Please wait a minute...
Acta Phys. -Chim. Sin.
Accepted manuscript     
Effects of Magnesium Modification on the Catalytic Performances of HZSM-5 Zeolite for the Conversion of Ethene to Propene
XU Lulu, ZHAO Zhenchao, ZHAO Rongrong, YU Rui, ZHANG Weiping
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
Download:   PDF(1521KB) Export: BibTeX | EndNote (RIS)      


The ever-increasing demand for propene has driven some new strategies to produce propene, such as propane dehydrogenation, metathesis of ethene and 2-butene, catalytic cracking of C4 alkenes, conversion of methanol and ethanol, and direct conversion of ethene, instead of the conventional naphtha-cracking process. The transformation of ethene to propene (ETP) is of great interest owing to the abundant supply of ethylene from ethane crackers and shale gas recently. HZSM-5 zeolite is an effective ETP catalyst and the acid properties of HZSM-5 significantly affect ethene conversion and propene selectivity. A series of HZSM-5 zeolites modified with different amounts of Mg (0-1.0%) were prepared by an incipient impregnation method. Their structures and acidity were systematically characterized by X-ray diffraction (XRD), N2-adsorption/desorption analysis, 27Al magic-angle spinning nuclear-magnetic-resonance (27Al MAS NMR), 29Si MAS NMR, temperature-programmed desorption of NH3 (NH3-TPD), and Fourier transform infrared (FT-IR) of pyridine adsorption techniques. Their catalytic performances in the direct conversion of ethene to propene using a continuous-flow fixed-bed micro-reactor were evaluated. The effects of reaction conditions and Mg contents were thoroughly investigated. Ethene conversion is found to decrease with increasing reaction temperature and gaseous hourly space velocity (GHSV) of HZSM-5 zeolite, while the selectivities of propene show the opposite trend. The optimized reaction temperature is 550℃ and GHSV is 3000 h-1 for the maximum propene yield. After Mg modification, ethene conversion decreases, while propene selectivity increases for HZSM-5 with increasing Mg loading under the optimized reaction conditions. HZSM-5 modified with an appropriate amount of 0.5% Mg shows enhanced selectivity of propene exceeding 45%, and the propene yield is maintained above 20%. Moreover, the selectivity of by-product aromatics is less than 8%. 27Al and 29Si MAS NMR results indicate that the introduction of Mg will result in dealumination in HZSM-5. NH3-TPD and pyridine-IR results indicate that the addition of Mg will reduce both the total acid amount and strong Brønsted acid amount and that the proper amount of Mg leads to increase in the amount of medium-strong acid. By-products such as alkanes and aromatics are mainly formed at these strong Brønsted acid sites by oligomerization and hydrogen transfer reactions. Therefore, the introduction of Mg decreases the number of strong Brønsted acid sites and further enhances the selectivity of propene. Temperature-programmed oxidation (TPO) and 13C CP/MAS NMR analysis of the coked catalysts indicate that the addition of Mg not only inhibits coke deposition, but also changes the type of coke. However, excessive Mg modification results in a remarkable reduction of HZSM-5 activity owing to the significant decrease in the number of total acid and strong Brønsted acid sites.

Key wordsHZSM-5 zeolite      Mg modification      Acidity      Propene      ETP reaction     
Received: 12 October 2017      Published: 10 November 2017
MSC2000:  O643.3  

The project was supported by the National Natural Science Foundation of China (21373035, 21673027) and the Fundamental Research Funds for the Central Universities in China (DUT16RC(3)002, DUT17TD04).

Corresponding Authors: ZHANG Weiping     E-mail:
Cite this article:

XU Lulu, ZHAO Zhenchao, ZHAO Rongrong, YU Rui, ZHANG Weiping. Effects of Magnesium Modification on the Catalytic Performances of HZSM-5 Zeolite for the Conversion of Ethene to Propene. Acta Phys. -Chim. Sin., 0, (): 0-0.

URL:     OR

(1) Shi, L.; Wang, D. Q.; Song, W.; Shao, D.; Zhang, W. P.; Lu, A.H. ChemCatChem 2017, 9 (10), 1788. doi: 10.1002/cctc.201700004
(2) Sattler, J. J. H. B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M. Chem. Rev. 2014, 114 (20), 10613. doi: 10.1021/cr5002436
(3) Lu, H. Q.; Shi, L.; He, C.; Weng, W. Z.; Huang, C. J.; Wan, H. L. Acta Phys. -Chim. Sin. 2012, 28 (11), 2697.[鲁怀乾, 石磊, 何冲, 翁维正, 黄传敬, 万惠霖. 物理化学学报, 2012, 28 (11), 2697.]doi:10.3866/PKU.WHXB201207091
(4) Mol, J. C. J. Mol. Catal. A 2004, 213 (1), 39. doi: 10.1016/j.molcata.2003.10.049
(5) Li, X. J.; Zhang, W. P.; Liu, S. L.; Xu, L. Y.; Han, X. W.; Bao, X.H. J. Catal. 2007, 250 (1), 55. doi:10.1016/j.jcat.2007.05.019
(6) Li, X.; Zhang, W. P.; Li, X. J.; Liu, S. L. Prog. Chem. 2008, 20(7/8), 1021.[李新, 张维萍, 李秀杰, 刘盛林, 化学进展, 2008, 20 (7/8), 1021.]
(7) Liu, Z. F. Acta Phys. -Chim. Sin. 2016, 32 (4), 803.[刘忠范. 物理化学学报, 2016, 32 (4), 803.]doi:10.3866/PKU.WHXB2016032801
(8) Xu, S. T.; Zheng, A. M.; Wei, Y. X.; Chen, J. R.; Li, J. Z.; Chu, Y. Y.; Zhang, M. Z.; Wang, Q. Y.; Zhou, Y.; Wang, J. B. Angew. Chem. Int. Ed. 2013, 52 (44), 11564. doi: 10.1002/anie.201303586
(9) Wu, X. Q.; Xu, S. T.; Zhang, W. N.; Huang, J. D.; Li, J. Z.; Yu, B. W.; Wei Y. X.; Liu, Z. M. Angew. Chem. Int. Ed. 2017, 56(31), 9039. doi:10.1002/anie.201703902
(10) Tian, P.; Wei, Y.; Ye, M.; Liu, Z. ACS Catal. 2015, 5 (3), 1922. doi: 10.1021/acscatal.5b00007
(11) Hu, S.; Zhang, Q.; Gong, Y. J.; Zhang, Y.; Wu, Z. J.; Dou, T. Acta Phys. -Chim. Sin. 2016, 32 (7), 1785.[胡思, 张卿, 巩雁军, 张瑛, 吴志杰, 窦涛. 物理化学学报. 2016, 32 (7), 1785.]doi:10.3866/PKU.WHXB201604152
(12) Dai, W. L.; Sun, X. M.; Tang, B.; Wu, G. J.; Li, L. D.; Guan, N.J.; Hunger, M. J. Catal. 2014, 314, 10. doi: 10.1016/j.jcat.2014.03.006
(13) Oikawa, H.; Shibata, Y.; Inazu, K.; Iwase, Y.; Murai, K.; Hyodo, S.; Kobayashi, G.; Baba, T. Appl. Catal. A:Gen. 2006, 312, 181. doi:10.1016/j.apcata.2006.06.045
(14) Iwase, Y.; Motokura, K.; Koyama, T. -R.; Miyaji, A.; Baba, T. Phys. Chem. Chem. Phys. 2009, 11 (40), 9268. doi: 10.1039/b911659a
(15) Koyama, T. -R.; Hayashi, Y.; Horie, H.; Kawauchi, S.; Matsumoto, A.; Iwase, Y.; Sakamoto, Y.; Miyaji, A.; Motokura, K.; Baba, T. Phys. Chem. Chem. Phys. 2010, 12 (11), 2541. doi: 10.1039/b921927g
(16) Lin, B. M.; Zhang, Q. H.; Wang, Y. Ind. Eng. Chem. Res. 2009, 48 (24), 10788. doi:10.1021/ie901227p
(17) Follmanna, S.; Ernst, S. New J. Chem. 2016, 40 (5), 4414. doi: 10.1039/C5NJ03668B
(18) Ikeda, K.; Kawamura, Y.; Yamamoto, T.; Iwamoto, M. Catal. Commun. 2008, 9 (1), 106. doi:10.1016/j.catcom.2007.05.032
(19) Alvarado Perea, L.; Wolff, T.; Veit, P.; Hilfert, L.; Edelmann, F.T.; Hamel, C.; Seidel-Morgenstern, A. J. Catal. 2013, 305, 154. doi: 10.1016/j.jcat.2013.05.007
(20) Bleken, F. L.; Chavan, S.; Olsbye, U.; Boltz, M.; Ocampo, F.; Louis, B. Appl. Catal. A:Gen. 2012, 447, 178. doi: 10.1016/j.apcata.2012.09.025
(21) Mao, D. S.; Guo, Q. S.; Meng, T; Acta Phys.-Chim. Sin. 2010, 26 (8), 2242.[毛东森, 郭强胜, 孟涛. 物理化学学报, 2010, 26 (8), 2242.] doi:10.3866/PKU.WHXB20100814
(22) Hu, S.; Zhang, Q.; Xia, Z.; Gong, Y. J.; Xu, J.; Deng, F.; Dou, T. Acta Phys. -Chim. Sin. 2015, 31 (7), 1374.[胡思, 张卿, 夏至, 巩雁军, 徐君, 邓风, 窦涛. 物理化学学报, 2015, 31 (7), 1374.] doi:10.3866/PKU.WHXB201504302
(23) Lehmann, T.; Wolff, T.; Zahn, V. M.; Veit, P.; Hamel, C.; Seidel-Morgenstern, A. Catal. Commun. 2011, 12 (5), 368. doi: 10.1016/j.catcom.2010.10.018
(24) Iwase, Y.; Sakamoto, Y.; Shiga, A.; Miyaji, A.; Motokura, K.; Koyama, T. -R.; Baba, T. J. Phys. Chem. C 2012, 116 (8), 5182. doi: 10.1021/jp212549j
(25) Tanaka, M.; Itadani, A.; Kuroda, Y.; Iwamoto, M. J. Phys. Chem. C 2012, 116 (9), 5664. doi:10.1021/jp2103066
(26) Zhang, W. P.; Bao, X. H.; Guo, X. W.; Wang, X. S. Catal. Lett.1999, 60 (1/2), 89. doi:A:1019061714047
(27) Zhang, W. P.; Xu, S. T.; Han, X. W.; Bao, X. H. Chem. Soc. Rev.2012, 41, 192. doi:10.1039/c1cs15009j
(28) Mao, D. S.; Yang, W. M.; Xia, J. C.; Zhang, B.; Song, Q. Y.; Chen, Q. L. J. Catal. 2005, 230 (1), 140. doi: 10.1016/j.jcat.2004.12.007
(29) Bai, J.; Liu, S. L.; Xie, S. J.; Xu, L. Y.; Lin, L. W. Chin. J. Catal. 2004, 25 (1), 70.[白杰, 刘盛林, 谢素娟, 徐龙伢, 林励吾.催化学报, 2004, 25 (1), 70.]
(30) Topsoe, N. Y.; Pedersen, K.; Derouane, E. G. J. Catal. 1981, 70(1), 41. doi:10.1016/0021-9517(81)90315-8
(31) Emeis, C. A. J. Catal. 1993, 141 (2), 347. doi: 10.1006/jcat.1993.1145
(32) Ma, D.; Shu, Y. Y.; Cheng, M. J.; Xu, Y. D.; Bao, X. H. J. Catal. 2000, 194 (1), 105. doi:10.1006/jcat.2000.2908
(33) Li, X. J.; Zhang, W. P.; Li, X.; Liu, S. L.; Huang, H. J.; Han, X.W.; Xu, L. Y.; Bao, X. H. J. Phys. Chem. C 2009, 113 (19), 8228. doi:10.1021/jp901103e
(34) Bonardet, J. L.; Barrage, M. C.; Fraissard, J. J. Mol. Catal. A: Chem. 1995, 96 (2), 123. doi:10.1016/1381-1169(94)00030-1

[1] ZHENG Jiang-Bo, CHEN Zhi-Ming, HU Zhi-Cheng, ZHANG Jie, HUANG Fei. Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymers Based on Difluorobenzothiadiazole and 2, 3-Bis[thiophen-2-yl]acrylonitrile[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1635-1643.
[2] HU Yi-Hao, SONG Tong-Yang, WANG Yue-Juan, HU Geng-Sheng, XIE Guan-Qun, LUO Meng-Fei. Gas Phase Dehydrochlorination of 1,1,2-Trichloroethane over Zn/SiO2 Catalysts: Acidity and Deactivation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1017-1026.
[3] LIU Ning-Liang, SHEN Huan. Multiphoton Dissociation and Ionization Dynamics of Allyl Chloride Using Femtosecond Laser Pulses[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 500-505.
[4] LAN Hai, XIAO Xi, YUAN Shan-Liang, ZHANG Biao, ZHOU Gui-Lin, JIANG Yi. MoFeOx-Supported Catalysts for the Catalytic Conversion of Glycerol to Allyl Alcohol without External Hydrogen Donors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2301-2309.
[5] HU Si, ZHANG Qing, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1785-1794.
[6] WU Wei, LIU Dan-Dan, XU Zhi-Cheng, GONG Qing-Tao, HUANG Jian-Bin, ZHANG Lei, ZHANG Lu. Adsorption and Wettability of Branched Betaine and Cationic Surfactants on a Poly(methyl methacrylate) Surface[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1214-1220.
[7] BIAN Gao-Feng, HUANG Hua, ZHAN Ling-Ling, Lü Xiao-Jing, CAO Feng, ZHANG Cheng, ZHANG Yu-Jian. Reversible Piezochromism and Protonation Stimuli-Response of (Z)-2-Cyano-3-(3,4-dimethoxyphenyl)acrylamide[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 589-594.
[8] HUANG Wei-Xin, QIAN Kun, WU Zong-Fang, CHEN Shi-Long. Structure-Sensitivity of Au Catalysis[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 48-60.
[9] LU Ye-Chang, LI Wen-Hong, ZHANG Yong-Qiang, LI Xue-Feng, DONG Jin-Feng. In-situ Viscosity of Hydrolyzed Polyacrylamides and Surfactant Worm-Like Micelle Solutions in Microscale Capillaries[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 365-372.
[10] LI Cui-Can, ZHANG Meng-Xiao, HUA Wei-Ming, YUE Ying-Hong, GAO Zi. Effect of the Carbon Precursor on the Design of Perfluorosulfonic Acid Functionalized Carbon Catalysts[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1747-1752.
[11] HU Si, ZHANG Qing, YIN Qi, ZHANG Ya-Fei, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1374-1382.
[12] PAN Wen-Ya, HUANG Liang, QIN Feng, ZHUANG Yan, LI Xue-Mei, MA Jian-Xue, SHEN Wei, XU Hua-Long. Regulation of Pore Structure and Acidity of a ZSM-5 Catalyst for Dehydration of Glycerol to Acrolein[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 965-972.
[13] LIU Na, ZHANG Hui, XUE Nian-Hua, DING Wei-Ping. Influence of Tungsten Loadings on the 1-Butene Metathesis Reaction over W/SiO2/Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 933-940.
[14] ZHANG Chang, QIN Yu-Cai, GAO Xiong-Hou, ZHANG Hai-Tao, MO Zhou-Sheng, CHU Chun-Yu, ZHANG Xiao-Tong, SONG Li-Juan. Modulation of the Acidity and Catalytic Conversion Properties of Y Zeolites Modified by Cerium Cations[J]. Acta Phys. -Chim. Sin., 2015, 31(2): 344-352.
[15] ZHANG Lan-Lan, SONG Yu, LI Guo-Dong, ZHANG Shao-Long, SHANG Yun-Shan, GONG Yan-Jun. ZSM-5 Zeolite with Micro-Mesoporous Structures Synthesized Using Different Templates for Methanol to Propylene Reaction[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2139-2150.