuo X. ; Noll B. C. J. Am. Chem. Soc. 2015, 137, 4610.
28 Zeng C. ; Chen Y. ; Kirschbaum K. ; Appavoo K. ; Sfeir M. Y. ; Jin R. Sci. Adv. 2015, 1, e1500045.
29 Zeng C. ; Chen Y. ; Kirschbaum K. ; Lambright K. ; Jin R. Science 2016, 354, 1580.
30 H?kkinen H. ; Walter M. ; Gronbeck H. J. Phys. Chem. B 2006, 110, 9927.
31 H?kkinen H. Nat. Chem. 2012, 4, 443.
32 Pei Y. ; Zeng X. C. Nanoscale 2012, 4, 4054.
33 Jin R. Nanoscale 2015, 7, 1549.
34 Liu C. ; Pei Y. ; Sun H. ; Ma J. J. Am. Chem. Soc. 2015, 137, 15809.
35 Jiang D. ; Overbury S. H. ; Dai S. J. Am. Chem. Soc. 2013, 135, 8786.
36 Pei Y. ; Gao Y. ; Shao N. ; Zeng X. C. J. Am. Chem. Soc. 2009, 131, 13619.
37 Pei Y. ; Tang J. ; Tang X. ; Huang Y. ; Zeng X. C. J. Phys. Chem. Lett. 2015, 6, 1390.
38 Pei Y. ; Pal R. ; Liu C. ; Gao Y. ; Zhang Z. ; Zeng X. C. J. Am. Chem. Soc. 2012, 134, 3015.
39 Akola J. ; Walter M. ; Whetten R. L. ; H?kkinen H. ; Gr?nbeck H. J. Am. Chem. Soc. 2008, 130, 3756.
40 Pei Y. ; Gao Y. ; Zeng X. C. J. Am. Chem. Soc. 2008, 130, 7830.
41 Malola S. ; Lehtovaara L. ; Knoppe S. ; Hu K. ; Palmer R. E. ; Bürgi T. ; H?kkinen H. J. Am. Chem. Soc. 2012, 134, 19560.
42 Pei Y. ; Lin S. S. ; Su J. ; Liu C. J. Am. Chem. Soc. 2013, 135, 19060.
43 Xu W. W. ; Gao Y. ; Zeng X. C. Sci. Adv. 2015, 1, e1400211.
44 Zhou Y. ; Li Z. M. ; Zheng K. ; Li G. Acta Phys. -Chim. Sin. 2018, 34 (7), 786.
44 周洋; 李志敏; 郑凯; 李杲. 物理化学学报, 2018, 34 (7), 786.
45 Zhu M. ; Li M. B. ; Yao C. H. ; Xia N. ; Zhao Y. ; Yan N. ; Liao L. W. ; Wu Z. Acta Phys. -Chim. Sin. 2018, 34 (7), 792.
45 祝敏; 李漫波; 姚传好; 夏楠; 赵燕; 闫楠; 廖玲文; 伍志鲲. 物理化学学报, 2018, 34 (7), 792.
46 Sun G. D. ; Kang X. ; Jin S. ; Li X. W. ; Hu D. Q. ; Wang S. X. ; Zhu M. Z. Acta Phys. -Chim. Sin. 2018, 34 (7), 799.
46 孙国栋; 康熙; 金山; 李小武; 胡大乔; 汪恕欣; 朱满洲. 物理化学学报, 2018, 34 (7), 799.
47 Tominaga C. ; Hikosou D. ; Osaka I. ; Kawasak H. Acta Phys. -Chim. Sin. 2018, 34 (7), 805.
48 Liu M. H. Acta Phys. -Chim. Sin. 2018, 34 (6), 553.
48 刘鸣华. 物理化学学报, 2018, 34 (6), 553.
49 Xu W. W. ; Zhu B. ; Zeng X. C. ; Gao Y. Nat. Commun. 2016, 7, 13574.
50 Xu W. W. ; Zeng X. C. ; Gao Y. Chem. Phys. Lett. 2017, 675, 35.
51 Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Scalmani G. ; Barone V. ; Mennucci B. ; Petersson G. A. ; et al Gaussian 09 revision A.02 Gaussian, Inc.: Wallingford, CT, 2009.
52 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
53 Lee C. ; Yang W. ; Parr R. G. Phys. Re v. B 1988, 37, 785.
54 Hay P. J. ; Wadt W. R. J. Chem. Phys. 1985, 82, 270.
55 Wadt W. R. ; Hay P. J. J. Chem. Phys. 1985, 82, 284.
56 Hay P. J. ; Wadt W. R. J. Chem. Phys. 1985, 82, 299.
57 Von Ragué Schleyer P. ; Maerker C. ; Dransfeld A. ; Jiao H. ; van Eikema Hommes N. J. R. J. Am. Chem. Soc. 1996, 118, 6317.
58 Cheng L. ; Yuan Y. ; Zhang X. ; Yang J. Angew. Chem. Int. Ed. 2013, 52, 9035.
59 Xu W. W. ; Li Y. ; Gao Y. ; Zeng X. C. Nanoscale 2016, 8, 7396.
60 Delley B. J. Chem. Phys. 1990, 92, 508.
61 Delley B. J. Chem. Phys. 2003, 113, 7756.
[1] László VON SZENTPÁLY. Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 675-682.
[2] Manas GHARA,Pratim K. CHATTARAJ. Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 201-207.
[3] Roman F NALEWAJSKI. Chemical Reactivity Description in Density-Functional and Information Theories[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2491-2509.
[4] CUI Xiao-Ying, JIA Jian-Feng, YANG Bin-Sheng, WU Hai-Shun. Stability Comparison between (BCO)12 and (CH)12 by Ring Strain Analysis[J]. Acta Phys. -Chim. Sin., 2009, 25(12): 2501-2506.
[5] ZHANG Hua;CHEN Xiao-Hua;ZHANG Zhen-Hua;QIU Ming. Effect of Grafted Hydroxyl on the Electronic Structure of Finite-length Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2006, 22(09): 1101-1105.
[6] ZHANG Xiao-Qing;JIA Jian-Feng;WU Hai-Shun;PEI Xiao-Qin. Theory Investigation of (BCO)n(n=1~12)[J]. Acta Phys. -Chim. Sin., 2006, 22(06): 684-690.
[7] Bai Yu-Lin;Chen Xiang-Rong;Yang Xiang-Dong;Lu Peng-Fei. Structures of Small Sulfur Clusters Sn(n=2~8) from Langevin Molecular Dynamics Methods[J]. Acta Phys. -Chim. Sin., 2003, 19(12): 1102-1107.