Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (8): 886-895    DOI: 10.3866/PKU.WHXB201711151
Special Issue: Green Chemistry
ARTICLE     
Selective Oxidation of Glycerol with Hydrogen Peroxide Using Silica-Encapsulated Heteropolyacid Catalyst
Mingming YUAN,Difan LI,Xiuge ZHAO,Wenbao MA,Kang KONG,Wenxiu NI,Qingwen GU,Zhenshan HOU*()
Download: HTML     PDF(1538KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

The Keggin type heteropolyacids (HPAs) have attracted increasing attention due to their strong Bronsted acidity and excellent redox properties, which could play an important role in accelerating the conversion of bio-derived molecules. In this work, heteropolyacid (HPA, H4PMo11VO40) encapsulated by silica was synthesized by a sol-gel method and a sequential silylation technique (HPA@SiO2-N2-S). The as-synthesized material was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The FT-IR spectra show that the HPA anions preserved their Keggin structure when incorporated into the catalyst. The XRD patterns show that HPA molecules are uniformly dispersed within the silica network. The SEM and TEM images confirm that the catalyst was composed of spherical nanometer-sized particles. The porous properties of the catalysts measured by the N2 adsorption-desorption isotherms indicate that the Brunauer, Emmett and Teller (BET) surface area of pure SiO2 was 287 m2·g-1, but upon encapsulation of HPA into the silica matrix, a lower surface area (245 m2·g-1) was measured for the resulting material. In addition, the pore diameter was reduced after silylation. Furthermore, the hydrophobicity of the catalysts was investigated by the measurement of contact angle (CA) with water. The SiO2 and SiO2/HPA catalysts were completely hydrophilic and the contact angle was close to 0°. However, the contact angle of the silylated catalyst was determined to be 137°, indicating that the silylation procedure significantly increased the hydrophobicity of the catalyst. The as-prepared catalysts were also used as heterogeneous catalysts for the selective oxidation of glycerol. The prepared material exhibited excellent catalytic activity towards glycerol oxidation, in which the glycerol can be selectively transformed into formic acid (ca. 70% selectivity) and glycolic acid (ca. 27% selectivity) using H2O2 as an oxidant under mild reaction conditions. The effect of the silylation procedure on the recyclability of catalyst was also investigated in this work. The characterizations described above indicated that silylation procedure can significantly increase the hydrophobicity and limit the pore sizes, resulting in high leach-resistance towards HPA, thus improving the recyclability of the silica-encapsulated HPA catalyst, as compared to the SiO2/HPA catalyst prepared with the conventional impregnation method. Furthermore, the conversion in the second catalytic run is even higher than that of the initial run, which is likely because more active sites are exposed after the first run. The catalyst can be reused for at least five cycles without any leaching of HPA. The spent catalyst did not undergo structural changes, as revealed by FT-IR, XRD, and SEM characterization. Moreover, it was found that the strong Bronsted acid additives played a crucial role in the catalytic oxidation of glycerol.



Key wordsGlycerol oxidation      Heteropolyacid      Encapsulation      Formic acid      Hydrogen peroxide     
Received: 27 October 2017      Published: 15 November 2017
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(21373082);the National Natural Science Foundation of China(21773061);the Innovation Program of Shanghai Municipal Education Commission, China(15ZZ031)
Corresponding Authors: Zhenshan HOU     E-mail: houzhenshan@ecust.edu.cn
Cite this article:

Mingming YUAN,Difan LI,Xiuge ZHAO,Wenbao MA,Kang KONG,Wenxiu NI,Qingwen GU,Zhenshan HOU. Selective Oxidation of Glycerol with Hydrogen Peroxide Using Silica-Encapsulated Heteropolyacid Catalyst. Acta Phys. -Chim. Sin., 2018, 34(8): 886-895.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201711151     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I8/886

 
 
 
Entry Catalyst Surface area/(m2·g-1) CA/(°) Conversion/%b Selectivity/% b
FA GCA others
1 SiO2 287 0 0
2 HPA/SiO2 175 0 76(5) 66(45) 27(14) 7(41)
3 HPA@SiO2 261 96 61(28) 68(54) 27(22) 5(24)
4 HPA@SiO2-S-N2 245 134 34(51) 70(74) 27(22) 3(4)
5c HPA@SiO2-S-N2 245 134 40 67 33
 
 
 
 
 
 
Entry Additives Conversion/% Selectivity/%
FA GCA others
1 none 34 70 27 3
2 AlCl3 33 63 28 9
3 ZnCl2 34 66 19 15
4 InCl3 37 69 23 8
5 HC1 46 72 17 11
6 p-CH3(C6H4)SO3H 42 81 18 1
7 H2SO4 45 56 14 30
8 (CF3SO2)2NH 55 63 13 24
9 CF3SO3H 52 81 17 2
 
Entry Substrates Conversion/% Selectiviy/%
FA GCA IS LA AA GA others
1 Ethylene glycol 31 (59) 15(81) 47(0) 0(0) 0(5) 0(0) 37(14)
2 Glucose 25 (78) 67(51) 0(12) 0(0) 0(3) 0(0) 33 (34)
3 Sorbitol 29 (72) 57 (53) 0(9) 26(2) 0(0) 0(0) 0(14) 17(22)
4 Fructose 60(100) 48 (62) 17(31) 7(0) 0(2) 0(0) 28 (5)
5 1, 2-Propanediol 54 (76) 45 (44) 23(2) 0(0) 0 (45) 0(0) 32(9)
6 Xylitol 48(81) 54 (67) 0(10) 0(0) 25(5) 8(12) 13 (6)
 
 
 
1 Deuss P. J. ; Scott M. ; Tran F. ; Westwood N. J. ; Vries J. G. ; Barta K. J. Am. Chem. Soc. 2015, 137 (23), 7456.
2 Chheda J. N. ; Huber G. W. ; Dumesic J. A. Angew. Chem. Int. Ed. 2007, 46 (38), 7164.
3 Xu S. ; Zhou P. ; Zhang Z. ; Yang C. ; Zhang B. ; Deng K. ; Bottle S. ; Zhu H. J. Am. Chem. Soc. 2017, 139 (41), 14775.
4 Lange J, P Angew. Chem. Int. Ed. 2015, 54 (45), 13186.
5 Zhu S. H. ; Wang J. G. ; Fan W. B. Acta Phys. -Chim. Sin. 2016, 32 (1), 85.
5 朱善辉; 王建国; 樊卫斌. 物理化学学报, 2016, 32 (1), 85.
6 Bozell J. J. ; Petersen G. R. Green Chem. 2010, 12 (4), 539.
7 Brandner A. ; Lehnert K. ; Bienholz A. ; Lucas M. ; Claus P. Top. Catal. 2009, 52 (3), 278.
8 Gallezot P. Chem. Soc. Rev. 2012, 41 (4), 1538.
9 Loges B. ; Boddien A. ; Junge H. ; Beller M. Angew. Chem. Int. Ed. 2008, 47 (21), 3962.
10 Gilkey M. J. ; Xu B. J. ACS Catal. 2016, 6 (3), 1420.
11 Boddien A. ; Mellmann D. ; Gaertner F. ; Jackstell R. ; Junge H. ; Dyson P. J. ; Laurenczy G. ; Ludwig R. ; Beller M. Science 2011, 333 (6050), 1733.
12 Yu W. Y. ; Mullen G. M. ; Flaherty D. W. ; Mullins C. B. J. Am. Chem. Soc. 2014, 136 (31), 11070.
13 Barnard J. H. ; Wang C. ; Berry N. G. ; Xiao J. Chem. Sci. 2013, 4 (3), 1234.
14 Tsurusaki A. ; Murata K. ; Onishi N. ; Sordakis K. ; Laurenczy G. ; Himeda Y. ACS Catal. 2017, 7 (2), 1123.
15 Villa A. ; Dimitratos N. ; Chan-Thaw C. E. ; Hammond C. ; Prati L. ; Hutchings G. J. Acc. Chem. Res. 2015, 48 (5), 1403.
16 Dodekatos G. ; Tüysüz H. ChemCatChem. 2017, 9 (4), 610.
17 D'Agostino C. ; Brett G. ; Divitini G. ; Ducati C. ; Hutchings G. J. ; Mantle M. D. ; F.Gladden L. F. ACS Catal. 2017, 7 (7), 4235.
18 Tsuji A. ; Rao K. T. ; Nishimura S. ; Takagaki A. ; Ebitani K. ChemSusChem 2011, 4 (4), 542.
19 Rodrigues E. G. ; Pereira M. F. R. ; Chen X. ; Delgado J. J. ; rf o J. J. M. Ind. Eng. Chem. Res. 2013, 52 (49), 17390.
20 Sankar M. ; Dimitratos N. ; Knight D. W. ; Carley A. F. ; Tiruvalam R. ; Kiely C. J. ; Thomas D. ; Hutchings G. J. ChemSusChem. 2009, 2 (12), 1145.
21 Davis S. E. ; Ide M. S. ; Davis R. J. Green Chem. 2013, 15 (1), 17.
22 Campos-Martin J. M. ; Blanco-Brieva G. ; Fierro J. L. Angew. Chem. Int. Ed. 2006, 45 (42), 6962.
23 Wang S. S ; Popovic Z. ; Wu H.H ; Liu Y. ChemCatChem. 2011, 3 (7), 1208.
24 Sarkar B. ; Pendem C. ; Konathala L. N. S. ; Tiwari R. ; Sasaki T. ; Bal R. Chem. Commun. 2014, 50 (68), 9707.
25 Faroppa M. L. ; Musci J. J. ; Chiosso M. E. ; Caggiano C. G. ; Bideberripe H. P. ; Fierro J. L. G. ; Siri G. J. ; Casella M. L. Chin. J. Catal. 2016, 37 (11), 1982.
26 Corrado Crotti C. ; Farnetti E. J. Mol. Catal. A-Chem., 2015, 396, 353.
27 Niu M. ; Hou Y. ; Ren S. ; Wu W. ; Marsh K. N. Green Chem. 2015, 17 (1), 453.
28 Huang Y. B. ; Fu Y. Green Chem. 2013, 15 (5), 1095.
29 Lan J. H. ; Lin J. C. ; Chen Z. C. ; Yin G. C. ACS Catal. 2015, 5 (4), 2035.
30 Lachkar D. ; Vilona D. ; Dumont E. ; Lelli M. ; Lacote E. Angew. Chem. Int. Ed. 2016, 55 (20), 5961.
31 Ma Q. ; Tong J. H. ; Su L. D. ; Wang W. H. ; Ma W. M. ; Bo L. L. Acta Phys. -Chim. Sin. 2016, 32 (12), 2961.
31 马青; 童金辉; 宿玲弟; 王文慧; 马文梅; 薄丽丽. 物理化学学报, 2016, 32 (12), 2961.
32 Okuhara T. Chem. Rev. 2002, 102 (10), 3641.
33 Lu T. ; Niu M. ; Hou Y. ; Wu W. ; Ren S. ; Yang F. Green Chem. 2016, 18 (17), 4725.
34 George B. ; Tsigdinos A. ; Hallada C. J. Inorg. Chem. 1968, 7 (3), 437.
35 Zhao X. S. ; Lu G. Q. ; Whittaker A. K. ; Millar G. J. ; Zhu H. Y. J. Phys. Chem. B. 1997, 101, 6525.
36 Sheldon R. A. ; Wallau M. ; Arends I. W. C. E. ; Schuchardt U. Acc. Chem. Res. 1998, 31 (8), 485.
37 Jing L. ; Shi J. ; Zhang F. ; Zhong Y. J. ; Zhu W. D. Ind. Eng. Chem. Res. 2013, 52 (30), 10095.
38 Dippong T. ; Leveib E. A. ; Cadarb O. ; Mesarosc A. ; Borodid G. J. Anal. Appl. Pyrol. 2017, 125, 169.
39 Capel-Sanchez M. C. ; Barrio L. ; Campos-Martin J. M. ; Fierro J. L. G. J. Colloid Interface Sci. 2004, 277 (1), 146.
40 Jing F. ; Katryniok B. ; Dumeignil F. ; Bordes-Richard E. ; Paul S. Catal. Sci. Technol. 2014, 4 (9), 2938.
41 Feng L. ; Zhang Y, N. ; Xi J. M. ; Zhu Y. ; Wang N. ; Xia F. ; Jiang L. Langmuir 2008, 24 (8), 4114.
42 Feng X. Q. ; Gao X. F. ; Wu Z. N. ; Jiang L. ; Zheng Q. S. Langmuir 2007, 23 (9), 4892.
43 Viswanadham B. ; Jhansi P. ; Chary K. V. R. ; Friedrich H. B. ; Singh S. Catal. Lett. 2016, 146 (2), 364.
44 Zhao K. Y. ; Wang X. H. ; Chen T. ; Wu H. ; Li J. G. ; Yang B. X. ; Li D. Y. ; Wei J. F. Ind. Eng. Chem. Res. 2017, 56 (9), 2549.
[1] Yang Lü,Yu-Jiang SONG,Hui-Yuan LIU,Huan-Qiao LI. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294.
[2] Liu-Xuan LUO,Shui-Yun SHEN,Feng-Juan ZHU,Jun-Liang ZHANG. Formic Acid Oxidation by Pd Monolayers on Pt3Ni Nanocubes[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 337-342.
[3] Qing-Gong ZHU,Xiao-Fu SUN,Xin-Chen KANG,Jun MA,Qing-Li QIAN,Bu-Xing HAN. Cu2S on Cu Foam as Highly Efficient Electrocatalyst for Reduction of CO2 to Formic Acid[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 261-266.
[4] ZHOU Yang, HU Xian-Chao, LI Li-Qing, CHEN Xi-Rong. Palladium Nanoparticles Supported on Hollow Mesoporous Tungsten Trioxide Microsphere as Electrocatalyst for Formic Acid Oxidation[J]. Acta Phys. -Chim. Sin., 2014, 30(1): 83-87.
[5] TANG Fa-Wei, GUO Wei-Min, TANG Nan-Nan, PEI Jun-Yan, XU Xuan. Quantum Chemical Study on the Adsorption of Formic on a Pt-Sn(111)/CAlloy Surface[J]. Acta Phys. -Chim. Sin., 2013, 29(10): 2198-2206.
[6] KANG Ya-Rong, CHEN Fu-Yi. Synthesis and Application of Ag-Cu Bimetallic Dendrites[J]. Acta Phys. -Chim. Sin., 2013, 29(08): 1712-1718.
[7] CAO Jian-Yu, TANG Jia-Li, SONG Ling-Zheng, XU Juan, WANG Wen-Chang, Chen Zhi-Dong. Functionalization of Activated Carbon with EDTA and Its Effect on Electrocatalytic Performance of Carbon Supported Pd Catalysts[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 144-150.
[8] HAN Ying, ZHU Lu, SHEN Ming, LI Heng-Heng. Synthesis of a Novel Surfactant with Two Alkyl Tail-Chains (DDOBA) and Fabrication of Hydrophobic Gold Nanoparticles with High Monodispersity[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 131-138.
[9] GU Lai-Yuan, GAO Bao-Jiao, FANG Xiao-Lin. Characterization of Immobilized Composite Catalysts of Cationic Metalloporphyrin and Heteropoly Anion in Oxidation of Ethyl Benzene by Molecular Oxygen[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 191-198.
[10] HE Sai-Nan, HU Cai-Yuan, XIAO Ge, ZHENG Hua-Jun. Hydrothermal Synthesis and Amperometric Determination of Hydrogen Peroxide of Highly-Dispersed MnO2 Nanofibers[J]. Acta Phys. -Chim. Sin., 2012, 28(03): 630-634.
[11] ZHUANG Shu-Xin, LIU Su-Qin, ZHANG Jin-Bao, TU Fei-Yue, HUANG Hong-Xia, HUANG Ke-Long, LI Yan-Hua. Application of Nanoporous Perovskite La1-xCaxCoO3 in an Al-H2O2 Semi Fuel Cell[J]. Acta Phys. -Chim. Sin., 2012, 28(02): 355-360.
[12] LIU Chun-Yan, XU Bin, TANG Ya-Wen, CAO Gao-Ping, YANG Yu-Sheng, LU Tian-Hong. Electrocatalytic Performance of Pd Catalyst Supported on Macropore Carbon for Oxidation of Formic Acid[J]. Acta Phys. -Chim. Sin., 2011, 27(03): 604-608.
[13] WANG Chong-Tai, HUA Ying-Jie, SUN Zhen-Fan, WEI Ji-Chong, LI Tian-Lue, TONG Ye-Xiang, LIU Xiao-Yang. Electrochemical Properties of the Dawson-Type Heteropolytungstate Anion P2W18O626- and Its O2 Reduction Electrocatalysis[J]. Acta Phys. -Chim. Sin., 2011, 27(02): 473-478.
[14] WANG Zhi-Qiang, SUN Wen-Jing, CHU Wei, YU Liang-Jun. Reaction Mechanism and Solvent Effects of Styrene Epoxidation with Hydrogen Peroxide[J]. Acta Phys. -Chim. Sin., 2011, 27(02): 322-328.
[15] ZHAO Yan-Qiong, FEI Fan, YI Cheng-Lin, JIANG Jin-Qiang, LUO Jing, LIU Xiao-Ya. Self-Assembled Colloid Particles and Properties of the Photosensitive Copolymer P(St/VM-co-MA)[J]. Acta Phys. -Chim. Sin., 2010, 26(12): 3230-3236.