Please wait a minute...
Acta Phys. -Chim. Sin.  2019, Vol. 35 Issue (1): 92-100    DOI: 10.3866/PKU.WHXB201711101
ARTICLE     
Effects of Magnesium Modification on the Catalytic Performances of HZSM-5 Zeolite for the Conversion of Ethene to Propene
Lulu XU,Zhenchao ZHAO,Rongrong ZHAO,Rui YU,Weiping ZHANG*()
Download: HTML     PDF(1352KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The ever-increasing demand for propene has driven some new strategies to produce propene, such as propane dehydrogenation, metathesis of ethene and 2-butene, catalytic cracking of C4 alkenes, conversion of methanol and ethanol, and direct conversion of ethene, instead of the conventional naphtha-cracking process. The transformation of ethene to propene (ETP) is of great interest owing to the abundant supply of ethylene from ethane crackers and shale gas recently. HZSM-5 zeolite is an effective ETP catalyst and the acid properties of HZSM-5 significantly affect ethene conversion and propene selectivity. A series of HZSM-5 zeolites modified with different amounts of Mg (0–1.0%) were prepared by an incipient impregnation method. Their structures and acidity were systematically characterized by X-ray diffraction (XRD), N2–adsorption/desorption analysis, 27Al magic-angle spinning nuclear-magnetic-resonance (27Al MAS NMR), 29Si MAS NMR, temperature-programmed desorption of NH3 (NH3-TPD), and Fourier transform infrared (FT-IR) of pyridine adsorption techniques. Their catalytic performances in the direct conversion of ethene to propene using a continuous-flow fixed-bed micro-reactor were evaluated. The effects of reaction conditions and Mg contents were thoroughly investigated. Ethene conversion is found to decrease with increasing reaction temperature and gaseous hourly space velocity (GHSV) of HZSM-5 zeolite, while the selectivities of propene show the opposite trend. The optimized reaction temperature is 550 ℃ and GHSV is 3000 h-1 for the maximum propene yield. After Mg modification, ethene conversion decreases, while propene selectivity increases for HZSM-5 with increasing Mg loading under the optimized reaction conditions. HZSM-5 modified with an appropriate amount of 0.5% Mg shows enhanced selectivity of propene exceeding 45%, and the propene yield is maintained above 20%. Moreover, the selectivity of by-product aromatics is less than 8%. 27Al and 29Si MAS NMR results indicate that the introduction of Mg will result in dealumination in HZSM-5. NH3-TPD and pyridine-IR results indicate that the addition of Mg will reduce both the total acid amount and strong Brønsted acid amount and that the proper amount of Mg leads to increase in the amount of medium-strong acid. By-products such as alkanes and aromatics are mainly formed at these strong Brønsted acid sites by oligomerization and hydrogen transfer reactions. Therefore, the introduction of Mg decreases the number of strong Brønsted acid sites and further enhances the selectivity of propene. Temperature-programmed oxidation (TPO) and 13C CP/MAS NMR analysis of the coked catalysts indicate that the addition of Mg not only inhibits coke deposition, but also changes the type of coke. However, excessive Mg modification results in a remarkable reduction of HZSM-5 activity owing to the significant decrease in the number of total acid and strong Brønsted acid sites.



Key wordsHZSM-5 zeolite      Mg modification      Acidity      Propene      ETP reaction     
Received: 12 October 2017      Published: 10 November 2017
MSC2000:  O643.3  
Fund:  the National Natural Science Foundation of China(21373035);the National Natural Science Foundation of China(21673027);the Fundamental Research Funds for the Central Universities in China(DUT16RC(3)002);the Fundamental Research Funds for the Central Universities in China(DUT17TD04)
Corresponding Authors: Weiping ZHANG     E-mail: wpzhang@dlut.edu.cn
Cite this article:

Lulu XU,Zhenchao ZHAO,Rongrong ZHAO,Rui YU,Weiping ZHANG. Effects of Magnesium Modification on the Catalytic Performances of HZSM-5 Zeolite for the Conversion of Ethene to Propene. Acta Phys. -Chim. Sin., 2019, 35(1): 92-100.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201711101     OR     http://www.whxb.pku.edu.cn/Y2019/V35/I1/92

Fig 1 XRD patterns of HZSM-5 zeolites modified with different Mg contents.
Sample Relative crystallinity/% SBET/(m2·g-1) Vpore/(cm3·g-1) Si/Al ratio b SiOH content/% c
total external a
HZSM-5 100 374 98 0.18 24 2.6
MgZ-0.2 91 356 94 0.18 30 3.8
MgZ-0.5 81 349 85 0.21 34 5.3
MgZ-1 72 345 71 0.20 40 6.1
Table 1 The relative crystallinitines, surface areas, pore volumes, Si/Al ratios and SiOH amounts of HZSM-5 zeolites modified by different Mg contents.
Fig 2 27Al MAS NMR spectra of HZSM-5 zeolites modified with different Mg contents.
Fig 3 29Si MAS NMR and quantitatively deconvoluted spectra of HZSM-5 zeolites modified with different Mg contents.
Fig 4 NH3-TPD profiles of HZSM-5 zeolites modified with different Mg contents.
Sample Total acid amount/(mmol·g-1) a Quantity of acid sites/(mmol·g-1) a Brønsted acid sites/(mmol·g-1) b Lewis acid sites/(mmol·g-1) b NB/NL b
strong middle weak 150 ℃ 300 ℃ 150 ℃ 300 ℃ 150 ℃ 300 ℃
HZSM-5 0.57 0.37 0.04 0.16 0.39 0.16 0.15 0.04 2.6 4.0
MgZ-0.2 0.51 0.25 0.11 0.15 0.33 0.14 0.30 0.08 1.1 1.8
MgZ-0.5 0.41 0.15 0.11 0.15 0.29 0.08 0.29 0.07 1.0 1.1
MgZ-1 0.35 0.12 0.09 0.14 0.20 0.04 0.24 0.06 0.8 0.7
Table 2 Acidity variations of HZSM-5 zeolites modified with different Mg contents.
Fig 5 Pyridine-IR spectra of pyridine adsorbed on the HZSM-5 zeolites modified with different Mg contents after desorption at 300 ℃.
Temperature/℃ C2H4 conversion/% Product selectivity/% C3H6 yield/%
C3H6 C4H8 C1–C4 alkane C5+ aromatics
450 94 9 24 29 21 17 8
500 89 13 16 30 21 20 12
550 81 18 5 32 23 22 15
600 36 39 9 15 22 15 14
Table 3 Catalytic performances of HZSM-5 zeolite for ETP at different temperatures.
GHSV/h-1 C2H4 conversion/% Product selectivity/% C3H6 yield/%
C3H6 C4H8 C1–C4 alkane C5+ aromatics
1400 81 18 5 32 23 22 15
3000 61 39 10 21 17 13 24
3600 56 39 12 20 17 12 22
Table 4 Catalytic performances of HZSM-5 zeolite for ETP at different GHSVs.
Fig 6 Catalytic performances of HZSM-5 zeolites modified with different Mg contents for ETP reaction.
Fig 7 TPO curves of coked Mg/HZSM-5 catalysts after reaction. (a) HZSM-5, (b) MgZ-0.2, (c) MgZ-0.5, (d) MgZ-1.
Fig 8 13C CP/MAS NMR spectra of coked Mg/HZSM-5 catalysts after reaction. * denotes the spinning sidebands.
1 Shi L. ; Wang D. Q. ; Song W. ; Shao D. ; Zhang W. P. ; Lu A. H. ChemCatChem 2017, 9 (10), 1788.
2 Sattler J. J. H. B. ; Ruiz-Martinez J. ; Santillan-Jimenez E. ; Weckhuysen B. M. Chem. Rev. 2014, 114 (20), 10613.
3 Lu H. Q. ; Shi L. ; He C. ; Weng W. Z. ; Huang C. J. ; Wan H. L. Acta Phys. -Chim. Sin. 2012, 28 (11), 2697.
3 鲁怀乾; 石磊; 何冲; 翁维正; 黄传敬; 万惠霖. 物理化学学报, 2012, 28 (11), 2697.
4 Mol J. C. J. Mol. Catal. A 2004, 213 (1), 39.
5 Li X. J. ; Zhang W. P. ; Liu S. L. ; Xu L. Y. ; Han X. W. ; Bao X. H. J. Catal. 2007, 250 (1), 55.
6 Li X. ; Zhang W. P. ; Li X. J. ; Liu S. L. Prog. Chem. 2008, 20 (7/8), 1021.
6 李新; 张维萍; 李秀杰; 刘盛林. 化学进展, 2008, 20 (7/8), 1021.
7 Liu Z. F. Acta Phys. -Chim. Sin. 2016, 32 (4), 803.
7 刘忠范. 物理化学学报, 2016, 32 (4), 803.
8 Xu S. T. ; Zheng A. M. ; Wei Y. X. ; Chen J. R. ; Li J. Z. ; Chu Y. Y. ; Zhang M. Z. ; Wang Q. Y. ; Zhou Y. ; Wang J. B. Angew. Chem. Int. Ed. 2013, 52 (44), 11564.
9 Wu X. Q. ; Xu S. T. ; Zhang W. N. ; Huang J. D. ; Li J. Z. ; Yu B. W. ; Wei Y. X. ; Liu Z. M. Angew. Chem. Int. Ed. 2017, 56 (31), 9039.
10 Tian P. ; Wei Y. ; Ye M. ; Liu Z. ACS Catal. 2015, 5 (3), 1922.
11 Hu S. ; Zhang Q. ; Gong Y. J. ; Zhang Y. ; Wu Z. J. ; Dou T. Acta Phys. -Chim. Sin. 2016, 32 (7), 1785.
11 胡思; 张卿; 巩雁军; 张瑛; 吴志杰; 窦涛. 物理化学学报, 2016, 32 (7), 1785.
12 Dai W. L. ; Sun X. M. ; Tang B. ; Wu G. J. ; Li L. D. ; Guan N. J. ; Hunger M. J. Catal. 2014, 314, 10.
13 Oikawa H. ; Shibata Y. ; Inazu K. ; Iwase Y. ; Murai K. ; Hyodo S. ; Kobayashi G. ; Baba T. Appl. Catal. A: Gen. 2006, 312, 181.
14 Iwase Y. ; Motokura K. ; Koyama T.-R. ; Miyaji A. ; Baba T. Phys. Chem. Chem. Phys. 2009, 11 (40), 9268.
15 Koyama T.-R. ; Hayashi Y. ; Horie H. ; Kawauchi S. ; Matsumoto A. ; Iwase Y. ; Sakamoto Y. ; Miyaji A. ; Motokura K. ; Baba T. Phys. Chem. Chem. Phys. 2010, 12 (11), 2541.
16 Lin B. M. ; Zhang Q. H. ; Wang Y. Ind. Eng. Chem. Res. 2009, 48 (24), 10788.
17 Follmanna S. ; Ernst S. New J. Chem. 2016, 40 (5), 4414.
18 Ikeda K. ; Kawamura Y. ; Yamamoto T. ; Iwamoto M. Catal. Commun. 2008, 9 (1), 106.
19 Alvarado Perea L. ; Wolff T. ; Veit P. ; Hilfert L. ; Edelmann F. T. ; Hamel C. ; Seidel-Morgenstern A. J. Catal. 2013, 305, 154.
20 Bleken F. L. ; Chavan S. ; Olsbye U. ; Boltz M. ; Ocampo F. ; Louis B. Appl. Catal. A: Gen. 2012, 447, 178.
21 Mao D. S. ; Guo Q. S. ; Meng T Acta Phys.-Chim. Sin. 2010, 26 (8), 2242.
21 毛东森; 郭强胜; 孟涛. 物理化学学报, 2010, 26 (8), 2242.
22 Hu S. ; Zhang Q. ; Xia Z. ; Gong Y. J. ; Xu J. ; Deng F. ; Dou T. Acta Phys. -Chim. Sin. 2015, 31 (7), 1374.
22 胡思; 张卿; 夏至; 巩雁军; 徐君; 邓风; 窦涛. 物理化学学报, 2015, 31 (7), 1374.
23 Lehmann T. ; Wolff T. ; Zahn V. M. ; Veit P. ; Hamel C. ; Seidel-Morgenstern A. Catal. Commun. 2011, 12 (5), 368.
24 Iwase Y. ; Sakamoto Y. ; Shiga A. ; Miyaji A. ; Motokura K. ; Koyama T.-R. ; Baba T. J. Phys. Chem. C 2012, 116 (8), 5182.
25 Tanaka M. ; Itadani A. ; Kuroda Y. ; Iwamoto M. J. Phys. Chem. C 2012, 116 (9), 5664.
26 Zhang W. P. ; Bao X. H. ; Guo X. W. ; Wang X. S. Catal. Lett. 1999, 60 (1/2), 89.
27 Zhang W. P. ; Xu S. T. ; Han X. W. ; Bao X. H. Chem. Soc. Rev. 2012, 41, 192.
28 Mao D. S. ; Yang W. M. ; Xia J. C. ; Zhang B. ; Song Q. Y. ; Chen Q. L. J. Catal. 2005, 230 (1), 140.
29 Bai J. ; Liu S. L. ; Xie S. J. ; Xu L. Y. ; Lin L. W. Chin. J. Catal. 2004, 25 (1), 70.
29 白杰; 刘盛林; 谢素娟; 徐龙伢; 林励吾. 催化学报, 2004, 25 (1), 70.
30 Topsoe N. Y. ; Pedersen K. ; Derouane E. G. J. Catal. 1981, 70 (1), 41.
31 Emeis C. A. J. Catal. 1993, 141 (2), 347.
32 Ma D. ; Shu Y. Y. ; Cheng M. J. ; Xu Y. D. ; Bao X. H. J. Catal. 2000, 194 (1), 105.
33 Li X. J. ; Zhang W. P. ; Li X. ; Liu S. L. ; Huang H. J. ; Han X. W. ; Xu L. Y. ; Bao X. H. J. Phys. Chem. C 2009, 113 (19), 8228.
34 Bonardet J. L. ; Barrage M. C. ; Fraissard J. J. Mol. Catal. A: Chem. 1995, 96 (2), 123.
[1] Zhou-Sheng MO,Yu-Cai QIN,Xiao-Tong ZHANG,Lin-Hai DUAN,Li-Juan SONG. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[2] Yi-Hao HU,Tong-Yang SONG,Yue-Juan WANG,Geng-Sheng HU,Guan-Qun XIE,Meng-Fei LUO. Gas Phase Dehydrochlorination of 1, 1, 2-Trichloroethane over Zn/SiO2 Catalysts: Acidity and Deactivation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1017-1026.
[3] Shen-Hui LI,Jing LI,An-Min ZHENG,Feng DENG. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 270-282.
[4] Cui-Can. LI,Meng-Xiao. ZHANG,Wei-Ming. HUA,Ying-Hong. YUE,Zi. GAO. Effect of the Carbon Precursor on the Design of Perfluorosulfonic Acid Functionalized Carbon Catalysts[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1747-1752.
[5] HU Si, ZHANG Qing, YIN Qi, ZHANG Ya-Fei, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1374-1382.
[6] PAN Wen-Ya, HUANG Liang, QIN Feng, ZHUANG Yan, LI Xue-Mei, MA Jian-Xue, SHEN Wei, XU Hua-Long. Regulation of Pore Structure and Acidity of a ZSM-5 Catalyst for Dehydration of Glycerol to Acrolein[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 965-972.
[7] ZHANG Chang, QIN Yu-Cai, GAO Xiong-Hou, ZHANG Hai-Tao, MO Zhou-Sheng, CHU Chun-Yu, ZHANG Xiao-Tong, SONG Li-Juan. Modulation of the Acidity and Catalytic Conversion Properties of Y Zeolites Modified by Cerium Cations[J]. Acta Phys. -Chim. Sin., 2015, 31(2): 344-352.
[8] MIAO Hai-Xia, MA Li, MA Jing-Hong, LI Dui-Chun, LI Rui-Feng. Benzylation of Naphthalene over a Mesoporous ZSM-5 Zeolite Microsphere Catalyst[J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1518-1526.
[9] QIN Yu-Cai, GAO Xiong-Hou, DUAN Lin-Hai, FAN Yue-Chao, YU Wen-Guang, ZHANG Hai-Tao, SONG Li-Juan. Effects on Adsorption Desulfurization of CeY Zeolites:Acid Catalysis and Competitive Adsorption[J]. Acta Phys. -Chim. Sin., 2014, 30(3): 544-550.
[10] ZHANG Shao-Long, ZHANG Lan-Lan, WANG Wu-Gang, MIN Yuan-Yuan, MATong, SONG Yu, GONG Yan-Jun, DOU Tao. Methanol to Propylene over Nanosheets of HZSM-5 Zeolite[J]. Acta Phys. -Chim. Sin., 2014, 30(3): 535-543.
[11] ZHANG Xiao-Tong, YU Wen-Guang, QIN Yu-Cai, DONG Shi-Wei, PEI Ting-Ting, WANG Lin, SONG Li-Juan. Influence of Surface Acidity of Y Zeolites on the Adsorption of Organic Molecules by In situ Fourier Transform Infrared Spectroscopy[J]. Acta Phys. -Chim. Sin., 2013, 29(06): 1273-1280.
[12] LIU Liang-Hong, ZHANG Peng-Fei, HUANG Ying. Molecular Acidity of Singly and Doubly Substituted Phenols: Predictions from Density Functional Reactivity Theory and Hammett Constants[J]. Acta Phys. -Chim. Sin., 2013, 29(03): 508-515.
[13] HUANG Ping, PAN Si-Wei, HUANG Bi-Chun, CHENG Hua, YE Dai-Qi, WU Jun-Liang, FU Ming-Li, LU Sheng-Liang. Structural Properties of MnOx/Al-SBA-15 in Low-Temperature Selective Catalytic Reduction of NOx with NH3[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 176-182.
[14] HU Si, ZHANG Qing, XIA Zhi, GONG Yan-Jun, XU Jun, DENG Feng, DOU Tao. Catalytic Conversion of Methanol to Propylene over (NH4)2SiF6-Modified Nanosized HZSM-5 Zeolite[J]. Acta Phys. -Chim. Sin., 2012, 28(11): 2705-2712.
[15] YAO Min, HU Si, WANG Jian, DOU Tao, WU Yong-Ping. Size Effect of HZSM-5 Zeolite on Catalytic Conversion of Methanol to Propylene[J]. Acta Phys. -Chim. Sin., 2012, 28(09): 2122-2128.