Please wait a minute...
Acta Phys. -Chim. Sin.
Special Issue: Toward_Atomically_Precise_Nanoclusters_and_Nanoparticles
Accepted manuscript     
Atomically Precise Zr-Oxo and Zr/Ti-Oxo Nanoclusters by Deep Eutectic-Solvothermal Synthesis
NARAYANAM Nagaraju1,2, CHINTAKRINDA Kalpana1, FANG Weihui1, ZHANG Lei1, ZHANG Jian1
1 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China;
2 International College, University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
Download:   PDF(405KB) Export: BibTeX | EndNote (RIS)       Supporting Info


Atomically precise nanoclusters form an important class of functional materials that have recently attracted research interest for their unique properties and easily tunable surface functionalities. Core-shell nanomaterials with precise structural information can be produced to better understand the structure-property relationships for different applications. Polyoxo-titanium clusters (PTCs) are such a kind of nanomaterial for different functional applications in catalysis, photovoltaics, ceramics, etc. However, the high bandgap of semiconductive PTCs is the limiting factor in their practical solar application in the visible region of sunlight. The development of PTCs with different surface-bound ligands is an emerging area of research in the design and synthesis of core-shell nanoclusters with reduced bandgaps. It has been extensively reported that the polynuclear growth of PTCs requires molecular-level water supply in reactions. Moreover, it is important to identify more environment-friendly synthetic methods. Deep eutectic-solvothermal (DES) synthesis is an emerging green method for the synthesis of different crystalline materials. The hygroscopic nature of DES should enhance the provision of water during polynuclear growth of nanoclusters. Hence, we chose to synthesize different kinds of PTCs using DES as solvent. Two nanoclusters, Zr-oxo (PTC-65) and Zr/Ti-oxo (PTC-66) clusters having surface-bound 1,10-phenanthroline (1,10-phn) and phenol ligands, were successfully synthesized using this approach; 1,10-phn was employed as the precursor in the synthetic reaction, and phenol was not employed directly in the chemical reaction, but was supplied from the DES solvent used in the reaction. In the presence of chromophoric ligands, 1,10-phn and phenol are believed to enhance the light absorption properties of the resulting functional nanomaterials. Their crystal structure revealed that they form core-shell mimics with Zr-oxo and Ti/Zr-oxo core units having surface-bound shell ligands. Based on their different structural characteristics, photocatalytic hydrogen evolution studies were performed on these two functional materials using an aqueous solution of H2O (50 mL)/triethanol amine (10 mL). Interestingly, PTC-65 formed a turbid solution, whereas PTC-66 formed a clear solution. The possible reasons for their different dispersion behaviors are widely discussed, with emphasis on their structure-property relationships. This study provides a potential tool for the homogenization of Ti-O materials to improve their photocatalytic activities. Moreover, the success of our work confirms that deep eutectic-solvothermal synthesis can be an effective method for cluster preparation. Many other interesting polynuclear complexes like polyoxometalates, chalcogenides, and noble-metal clusters could be obtained by this synthetic methodology.

Key wordsNanocluster      Titanium      Zirconium      Deep-eutectic solvothermal      H2 evolution     
Received: 17 October 2017      Published: 13 November 2017
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (21473202, 21673238) and Natural Science Foundation of Fujian Province, China (2017J06009).

Corresponding Authors: ZHANG Lei     E-mail:
Cite this article:

NARAYANAM Nagaraju, CHINTAKRINDA Kalpana, FANG Weihui, ZHANG Lei, ZHANG Jian. Atomically Precise Zr-Oxo and Zr/Ti-Oxo Nanoclusters by Deep Eutectic-Solvothermal Synthesis. Acta Phys. -Chim. Sin., 0, (): 0-0.

URL:     OR

(1) Indranath, C.; Thalappil, P. Chem. Rev. 2017, 117, 8208. doi: 10.1021/acs.chemrev.6b00769
(2) Goswami, N.; Zheng, K.; Xie, J. Nanoscale 2014, 6, 13328. doi: 10.1039/C4NR04561K
(3) Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J. Chem. Asian J. 2013, 8, 858. doi:10.1002/asia.201201236
(4) Zhou, Y.; Li, Z. M.; Zheng, K.; Li, G. Acta Phys. -Chim. Sin. 2018, (in press)[周洋, 李志敏, 郑凯, 李杲. 物理化学学报, 2018, (inpress)] doi:10.3866/PKU.WHXB201709292
(5) Fang, J.; Zhang, B.; Yao, Q.; Yang, Y.; Xie, J.; Yan, N. Coord. Chem. Rev. 2016, 322, 1. doi:10.1016/j.ccr.2016.05.003
(6) Zhu, M.; Li, M. B.; Yao, C. H.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L.W.; Wu, Z. K. Acta Phys. -Chim. Sin. 2018, (in press)[祝敏, 李漫波, 姚传好, 夏楠, 赵燕, 闫楠, 廖玲文, 伍志鲲. 物理化学学报, 2018, (in press)] doi:10.3866/PKU.WHXB201710091
(7) Sun, G. D.; Kang, X.; Jin, S.; Li, X. W.; Hu, D. Q.; Wang, S. X.; Zhu, M. Z. Acta Phys. -Chim. Sin. 2018, (in press)[孙国栋, 康熙, 金山, 李小武, 胡大乔, 汪恕欣, 朱满洲. 物理化学学报, 2018, (in press)] doi:10.3866/PKU.WHX B201710124
(8) Chaudhuri, R. G.; Paria, S. Chem. Rev. 2012, 112, 2373. doi: 10.1021/cr100449n
(9) Xiao, P. W.; Zhao, L, Sui, Z.Y.; Han, B. H. Langmuir 2017, 33, 6038. doi:10.1021/acs.langmuir.7b00331
(10) Tominaga, C.; Hikosou, D.; Osaka, I.; Kawasak, H. Acta Phys. -Chim. Sin. 2018, (in press)[Tominaga, C.; Hikosou, D.; Osaka, I.; Kawasak, H. 物理化学学报, 2018, (in press)]doi:10.3866/PKU.WHXB201710271
(11) Li, N.; Matthews, P. D.; Luob, H. K.; Wright, D. S. Chem. Commun.2016, 52, 11180. doi:10.1039/C6CC03788G
(12) Snoeberger Ⅲ, R. C.; Young, K. J.; Tang, J.; Allen, L. J.; Crabtree, R. H.; Brudvig, G. W.; Coppens, P.; Batista, V. S.; Benedict, J. B. J. Am. Chem. Soc. 2012, 134, 8911. doi:10.1021/ja301238t
(13) Fang, W. H.; Wang, J. F.; Zhang, L.; Zhang, J.; Chem. Mater. 2017, 29, 2681. doi:10.1021/acs.chemmater.7b00324
(14) Zhao, Z.; Zhang, X. Y.; Zhang, G. Q.; Liu, Z. Y.; Qu, D.; Miao, X.; Feng, P. Y.; Sun, Z. C. Nano Res. 2015, 8, 4061. doi: 10.1007/s12274-015-0917-5
(15) Coppens, P.; Chen, Y.; Trzop, E. Chem. Rev. 2014, 114, 9645. doi: 10.1021/cr400724e
(16) Liu, J. X.; Gao, M. Y.; Fang, W. H.; Zhang, L.; Zhang, J. Angew. Chem. Int. Ed. 2016, 55, 5160. doi:10.1002/anie.201510455
(17) Lv, Y.; Cheng, J.; Steiner, A.; Gan, L.; Wright, D. S. Angew. Chem. Int. Ed. 2014, 53, 1934. doi:10.1002/anie.201307721
(18) Sokolow, J. D.; Trzop, E.; Chen, Y.; Tang, J.; Allen, L. J.; Crabtree, R. H.; Benedict, J. B.; Coppens. P. J. Am. Chem. Soc. 2012, 134, 11695. doi:10.1021/ja303692r
(19) Wagle, D. V.; Zhao, H.; Baker, G. A. Acc. Chem. Res. 2014, 7, 2299. doi: 10.1021/ar5000488
(20) Cooper, E. R.; Andrews, C. D.; Wheatley, P. S.; Webb, P. B.; Wormald, P.; Morris, R. E. Nature 2004, 430, 1012. doi: 10.1038/nature02860
(21) Zhang, Q.; Vigier, K. D. O.; Royer, S.; Jerome, F. Chem. Soc. Rev.2012, 41, 7108. doi:10.1039/C2CS35178A
(22) Smith, E. L.; Abbott, A. P.; Ryder, K. S. Chem. Rev. 2014, 114, 11060. doi:10.1021/cr300162p
(23) Zhang, J.; Wu, T.; Chen, S.; Feng, P.; Bu, X. Angew. Chem. Int. Ed.2009, 48, 3486. doi:10.1002/anie.200900134
(24) Wragg, D. S.; Slawin, A. M. Z.; Morris, R. E. Solid State Sci. 2009, 11, 411. doi:10.1016/j.solidstatesciences.2008.09.008
(25) Nagaraju, N.; Fang, W. H.; Kalpana, C.; Zhang, L.; Zhang, J. Chem. Commun., 2017, 53, 8078. doi:10.1039/c7cc04388k
(26) Sheldrick, G. M. Acta Crystallogr. Sect. A 2008, 64, 112. doi: 10.1107/S0108767307043930
(27) Sheldrick, G. M. SHELXL-2014, University of Gottingen, Germany, 2014.
(28) Kickelbick, G.; Wiede, P.; Schubert, U. Inorg. Chim. Acta 1999, 284, 1. doi:10.1016/S0020-1693(98)00251-5
(29) Gao, M. Y.; Wang, F.; Gu, Z. G.; Zhang, D. X.; Zhang, L.; Zhang, Z. J. Am. Chem. Soc. 2016, 138, 2556. doi:10.1021/jacs.6b00613
(30) Zhang, G.; Liu, C.; Long, D. L.; Cronin, L.; Tung, C. H.; Wang, Y. J. Am. Chem. Soc. 2016, 138, 11097. doi:10.1021/jacs.6b06290

[1] DU Xinhua, LI Yang, YIN Hui, XIANG Quanjun. Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 414-423.
[2] XU Li-Gang, QIU Wei, CHEN Run-Feng, ZHANG Hong-Mei, HUANG Wei. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 36-48.
[3] HUANG Yang, SUN Qing-De, XU Wen, HE Yao, YIN Wan-Jian. Halide Perovskite Materials for Solar Cells: a Theoretical Review[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1730-1751.
[4] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[5] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1492-1498.
[6] GU Jin-Yu, QI Peng-Wei, PENG Yang. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1379-1389.
[7] ZHAO Feng-Ming, WEN Gang, KONG Li-Yao, CHU You-Qun, MA Chun-An. Structure Characteristic of Titanium Nitride Nanowires and Its Electrode Processes for V(II)/V(III) Redox Couple[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1181-1188.
[8] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[9] GAO Xiao-Ping, GUO Zhang-Long, ZHOU Ya-Nan, JING Fang-Li, CHU Wei. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 602-610.
[10] XIE Yong-Min, WANG Xiao-Qiang, LIU Jiang, YU Chang-Lin. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 386-392.
[11] WANG Ya-Nan, MA Pin, PENG Lu-Mei, ZHANG Di, FANG Yan-Yan, ZHOU Xiao-Wen, LIN Yuan. Synthesis of Colloidal Perovskite CH3NH3PbBr3-xClx Nanocrystals with Lead Acetate[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2099-2105.
[12] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[13] LIU Ji-Chong, TANG Feng, YE Feng-Ye, CHEN Qi, CHEN Li-Wei. Visualization of Energy Band Alignment in Thin-Film Optoelectronic Devices with Scanning Kelvin Probe Microscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1934-1943.
[14] Lü Qian-Rui, LI Jing, LIAN Zhi-Peng, ZHAO Hao-Yan, DONG Gui-Fang, LI Qiang, WANG Li-Duo, YAN Qing-Feng. CH3NH3PbI3 Single Crystal-Based Ambipolar Field-Effect Transistor with Ta2O5 as the Top Gate Dielectric[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 249-254.
[15] SHAI Xu-Xia, LI Dan, LIU Shuang-Shuang, LI Hao, WANG Ming-Kui. Advances and Developments in Perovskite Materials for Solar Cell Applications[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2159-2170.