Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (7): 781-785    DOI: 10.3866/PKU.WHXB201711131
Special Issue: Toward_Atomically_Precise_Nanoclusters_and_Nanoparticles
ARTICLE     
Atomically Precise Zr-Oxo and Zr/Ti-Oxo Nanoclusters by Deep Eutectic-Solvothermal Synthesis
Nagaraju NARAYANAM1,2,Kalpana CHINTAKRINDA1,Weihui FANG1,Lei ZHANG1,*(),Jian ZHANG1
1 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
2 International College, University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
Download: HTML     PDF(718KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Atomically precise nanoclusters form an important class of functional materials that have recently attracted research interest for their unique properties and easily tunable surface functionalities. Core-shell nanomaterials with precise structural information can be produced to better understand the structure–property relationships for different applications. Polyoxo-titanium clusters (PTCs) are such a kind of nanomaterial for different functional applications in catalysis, photovoltaics, ceramics, etc. However, the high bandgap of semiconductive PTCs is the limiting factor in their practical solar application in the visible region of sunlight. The development of PTCs with different surface-bound ligands is an emerging area of research in the design and synthesis of core-shell nanoclusters with reduced bandgaps. It has been extensively reported that the polynuclear growth of PTCs requires molecular-level water supply in reactions. Moreover, it is important to identify more environment-friendly synthetic methods. Deep eutectic-solvothermal (DES) synthesis is an emerging green method for the synthesis of different crystalline materials. The hygroscopic nature of DES should enhance the provision of water during polynuclear growth of nanoclusters. Hence, we chose to synthesize different kinds of PTCs using DES as solvent. Two nanoclusters, Zr-oxo (PTC-65) and Zr/Ti-oxo (PTC-66) clusters having surface-bound 1, 10-phenanthroline (1, 10-phn) and phenol ligands, were successfully synthesized using this approach; 1, 10-phn was employed as the precursor in the synthetic reaction, and phenol was not employed directly in the chemical reaction, but was supplied from the DES solvent used in the reaction. In the presence of chromophoric ligands, 1, 10-phn and phenol are believed to enhance the light absorption properties of the resulting functional nanomaterials. Their crystal structure revealed that they form core-shell mimics with Zr-oxo and Ti/Zr-oxo core units having surface-bound shell ligands. Based on their different structural characteristics, photocatalytic hydrogen evolution studies were performed on these two functional materials using an aqueous solution of H2O (50 mL)/triethanol amine (10 mL). Interestingly, PTC-65 formed a turbid solution, whereas PTC-66 formed a clear solution. The possible reasons for their different dispersion behaviors are widely discussed, with emphasis on their structure–property relationships. This study provides a potential tool for the homogenization of Ti-O materials to improve their photocatalytic activities. Moreover, the success of our work confirms that deep eutectic-solvothermal synthesis can be an effective method for cluster preparation. Many other interesting polynuclear complexes like polyoxometalates, chalcogenides, and noble-metal clusters could be obtained by this synthetic methodology.



Key wordsNanocluster      Titanium      Zirconium      Deep-eutectic solvothermal      H2 evolution     
Received: 17 October 2017      Published: 13 November 2017
MSC2000:  O641  
Fund:  the National Natural Science Foundation of China(21473202);the National Natural Science Foundation of China(21673238);Natural Science Foundation of Fujian Province, China(2017J06009)
Corresponding Authors: Lei ZHANG     E-mail: LZhang@fjirsm.ac.cn
Cite this article:

Nagaraju NARAYANAM,Kalpana CHINTAKRINDA,Weihui FANG,Lei ZHANG,Jian ZHANG. Atomically Precise Zr-Oxo and Zr/Ti-Oxo Nanoclusters by Deep Eutectic-Solvothermal Synthesis. Acta Phys. -Chim. Sin., 2018, 34(7): 781-785.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201711131     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I7/781

 
PTC-65 PTC-66
Chemical formula C120H88N12O16Zr6 C168Cl3H127N16O36Ti11Zr4
Formula weight 2501.39 3943.68
T/K 293 293
λ 1.54178 1.54178
Crystal system trigonal monoclinic
Space group R-3 P-1
a 19.349 17.8207
b 19.349 19.3447
c 28.716 28.8121
α/(°) 90 77
β/(°) 90 80
γ/(°) 120 77
V3 9311 9351.1
Z 3 2
ρcalc/(g∙cm−3) 1.509 1.364
μ/mm−1 4.565 0.766
Reflections 6475 75187
Independent (Rint) 3863 31333
GOF on F2 1.176 1.349
R1 a, wR2 [I > 2σ(I)] b 0.1073, 3290 0.1386, 0.3988
 
 
 
1 Indranath C. ; Thalappil P. Chem. Rev. 2017, 117, 8208.
2 Goswami N. ; Zheng K. ; Xie J. Nanoscale 2014, 6, 13328.
3 Yuan X. ; Luo Z. ; Yu Y. ; Yao Q. ; Xie J. Chem. Asian J. 2013, 8, 858.
4 Zhou Y. ; Li Z. M. ; Zheng K. ; Li G. Acta Phys. -Chim. Sin. 2018, 34 (7), 786.
4 周洋; 李志敏; 郑凯; 李杲. 物理化学学报, 2018, 34 (7), 786.
5 Fang J. ; Zhang B. ; Yao Q. ; Yang Y. ; Xie J. ; Yan N. Coord. Chem. Rev. 2016, 322, 1.
6 Zhu M. ; Li M. B. ; Yao C. H. ; Xia N. ; Zhao Y. ; Yan N. ; Liao L. W. ; Wu Z. K. Acta Phys. -Chim. Sin. 2018, 34 (7), 792.
6 祝敏; 李漫波; 姚传好; 夏楠; 赵燕; 闫楠; 廖玲文; 伍志鲲. 物理化学学报, 2018, 34 (7), 792.
7 Sun G. D. ; Kang X. ; Jin S. ; Li X. W. ; Hu D. Q. ; Wang S. X. ; Zhu M. Z. Acta Phys. -Chim. Sin. 2018, 34 (7), 799.
7 孙国栋; 康熙; 金山; 李小武; 胡大乔; 汪恕欣; 朱满洲. 物理化学学报, 2018, 34 (7), 799.
8 Chaudhuri R. G. ; Paria S. Chem. Rev. 2012, 112, 2373.
9 Xiao P. W. ; Zhao L ; Sui Z. Y. ; Han B. H. Langmuir 2017, 33, 6038.
10 Tominaga C. ; Hikosou D. ; Osaka I. ; Kawasak H. Acta Phys. -Chim. Sin. 2018, 34 (7), 805.
11 Li N. ; Matthews P. D. ; Luob H. K. ; Wright D. S. Chem. Commun. 2016, 52, 11180.
12 Snoeberger R. C. Ⅲ ; Young K. J. ; Tang J. ; Allen L. J. ; Crabtree R. H. ; Brudvig G. W. ; Coppens P. ; Batista V. S. ; Benedict J. B. J. Am. Chem. Soc. 2012, 134, 8911.
13 Fang W. H. ; Wang J. F. ; Zhang L. ; Zhang J. Chem. Mater. 2017, 29, 2681.
14 Zhao Z. ; Zhang X. Y. ; Zhang G. Q. ; Liu Z. Y. ; Qu D. ; Miao X. ; Feng P. Y. ; Sun Z. C. Nano Res. 2015, 8, 4061.
15 Coppens P. ; Chen Y. ; Trzop E. Chem. Rev. 2014, 114, 9645.
16 Liu J. X. ; Gao M. Y. ; Fang W. H. ; Zhang L. ; Zhang J. Angew. Chem. Int. Ed. 2016, 55, 5160.
17 Lv Y. ; Cheng J. ; Steiner A. ; Gan L. ; Wright D. S. Angew. Chem. Int. Ed. 2014, 53, 1934.
18 Sokolow J. D. ; Trzop E. ; Chen Y. ; Tang J. ; Allen L. J. ; Crabtree R. H. ; Benedict J. B. ; Coppens. P. J. Am. Chem. Soc. 2012, 134, 11695.
19 Wagle D. V. ; Zhao H. ; Baker G. A. Acc. Chem. Res. 2014, 7, 2299.
20 Cooper E. R. ; Andrews C. D. ; Wheatley P. S. ; Webb P. B. ; Wormald P. ; Morris R. E. Nature 2004, 430, 1012.
21 Zhang Q. ; Vigier K. D. O. ; Royer S. ; Jerome F. Chem. Soc. Rev. 2012, 41, 7108.
22 Smith E. L. ; Abbott A. P. ; Ryder K. S. Chem. Rev. 2014, 114, 11060.
23 Zhang J. ; Wu T. ; Chen S. ; Feng P. ; Bu X. Angew. Chem. Int. Ed. 2009, 48, 3486.
24 Wragg D. S. ; Slawin A. M. Z. ; Morris R. E. Solid State Sci. 2009, 11, 411.
25 Nagaraju N. ; Fang W. H. ; Kalpana C. ; Zhang L. ; Zhang J. Chem. Commun. 2017, 53, 8078.
26 Sheldrick G. M. Acta Crystallogr. Sect. A 2008, 64, 112.
27 Sheldrick SHELXL-2014 G. M. University of Gottingen, Germany, 2014.
28 Kickelbick G. ; Wiede P. ; Schubert U. Inorg. Chim. Acta 1999, 284, 1.
29 Gao M. Y. ; Wang F. ; Gu Z. G. ; Zhang D. X. ; Zhang L. ; Zhang Z. J. Am. Chem. Soc. 2016, 138, 2556.
30 Zhang G. ; Liu C. ; Long D. L. ; Cronin L. ; Tung C. H. ; Wang Y. J. Am. Chem. Soc. 2016, 138, 11097.
[1] Lina YANG,Li HUANG,Xueyang SONG,Wenxue HE,Yong JIANG,Zhihu SUN,Shiqiang WEI. In situ Study of Formation Kinetics of Au Nanoclusters during HCl and Dodecanethiol Etching[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 762-769.
[2] Dongmei JIANG,Le BO,Ting ZHU,Junbin TAO,Xiaoping YANG. Construction and NIR Luminescence Properties of Zn-Ln Rectangular Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 812-817.
[3] Tatsuya HIGAKI,Rongchao JIN. Structural Evolution Patterns of FCC-Type Gold Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 755-761.
[4] Youkun ZHENG,Hui JIANG,Xuemei WANG. Multiple Strategies for Controlled Synthesis of Atomically Precise Alloy Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 740-754.
[5] Xiaohong GUO,Ying ZHOU,Lihong SHI,Yan ZHANG,Caihong ZHANG,Chuan DONG,Guomei ZHANG,Shaomin SHUANG. Luminescence Emission of Copper Nanoclusters by Ethanol-induced Aggregation and Aluminum Ion-induced Aggregation[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 818-824.
[6] Xiuqing REN,Xinzhang LIN,Xuemei FU,Chao LIU,Jinghui YAN,Jiahui HUANG. Synthesis of High Yield Au21(SR)15 Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 825-829.
[7] Guodong SUN,Xi KANG,Shan JIN,Xiaowu LI,Daqiao HU,Shuxin WANG,Manzhou ZHU. Synthesis and Structure Determination of Ag-Ni Alloy Nanocluster Ag4Ni2(SPhMe2)8 (SPhMe2 = 2, 4-dimethylbenzenethiol)[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 799-804.
[8] Chiaki TOMINAGA,Dailo HIKOSOU,Issey OSAKA,Hideya KAWASAK. Ag7(MBISA)6 Nanoclusters Conjugated with Quinacrine for FRET-Enhanced Photodynamic Activity under Visible Light Irradiation[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 805-811.
[9] Mojtaba ALIPOUR. Which Information Theoretic Quantity Should We Choose for Steric Analysis of Water Nanoclusters (H2O)n (n = 6, 32, 64)?[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 407-413.
[10] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[11] Feng-Ming ZHAO,Gang WEN,Li-Yao KONG,You-Qun CHU,Chun-An MA. Structure Characteristic of Titanium Nitride Nanowires and Its Electrode Processes for Ⅴ(Ⅱ)/Ⅴ(Ⅲ) Redox Couple[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1181-1188.
[12] Chao LIAN,Kai ZHANG,Yuan WANG. Catalytic Properties of Platinum Nanoclusters Supported on Iron Oxides for the Solvent-Free Hydrogenation of Halonitrobenzene[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 984-992.
[13] Hao ZHANG,Xin-Gang LI,Jin-Meng CAI,Ya-Ting WANG,Mo-Qing WU,Tong DING,Ming MENG,Ye TIAN. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[14] Rui WANG,Li LAN,Mao-Chu GONG,Yao-Qiang CHEN. Catalytic Combustion of Gasoline Particulate Soot over CeO2-ZrO2 Catalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1747-1757.
[15] Qing GUO,Chuan-Yao ZHOU,Zhi-Bo MA,Ze-Feng REN,Hong-Jun FAN,Xue-Ming YANG. Fundamental Processes in Surface Photocatalysis on TiO2[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 28-47.