Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (6): 625-630    DOI: 10.3866/PKU.WHXB201711071
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
ARTICLE     
Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number
Paul W. AYERS1,*(),Mel LEVY2,3,4,*()
1 Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
2 Department of Physics, North Carolina A & T State University, Greensboro, NC 27411, USA
3 Department of Chemistry, Duke University, Durham, NC 27708, USA
4 Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
Download: HTML     PDF(308KB) Export: BibTeX | EndNote (RIS)      

Abstract  

By extending the Levy wavefunction constrained search to Fock Space, one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons. For pure-state v-representable densities, the results are equivalent to what one would obtain with the zero-temperature grand canonical ensemble. In other cases, the wavefunction constrained search in Fock space presents an upper bound to the grand canonical ensemble functional. One advantage of the Fock-space wavefunction constrained search functional over the zero-temperature grand-canonical ensemble constrained search functional is that certain specific excited states (i.e., those that are not ground-state v-representable) are the stationary points of the Fock-space functional. However, a potential disadvantage of the Fock-space constrained search functional is that it is not convex.



Key wordsDensity functional theory      Levy constrained search functional      Fock space      Fractional electron number      Excited-state density functional theory      Universal density functional      Zero temperature grand canonical ensemble      Convexity     
Received: 25 September 2017      Published: 07 November 2017
Corresponding Authors: Paul W. AYERS,Mel LEVY     E-mail: ayers@mcmaster.ca;mlevy@tulane.edu
Cite this article:

Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201711071     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I6/625

1 Hohenberg P. ; Kohn W. Phys. Rev. 1964, 136, B864.
2 Parr R. G. ; Yang W. Density-Functional Theory of Atoms and Molecules Oxford UP: New York, NY, USA, 1989.
3 Kohn W. ; Becke A. D. ; Parr R. G. J. Phys. Chem. 1996, 100, 12974.
4 Kohn W. Rev. Mod. Phys. 1999, 71, 1253.
5 Levy M. Proc. Natl. Acad. Sci. USA 1979, 76, 6062.
6 Levy M. ; Perdew J. P. The Constrained Search Formulation of Density Functional Theory. In Density Functional Methods in Physics, NATO ASI Series (Series B: Physics), Vol. 123; Dreizler, R. M., da Providência, J. Eds. Springer: Boston, MA, USA.
7 Perdew J. P. ; Levy M. Phys. Rev. B 1985, 31, 6264.
8 Gorling A. Phys. Rev. A 1996, 54, 3912.
9 Gorling A. Phys. Rev. A 1999, 59, 3359.
10 Levy M. In On Time-Independent Density-Functional Theories for Excited States, Proceedings of the 1st International Workshop Electron Correlation and Material Properties 1999, 299- 308.
11 Levy M. ; Nagy A. Phys. Rev. Lett. 1999, 83, 4361.
12 Levy M. ; Nagy A. Phys. Rev. A 1999, 59, 1687.
13 Nagy A. ; Levy M. Phys. Rev. A 2001, 63, 052502.
14 Nagy A. ; Levy M. Ayers P. W. Time-Independent Theory for a Single Excited State. In Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed. Taylor and Francis: Boca Raton, FL, USA, 2009, 121.
15 Ayers P. W. ; Levy M. Phys. Rev. A 2009, 80, 012508.
16 Ayers P. W. ; Nagy A. ; Levy M. Phys. Rev. A 2012, 85, 042518.
17 Ayers P. W. ; Levy M. ; Nagy A. J. Chem. Phys. 2015, 143 (19), 4.
18 Evangelista F. A. ; Shushkov P. ; Tully J. C. J. Phys. Chem. A 2013, 117 (32), 7378.
19 Glushkov V. N. ; Assfeld X. J. Chem. Phys. 2010, 132, 204106.
20 Glushkov V. N. ; Levy M. J. Chem. Phys. 2007, 126, 174106.
21 Miranda-Quintana R. A. ; Gonzalez M. M. Int. J. Quantum Chem. 2013, 113 (22), 2478.
22 Ayers P. W. Variational Principles for Understanding Chemical Reactions. Ph.D. Dissertation University of North Carolina: Chapel Hill, NV, USA, 2001.
23 Perdew J. P. ; Parr R. G. ; Levy M. ; Balduz J. L. , Jr. Phys. Rev. Lett. 1982, 49, 1691.
24 Zhang Y. K. ; Yang W. T. Theor. Chem. Acc. 2000, 103, 346.
25 Yang W. T. ; Zhang Y. K. ; Ayers P. W. Phys. Rev. Lett. 2000, 84, 5172.
26 Ayers P. W. J. Math. Chem. 2008, 43, 285.
27 Liu S. B. Acta Phys. -Chim. Sin. 2009, 25, 590.
28 Ayers P. W. ; Anderson J. S. M. ; Bartolotti L. J. Int. J. Quantum Chem. 2005, 101, 520.
29 Johnson P. A. ; Bartolotti L. J. ; Ayers P. W. ; Fievez T. ; Geerlings P. Charge Density and Chemical Reactivity: A Unified View from Conceptual DFT. In Modern Charge Density Analysis; Gatti, C., Macchi, P. Eds. Springer: New York, NY, USA, 2012, 715- 764.
30 De Proft F. ; Geerlings P. ; Ayers P. W. The conceptual Density Functional Theory Perspective of Bonding. In The Chemical Bond: Fundamental Aspects of Chemical Bonding; Shaik, S., Frenking, G., Eds. Wiley: Darmstadt, Germany, 2014, 1, 233- 270.
31 Gazquez J. L. J. Mex. Chem. Soc. 2008, 52, 3.
32 Geerlings P. ; De Proft F. ; Langenaeker W. Chem. Rev. 2003, 103, 1793.
33 Heidar-Zadeh F. ; Miranda-Quintana R. A. ; Verstraelen T. ; Bultinck P. ; Ayers P. W. J. Chem. Theory Comp. 2016, 12 (12), 5777.
34 Heidar-Zadeh F. ; Richer M. ; Fias S. ; Miranda-Quintana R. A. ; Chan M. ; Franco-Perez M. ; Gonzalez-Espinoza C. E. ; Kim T. D. ; Lanssens C. ; Patel A. H. G., et al. Chem. Phys. Lett. 2016, 660, 307.
35 Liu S. B. ; Schauer C. K. ; Pedersen L. G. J. Chem. Phys. 2009, 131, 164107.
36 Ayers P. W. ; Parr R. G. ; Pearson R. G. J. Chem. Phys. 2006, 124, 194107.
37 Chattaraj P. K. ; Ayers P. W. ; Melin J. Phys. Chem. Chem. Phys. 2007, 9, 3853.
38 Ayers P. W. Faraday Discuss. 2007, 135, 161.
39 Chattaraj P. K. ; Ayers P. W. J. Chem. Phys. 2005, 123, 086101.
40 Kutzelnigg W. J. Chem. Phys. 1985, 82 (9), 4166.
41 Kutzelnigg W. ; Koch S. J. Chem. Phys. 1983, 79 (9), 4315.
42 Kutzelnigg W. J. Chem. Phys. 1982, 77 (6), 3081.
43 Kutzelnigg W. Quantum chemistry In Fock Space. In Aspects of Many-Body Effects in Molecules and Extended Systems; Mukherjee, D., Ed., Springer-Verlag: Berlin, Germany, 1989, 35- 68.
44 Kutzelnigg W. J. Chem. Phys. 1984, 80 (2), 822.
45 Stone M. H. Linear Transformations in Hilbert Space American Mathematical Society: New York, NY, USA, 1932, 15
46 Eschrig H. The Fundamentals of Density Functional Theory Eagle: Leipzig, Germany, 2003.
47 Eschrig H. Phys. Rev. B 2010, 82, 205120.
48 Malek A. M. ; Balawender R. arXiv:1310.6918 2013.
49 Malek A. ; Balawender R. J. Chem. Phys. 2015, 142, 054104.
50 Franco-Perez M. ; Ayers P. W. ; Gazquez J. L. Theor. Chem. Acc. 2016, 135 (8), 199.
51 Franco-Perez M. ; Ayers P. W. ; Gazquez J. L. ; Vela A. J. Chem. Phys. 2015, 143 (24), 244117.
52 Franco-Perez M. ; Gazquez J. L. ; Ayers P. W. ; Vela A. J. Chem. Phys. 2015, 143 (15), 154103.
53 Miranda-Quintana R. A. ; Ayers P. W. J. Chem. Phys. 2016, 144 (24), 244112.
54 Bochicchio R. C. ; Miranda-Quintana R. A. ; Rial D. J. Chem. Phys. 2013, 139 (19), 191101.
55 Franco-Perez M. ; Heidar-Zadeh F. ; Ayers P. W. ; Gazquez J. L. ; Vela A. Phys. Chem. Chem. Phys. 2017, 19 (18), 11588.
56 Gyftopoulos E. P. ; Hatsopoulos G. N. Proc. Natl. Acad. Sci. USA 1965, 60, 786.
57 Ayers P. W. ; Yang W. Density Functional Theory. In Computational Medicinal Chemistry for Drug Discovery; Bultinck, P., de Winter, H., Langenaeker, W., Tollenaere, J. P. Eds. Dekker: New York, NY, USA, 2003, 571- 616.
58 Ayers P. W. ; Levy M. Theor. Chem. Acc. 2000, 103, 353.
59 Valone S. M. J. Chem. Phys. 1980, 73, 4653.
[1] Paul GEERLINGS,Frank DE PROFT,Stijn FIAS. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 699-707.
[2] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[3] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[4] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[5] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[6] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[7] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[8] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[9] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[10] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[11] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[12] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[13] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.
[14] Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.
[15] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.