Please wait a minute...
Acta Physico-Chimica Sinca  2018, Vol. 34 Issue (6): 625-630    DOI: 10.3866/PKU.WHXB201711071
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
Levy Constrained Search in Fock Space:An Alternative Approach to Noninteger Electron Number
AYERS Paul W.1, LEVY Mel2,3,4
1 Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada;
2 Department of Physics, North Carolina A & T State University, Greensboro, NC 27411, USA;
3 Department of Chemistry, Duke University, Durham, NC 27708, USA;
4 Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
Download:   PDF(308KB) Export: BibTeX | EndNote (RIS)      


By extending the Levy wavefunction constrained search to Fock Space, one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons. For pure-state v-representable densities, the results are equivalent to what one would obtain with the zero-temperature grand canonical ensemble. In other cases, the wavefunction constrained search in Fock space presents an upper bound to the grand canonical ensemble functional. One advantage of the Fock-space wavefunction constrained search functional over the zero-temperature grand-canonical ensemble constrained search functional is that certain specific excited states (i.e., those that are not ground-state v-representable) are the stationary points of the Fock-space functional. However, a potential disadvantage of the Fock-space constrained search functional is that it is not convex.

Key wordsDensity functional theory      Levy constrained search functional      Fock space      Fractional electron number      Excited-state density functional theory      Universal density functional      Zero temperature grand canonical ensemble      Convexity     
Received: 25 September 2017      Published: 07 November 2017
Corresponding Authors: AYERS Paul W., LEVY Mel     E-mail:;
Cite this article:

AYERS Paul W., LEVY Mel. Levy Constrained Search in Fock Space:An Alternative Approach to Noninteger Electron Number. Acta Physico-Chimica Sinca, 2018, 34(6): 625-630.

URL:     OR

(1) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864. doi: 10.1103/PhysRev.136.B864
(2) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP:New York, NY, USA, 1989.
(3) Kohn, W.; Becke, A. D.; Parr, R. G. J. Phys. Chem. 1996, 100, 12974. doi:10.1021/jp960669l
(4) Kohn, W. Rev. Mod. Phys. 1999, 71, 1253. doi: 10.1103/RevModPhys.71.1253
(5) Levy, M. Proc. Natl. Acad. Sci. USA 1979, 76, 6062. doi: 10.1073/pnas.76.12.6062
(6) Levy, M.; Perdew, J. P. The Constrained Search Formulation ofDensity Functional Theory. In Density Functional Methods in Physics, NATO ASI Series (Series B:Physics), Vol. 123; Dreizler, R.M., da Providência, J. Eds.; Springer:Boston, MA, USA. doi: 10.1007/978-1-4757-0818-9_2
(7) Perdew, J. P.; Levy, M. Phys. Rev. B 1985, 31, 6264. doi: 10.1103/PhysRevB.31.6264
(8) Gorling, A. Phys. Rev. A 1996, 54, 3912. doi: 10.1103/PhysRevA.54.3912
(9) Gorling, A. Phys. Rev. A 1999, 59, 3359. doi: 10.1103/PhysRevA.59.3359
(10) Levy, M. In On Time-Independent Density-Functional Theories for Excited States, Proceedings of the 1st International WorkshopElectron Correlation and Material Properties, 1999;pp. 299-308.
(11) Levy, M.; Nagy, A. Phys. Rev. Lett. 1999, 83, 4361. doi: 10.1103/PhysRevLett.83.4361
(12) Levy, M.; Nagy, A. Phys. Rev. A 1999, 59, 1687. doi: 10.1103/PhysRevA.59.1687
(13) Nagy, A.; Levy, M. Phys. Rev. A 2001, 63, 052502. doi: 10.1103/PhysRevA.63.052502
(14) Nagy, A.; Levy, M.; Ayers, P. W. Time-Independent Theory for aSingle Excited State. In Chemical Reactivity Theory:A Density Functional View; Chattaraj, P. K., Ed.; Taylor and Francis:BocaRaton, FL, USA, 2009; p. 121.
(15) Ayers, P. W.; Levy, M. Phys. Rev. A 2009, 80, 012508. doi: 10.1103/PhysRevA.80.012508
(16) Ayers, P. W.; Nagy, A.; Levy, M. Phys. Rev. A 2012, 85, 042518. doi: 10.1103/PhysRevA.85.042518
(17) Ayers, P. W.; Levy, M.; Nagy, A. J. Chem. Phys. 2015, 143 (19), 4. doi: 10.1063/1.4934963
(18) Evangelista, F. A.; Shushkov, P.; Tully, J. C. J. Phys. Chem. A 2013, 117 (32), 7378. doi:10.1021/jp401323d
(19) Glushkov, V. N.; Assfeld, X. J. Chem. Phys. 2010, 132, 204106. doi: 10.1063/1.3443777
(20) Glushkov, V. N.; Levy, M. J. Chem. Phys. 2007, 126, 174106. doi: 10.1063/1.2733657
(21) Miranda-Quintana, R. A.; Gonzalez, M. M. Int. J. Quantum Chem. 2013, 113 (22), 2478. doi:10.1002/qua.24486
(22) Ayers, P. W. Variational Principles for Understanding ChemicalReactions. Ph.D. Dissertation, University of North Carolina:ChapelHill, NV, USA, 2001.
(23) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett. 1982, 49, 1691. doi:10.1103/PhysRevLett.49.1691
(24) Zhang, Y. K.; Yang, W. T. Theor. Chem. Acc. 2000, 103, 346. doi: 10.1007/s002149900021
(25) Yang, W. T.; Zhang, Y. K.; Ayers, P. W. Phys. Rev. Lett. 2000, 84, 5172. doi:10.1103/PhysRevLett.84.5172
(26) Ayers, P. W. J. Math. Chem. 2008, 43, 285. doi: 10.1007/s10910-006-9195-5
(27) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332
(28) Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi:10.1002/qua.20307
(29) Johnson, P. A.; Bartolotti, L. J.; Ayers, P. W.; Fievez, T.; Geerlings, P. Charge Density and Chemical Reactivity:A Unified View fromConceptual DFT. In Modern Charge Density Analysis; Gatti, C., Macchi, P. Eds.; Springer:New York, NY, USA, 2012; pp. 715-764.
(30) De Proft, F.; Geerlings, P.; Ayers, P. W. The conceptual DensityFunctional Theory Perspective of Bonding. In The Chemical Bond: Fundamental Aspects of Chemical Bonding; Shaik, S., Frenking, G., Eds.; Wiley:Darmstadt, Germany, 2014; Vol. 1, pp. 233-270.
(31) Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.
(32) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi:10.1021/cr990029p
(33) Heidar-Zadeh, F.; Miranda-Quintana, R. A.; Verstraelen, T.; Bultinck, P.; Ayers, P. W. J. Chem. Theory Comp. 2016, 12 (12), 5777. doi:10.1021/acs.jctc.6b00494
(34) Heidar-Zadeh, F.; Richer, M.; Fias, S.; Miranda-Quintana, R. A.; Chan, M.; Franco-Perez, M.; Gonzalez-Espinoza, C. E.; Kim, T. D.; Lanssens, C.; Patel, A. H. G.; et al. Chem. Phys. Lett. 2016, 660, 307. doi: 10.1016/j.cplett.2016.07.039
(35) Liu, S. B.; Schauer, C. K.; Pedersen, L. G. J. Chem. Phys. 2009, 131, 164107. doi:10.1063/1.3251124
(36) Ayers, P. W.; Parr, R. G.; Pearson, R. G. J. Chem. Phys. 2006, 124, 194107. doi:10.1063/1.2196882
(37) Chattaraj, P. K.; Ayers, P. W.; Melin, J. Phys. Chem. Chem. Phys. 2007, 9, 3853. doi:10.1039/b705742c
(38) Ayers, P. W. Faraday Discuss. 2007, 135, 161. doi: 10.1039/b606877d
(39) Chattaraj, P. K.; Ayers, P. W. J. Chem. Phys. 2005, 123, 086101. doi: 10.1063/1.2011395
(40) Kutzelnigg, W. J. Chem. Phys. 1985, 82 (9), 4166. doi: 10.1063/1.448859
(41) Kutzelnigg, W.; Koch, S. J. Chem. Phys. 1983, 79 (9), 4315. doi: 10.1063/1.446313
(42) Kutzelnigg, W. J. Chem. Phys. 1982, 77 (6), 3081. doi: 10.1063/1.444231
(43) Kutzelnigg, W. Quantum chemistry In Fock Space. In Aspects of Many-Body Effects in Molecules and Extended Systems; Mukherjee, D., Ed.; Springer-Verlag:Berlin, Germany, 1989; pp. 35-68.
(44) Kutzelnigg, W. J. Chem. Phys. 1984, 80 (2), 822. doi: 10.1063/1.446736
(45) Stone, M. H. Linear Transformations in Hilbert Space; AmericanMathematical Society:New York, NY, USA, 1932; Vol. 15.
(46) Eschrig, H. The Fundamentals of Density Functional Theory. Eagle:Leipzig, Germany, 2003.
(47) Eschrig, H. Phys. Rev. B 2010, 82, 205120. doi: 10.1103/PhysRevB.82.205120
(48) Malek, A. M.; Balawender, R. arXiv:1310.6918 2013.
(49) Malek, A.; Balawender, R. J. Chem. Phys. 2015, 142. 054104. doi: 10.1063/1.4906555
(50) Franco-Perez, M.; Ayers, P. W.; Gazquez, J. L. Theor. Chem. Acc. 2016, 135 (8), 199. doi:10.1007/s00214-016-1961-2
(51) Franco-Perez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143 (24), 244117. doi:10.1063/1.4938422
(52) Franco-Perez, M.; Gazquez, J. L.; Ayers, P. W.; Vela, A. J. Chem. Phys. 2015, 143 (15), 154103. doi:10.1063/1.4932539
(53) Miranda-Quintana, R. A.; Ayers, P. W. J. Chem. Phys. 2016, 144(24), 244112. doi:10.1063/1.4953557
(54) Bochicchio, R. C.; Miranda-Quintana, R. A.; Rial, D. J. Chem. Phys. 2013, 139 (19), 191101. doi:10.1063/1.4832495
(55) Franco-Perez, M.; Heidar-Zadeh, F.; Ayers, P. W.; Gazquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19 (18), 11588. doi:10.1039/c7cp00224f
(56) Gyftopoulos, E. P.; Hatsopoulos, G. N. Proc. Natl. Acad. Sci. USA 1965, 60, 786.
(57) Ayers, P. W.; Yang, W. Density Functional Theory. InComputational Medicinal Chemistry for Drug Discovery; Bultinck, P., de Winter, H., Langenaeker, W., Tollenaere, J. P. Eds.; Dekker:New York, NY, USA, 2003; pp. 571-616.
(58) Ayers, P. W.; Levy, M. Theor. Chem. Acc. 2000, 103, 353. doi: 10.1007/s002149900093
(59) Valone, S. M. J. Chem. Phys. 1980, 73, 4653. doi:10.1063/1.440656

[1] GEERLINGS Paul, DE PROFT Frank, FIAS Stijn. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 699-707.
[2] GONZáLEZ Marco Martínez, CáRDENAS Carlos, RODRíGUEZ Juan I., LIU Shubin, HEIDAR-ZADEH Farnaz, MIRANDA-QUINTANA Ramón Alain, AYERS Paul W.. Quantitative Electrophilicity Measures[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 662-674.
[3] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 503-513.
[4] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 514-518.
[5] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 256-262.
[6] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 263-269.
[7] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 303-313.
[8] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 270-277.
[9] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[10] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1803-1810.
[11] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1310-1323.
[12] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1171-1180.
[13] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1043-1050.
[14] Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1010-1016.
[15] Ling-Ling LI,Ren CHEN,Jian DAI,Ye SUN,Zuo-Liang ZHANG,Xiao-Liang LI,Xiao-Wa NIE,Chun-Shan SONG,Xin-Wen GUO. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 769-779.