Please wait a minute...
Acta Phys. -Chim. Sin.
Special Issue: Toward_Atomically_Precise_Nanoclusters_and_Nanoparticles
Accepted manuscript     
[Ag25(SC6H4Pri)18(dppp)6](CF3SO3)7·CH3CN (HSC6H4Pri =4-t-isopropylthiophenol, and dppp=1,3-bis(diphenyphosphino)propane) Cluster Containing a Sandwich-like Skeleton: Structural Characterization and Optical Properties
XIE An1, WANG Zhi2, WU Qiaoyu3, CHENG Liping2,3, LUO Genggeng3, SUN Di2
1 Key Laboratory of Functional Materials and Applications of Fujian Province, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, Fujian Province, P. R. China;
2 Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China;
3 College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, Fujian Province, P. R. China
Download:   PDF(556KB) Export: BibTeX | EndNote (RIS)       Supporting Info


Crystalline silver cluster compounds are highly interesting owing to their intriguing structure and potential technological application in luminescence, semiconductivity, and as precursors for nonlinear optical materials. Typically, the synthesis of silver clusters involves the use of protecting ligands such as thiolates, phosphines, and alkynes, which have been found to be critical for cluster size and shape tuning. Among these nanoclusters, pentacosanuclear silver clusters (Ag25) have only been reported with either thiolate ligands or phosphine ligands, while those bearing mixed protecting ligands are rather rare. In the course of our exploration of novel silver clusters, a new silver thiolate precursor (iPrC6H4SAg)n was used to construct nanosized silver clusters. In the presence of 1,3-bis(diphenyphosphino)propane (dppp) and CF3SO3Ag, the pentacosanuclear silver cluster[Ag25(SC6H4Pri)18(dppp)6](CF3SO3)7·CH3CN (designated as Ag25, HSC6H4Pri=4-t-isopropylthiophenol) ligated both by thiolate and phosphine ligands was obtained under ultrasonic reaction conditions. Yellow block crystals were isolated from the solution, whose molecular structure was elucidated by single-crystal X-ray analysis. The skeleton of the Ag25 cluster comprises a sandwich-like motif containing two structurally very similar cylinders sharing a metal-cluster plane. The core of each cylinder presents the overall shape of a twisted hexagonal cylinder made of two connected Ag3S3 units, with six sulfur atoms and six silver atoms alternating on a puckered drum-like surface. The metal-cluster plane contains one type of pure-Ag tetragons showing significant Ag…Ag argentophilic interactions. The optical properties of Ag25 were investigated in the solid state. A band gap of~2.5 eV was estimated for Ag25 from the optical absorption spectrum, suggesting this cluster to be a potential wide-gap semiconductor. This Ag25 cluster was also found to emit green luminescence at λ=505 nm and room temperature.

Key wordsSilver cluster      Crystal structure      Optical property      Luminescence      Argentophilicity     
Received: 18 October 2017      Published: 09 November 2017
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (21641011, 21571115, 21701133), the Natural Science Foundation of Fujian Province, China (2015J01053) and the Fujian Key Laboratory of Functional Materials and Applications (fma2017107).

Corresponding Authors: SUN Di, LUO Genggeng     E-mail:;
Cite this article:

XIE An, WANG Zhi, WU Qiaoyu, CHENG Liping, LUO Genggeng, SUN Di. [Ag25(SC6H4Pri)18(dppp)6](CF3SO3)7·CH3CN (HSC6H4Pri =4-t-isopropylthiophenol, and dppp=1,3-bis(diphenyphosphino)propane) Cluster Containing a Sandwich-like Skeleton: Structural Characterization and Optical Properties. Acta Phys. -Chim. Sin., 0, (): 0-0.

URL:     OR

(1) Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Chem. Rev. 2016, 116 (18), 10346. doi:10.1021/acs.chemrev.5b00703
(2) Tominaga, C.; Hikosou, D.; Osakai, I.; Kawasak, H. Acta Phys. -Chim. Sin., 2018, (in press)[Tominaga, C.; Hikosou, D.; Osakai, I.; Kawasak, H. 物理化学学报, 2018, (in press)]doi:10.3866/PKU.WHXB201710271
(3) Luo, G. G.; Su, H. F.; Xiao, A.; Wang, Z.; Zhao, Y.; Wu, Q. Y.; Wu, J. H.; Sun, D.; Zheng, L. S. Chem. Eur. J. 2017, 23, 14420. doi: 10.1002/chem..201703468
(4) Anson, C. E.; Eichhoefer, A.; Issac, I.; Fenske, D.; Fuhr, O.; Sevillano, P.; Persau, C.; Stalke, D.; Zhang, J. T. Angew. Chem. Int. Ed. 2008, 47(7), 1326. doi:10.1002/anie.200704249
(5) Yang, H. Y.; Wang, Y.; Chen, X.; Zhao, X. J.; Gu, L.; Huang, H.Q.; Yan, J. Z.; Xu, C. F.; Li, G.; Wu, J. C.; Edwards, A. J.; Dittrich, B.; Tang, Z. C.; Wang, D. D.; Lehtovaara, L.; Häkkinen, H.; Zheng, N. F. Nat. Commun. 2016, 7, 12809. doi: 10.1038/ncomms12809
(6) Li, X. Y.; Su, H. F.; Zhou, R. Q.; Feng, S.; Tan, Y. Z.; Wang, X.P.; Jia, J.; Kurmoo, M.; Sun, D.; Zheng, L. S. Chem. Eur. J. 2016, 22 (9), 3019. doi:10.1002/chem.201504799
(7) Li, X. Y.; Su, H. F.; Yu, K.; Tan, Y. Z.; Wang, X. P.; Zhao, Y. Q.; Sun, D.; Zheng, L. S. Nanoscale 2015, 7 (18), 8284. doi: 10.1039/c5nr01222h
(8) Xie, Y. P.; Jin, J. L.; Duan, G. X.; Lu, X.; Mak, T. C.W. Coordin. Chem. Rev. 2017, 331, 54. doi:10.1016/j.ccr.2016.10.007
(9) Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. J. Am. Chem. Soc. 2015, 137, 11578. doi:10.1021/jacs.5b07088
(10) Bootharaju, M. S.; Dey, R.; Gevers, L. E.; Hedhili, M. N.; Basset, J. M.; Bakr, O. M. J. Am. Chem. Soc. 2016, 138, 13770. doi: 10.1021/jacs.6b05482
(11) APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, 2008
(12) Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786. doi: 10.1107/S0021889807029238
(13) Sheldrick, G. M. Acta Cryst. 2015, C71, 3. doi: 10.1107/S2053229614024218
(14) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339. doi: 10.1107/S0021889808042726
(15) Spek, A. L. Acta. Cryst. 2009, D65, 148. doi: 10.1107/S090744490804362X
(16) Schmidbaur, H.; Schier, A. Angew. Chem. Int. Ed. 2015, 54, 746. doi: 10.1002/anie.201405936
(17) Yam, V. W. W.; Au, V. K. M.; Leung, S. Y. L. Chem. Rev. 2015, 115(15), 7589. doi:10.1021/acs.chemrev.5b00074

[1] HAN Xue, YANG Jin, LIU Yingying, MA Jianfang. Syntheses and Luminescent Properties of Coordination Polymers Based on 1,2,4-Triazole-Substituted Resorcin[4]arene[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 476-482.
[2] Lei FANG,Mingjun SUN,Xinrui CAO,Zexing CAO. Mechanical and Optical Properties of a Novel Diamond-Like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor: a First-Principles Study[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 296-302.
[3] ZHAO Shun-Sheng, LI Lan-Lan, LIU Xiang-Rong, DING Zuo-Cheng, YANG Zai-Wen. Crystal Structure, Thermal Decomposition and Interaction with CT-DNA of Three 2-Hydroxy-1-naphthaldehyde Acyl Hydrazones[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 356-363.
[4] HUO Jian-Xia, SONG Su-Wei, JIN Cheng-Wei, REN Ning, GENG Li-Na, ZHANG Jian-Jun. Synthesis, Characterization, Thermal Decomposition Mechanism and Properties of the [Eu(4-MOBA)3(terpy)(H2O)]2 Complex[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 901-906.
[5] YUAN Jun-Hui, GAO Bo, WANG Wen, WANG Jia-Fu. First-Principles Calculations of the Electronic Structure and Optical Properties of Y-Cu Co-Doped ZnO[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1302-1308.
[6] MIAO Yan-Qin, GAO Zhi-Xiang, WU Yu-Ling, DU Xiao-Gang, LI Yuan-Hao, LIU Hui-Hui, JIA Hu-Sheng, WANG Hua, LIU Xu-Guang. Antimicrobial Drug Levofloxacin Applied to an Organic Light-Emitting Diode[J]. Acta Phys. -Chim. Sin., 2015, 31(3): 552-558.
[7] ZHU Chang-Li, WANG Wen-Yong, TIAN Dong-Mei, WANG Jiao, QIU Yong-Qing. Second-Order Nonlinear Optical Properties of Bis-Cyclometalated Iridium(Ⅲ) Isocyanide Complexes[J]. Acta Phys. -Chim. Sin., 2015, 31(2): 245-252.
[8] LI Jing, CHEN Li-Zhen, WANG Jian-Long, LAN Guan-Chao, HOU Huan, LI Man. Crystal Structure and Thermal Decomposition Kinetics of Byproduct of Synthesis of RDX: 3,5-Dinitro-1-oxygen-3,5-diazacyclohexane[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2049-2056.
[9] LI Jie, XIONG Ping-Ping, BU Huai-Yu, CHEN San-Ping. Syntheses, Structures, Antifungal Activities and DNACleavage of Transition Metal Coordination Compounds with 4-(1H-1,2,4-triazol-1-ylmethyl) Benzoic Acid[J]. Acta Phys. -Chim. Sin., 2014, 30(7): 1354-1362.
[10] RUAN Lin-Wei, ZHU Yu-Jun, QIU Ling-Guang, LU Yu-Xiang. First-Principles Calculations of Optical and Elastic Properties of Carbon-Doped α-S8[J]. Acta Phys. -Chim. Sin., 2014, 30(5): 845-854.
[11] LIN Xu-Feng, XI Yan-Yan, LIN De-Lian. Controllable Synthesis of ZnxCd1-xS Nanowires with Tunable Optical Properties[J]. Acta Phys. -Chim. Sin., 2014, 30(3): 576-582.
[12] CHEN Lai, CHEN Shi, HU Dao-Zhong, SU Yue-Feng, LI Wei-Kang, WANG Zhao, BAO Li-Ying, WU Feng. Crystal Structure and Electrochemical Performance of Lithium-Rich Cathode Materials xLi2MnO3·(1-x)LiNi0.5Mn0.5O2 (x=0.1-0.8)[J]. Acta Phys. -Chim. Sin., 2014, 30(3): 467-475.
[13] CHENG He-Ping, CHEN Guang-Hua, QIN Rui, DAN Jia-Kun, HUANG Zhi-Meng, PENG Hui, CHEN Tu-Nan, LEI Jiang-Bo. Electronic Structures and Optical Properties of Poly(vinylidene fluoride) Crystals[J]. Acta Phys. -Chim. Sin., 2014, 30(2): 281-288.
[14] LIU Huan, ZANG Na, ZHAO Fang-Yao, LIU Kun, LI Yue, RUAN Wen-Juan. Synthesis and Nonlinear Optical Properties of Porphyrin-Salen Type Homo- and Hetero-Binuclear Metal Complexes[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1801-1809.
[15] YU Hai-Ling, ZHANG Meng-Ying, HONG Bo, CHENG Zhi Qiang, WANG Jiao, TIAN Dong-Mei, QIU Yong-Qing. Nonlinear Optical Properties of Green Fluorescent Protein Chromophore Coupled Diradicals[J]. Acta Phys. -Chim. Sin., 2013, 29(12): 2543-2550.