Please wait a minute...
Acta Phys. -Chim. Sin.
Special Issue: Green Chemistry
Accepted manuscript     
Selective Oxidation of Glycerol with Hydrogen Peroxide Using Silica-Encapsulated Heteropolyacid Catalyst
YUAN Mingming, LI Difan, ZHAO Xiuge, MA Wenbao, KONG Kang, NI Wenxiu, GU Qingwen, HOU Zhenshan
Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
Download:   PDF(698KB) Export: BibTeX | EndNote (RIS)       Supporting Info


The Keggin type heteropolyacids (HPAs) have attracted increasing attention due to their strong Bronsted acidity and excellent redox properties, which could play an important role in accelerating the conversion of bio-derived molecules. In this work, heteropolyacid (HPA, H4PMo11VO40) encapsulated by silica was synthesized by a sol-gel method and a sequential silylation technique (HPA@SiO2-N2-S). The as-synthesized material was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The FT-IR spectra show that the HPA anions preserved their Keggin structure when incorporated into the catalyst. The XRD patterns show that HPA molecules are uniformly dispersed within the silica network. The SEM and TEM images confirm that the catalyst was composed of spherical nanometer-sized particles. The porous properties of the catalysts measured by the N2 adsorption-desorption isotherms indicate that the Brunauer, Emmett and Teller (BET) surface area of pure SiO2 was 287 m2·g-1, but upon encapsulation of HPA into the silica matrix, a lower surface area (245 m2·g-1) was measured for the resulting material. In addition, the pore diameter was reduced after silylation. Furthermore, the hydrophobicity of the catalysts was investigated by the measurement of contact angle (CA) with water. The SiO2 and SiO2/HPA catalysts were completely hydrophilic and the contact angle was close to 0°. However, the contact angle of the silylated catalyst was determined to be 137°, indicating that the silylation procedure significantly increased the hydrophobicity of the catalyst. The as-prepared catalysts were also used as heterogeneous catalysts for the selective oxidation of glycerol. The prepared material exhibited excellent catalytic activity towards glycerol oxidation, in which the glycerol can be selectively transformed into formic acid (ca. 70% selectivity) and glycolic acid (ca. 27% selectivity) using H2O2 as an oxidant under mild reaction conditions. The effect of the silylation procedure on the recyclability of catalyst was also investigated in this work. The characterizations described above indicated that silylation procedure can significantly increase the hydrophobicity and limit the pore sizes, resulting in high leach-resistance towards HPA, thus improving the recyclability of the silica-encapsulated HPA catalyst, as compared to the SiO2/HPA catalyst prepared with the conventional impregnation method. Furthermore, the conversion in the second catalytic run is even higher than that of the initial run, which is likely because more active sites are exposed after the first run. The catalyst can be reused for at least five cycles without any leaching of HPA. The spent catalyst did not undergo structural changes, as revealed by FT-IR, XRD, and SEM characterization. Moreover, it was found that the strong Bronsted acid additives played a crucial role in the catalytic oxidation of glycerol.

Key wordsGlycerol oxidation      Heteropolyacid      Encapsulation      Formic acid      Hydrogen peroxide     
Received: 27 October 2017      Published: 15 November 2017
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (21373082, 21773061) and the Innovation Program of Shanghai Municipal Education Commission, China (15ZZ031).

Corresponding Authors: HOU Zhenshan     E-mail:
Cite this article:

YUAN Mingming, LI Difan, ZHAO Xiuge, MA Wenbao, KONG Kang, NI Wenxiu, GU Qingwen, HOU Zhenshan. Selective Oxidation of Glycerol with Hydrogen Peroxide Using Silica-Encapsulated Heteropolyacid Catalyst. Acta Phys. -Chim. Sin., 0, (): 0-0.

URL:     OR

(1) Deuss, P. J.; Scott, M.; Tran, F.; Westwood, N. J.; Vries, J. G.; Barta, K. J. Am. Chem. Soc. 2015, 137 (23), 7456. doi: 10.1021/jacs.5b03693
(2) Chheda, J. N.; Huber, G. W.; Dumesic, J. A. Angew. Chem. Int. Ed. 2007, 46 (38), 7164. doi:10.1002/anie.200604274
(3) Xu, S.; Zhou, P.; Zhang, Z.; Yang, C.; Zhang, B.; Deng, K.; Bottle, S.; Zhu, H. J. Am. Chem. Soc. 2017, 139 (41), 14775. doi: 10.1021/jacs.7b08861
(4) Lange, J, P. Angew. Chem. Int. Ed. 2015, 54 (45), 13186. doi: 10.1002/anie.201503595
(5) Zhu, S. H.; Wang, J. G.; Fan, W. B. Acta Phys. -Chim. Sin. 2016, 32(1), 85.[朱善辉, 王建国, 樊卫斌. 物理化学学报, 2016, 32 (1), 85.]doi:10.3866/PKU.WHXB201511061
(6) Bozell, J. J.; Petersen, G. R. Green Chem. 2010, 12 (4), 539. doi: 10.1039/b922014c
(7) Brandner, A.; Lehnert, K.; Bienholz, A.; Lucas, M.; Claus, P. Top. Catal. 2009, 52 (3), 278. doi:10.1007/s11244-008-9164-2
(8) Gallezot, P. Chem. Soc. Rev. 2012, 41 (4), 1538. doi: 10.1039/c1cs15147a
(9) Loges, B.; Boddien, A.; Junge, H.; Beller, M. Angew. Chem. Int. Ed. 2008, 47 (21), 3962. doi:10.1002/anie.200705972
(10) Gilkey, M. J.; Xu, B. J. ACS Catal. 2016, 6 (3), 1420. doi: 10.1021/acscatal.5b02171
(11) Boddien, A.; Mellmann, D.; Gaertner, F.; Jackstell, R.; Junge, H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011, 333(6050), 1733. doi:10.1126/science.1206613
(12) Yu, W. Y.; Mullen, G. M.; Flaherty, D. W.; Mullins, C. B. J. Am. Chem. Soc. 2014, 136 (31), 11070. doi:10.1021/ja505192v
(13) Barnard, J. H.; Wang, C.; Berry, N. G.; Xiao, J. Chem. Sci. 2013, 4(3), 1234. doi:10.1039/c2sc21923a
(14) Tsurusaki, A.; Murata, K.; Onishi, N.; Sordakis, K.; Laurenczy, G.; Himeda, Y. ACS Catal. 2017, 7 (2), 1123. doi: 10.1021/acscatal.6b03194
(15) Villa, A.; Dimitratos, N.; Chan-Thaw, C. E.; Hammond, C.; Prati, L.; Hutchings, G. J. Acc. Chem. Res. 2015, 48 (5), 1403. doi: 10.1021/ar500426g
(16) Dodekatos, G.; Tüysüz, H. ChemCatChem. 2017, 9 (4), 610. doi: 10.1002/cctc.201601219
(17) D'Agostino, C.; Brett, G.; Divitini, G.; Ducati, C.; Hutchings, G. J.; Mantle, M. D.; F. Gladden, L. F. ACS Catal. 2017, 7 (7), 4235. doi: 10.1021/acscatal.7b01255
(18) Tsuji, A.; Rao, K. T.; Nishimura, S.; Takagaki, A.; Ebitani, K. ChemSusChem 2011, 4 (4), 542. doi:10.1002/cssc.201000359
(19) Rodrigues, E. G.; Pereira, M. F. R.; Chen, X.; Delgado, J. J.; Órfão, J. J. M. Ind. Eng. Chem. Res. 2013, 52 (49), 17390. doi: 10.1021/ie402331u
(20) Sankar, M.; Dimitratos, N.; Knight, D. W.; Carley, A. F.; Tiruvalam, R.; Kiely, C. J.; Thomas, D.; Hutchings, G. J. ChemSusChem. 2009, 2(12), 1145. doi:10.1002/cssc.200900133
(21) Davis, S. E.; Ide, M. S.; Davis, R. J. Green Chem. 2013, 15 (1), 17. doi: 10.1039/c2gc36441g
(22) Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. Angew. Chem. Int. Ed. 2006, 45 (42), 6962. doi:10.1002/anie.200503779
(23) Wang, S. S; Popovic, Z.; Wu, H. H; Liu, Y. ChemCatChem. 2011, 3(7), 1208. doi:10.1002/cctc.201000401
(24) Sarkar, B.; Pendem, C.; Konathala, L. N. S.; Tiwari, R.; Sasaki, T.; Bal, R. Chem. Commun. 2014, 50 (68), 9707. doi: 10.1039/c4cc03842h
(25) Faroppa, M. L.; Musci, J. J.; Chiosso, M. E.; Caggiano, C. G.; Bideberripe, H. P.; Fierro, J. L. G.; Siri, G. J.; Casella, M. L. Chin. J. Catal. 2016, 37 (11), 1982. doi:10.1016/S1872-2067(16)62531-7
(26) Corrado Crotti, C.; Farnetti, E. J. Mol. Catal. A-Chem. 2015, 396, 353. doi:10.1016/j.molcata.2014.10.021
(27) Niu, M.; Hou, Y.; Ren, S.; Wu, W.; Marsh, K. N. Green Chem. 2015, 17 (1), 453. doi:10.1039/C4GC01440E
(28) Huang, Y. B.; Fu, Y. Green Chem. 2013, 15 (5), 1095. doi: 10.1039/C3GC40136G
(29) Lan, J. H.; Lin, J. C.; Chen, Z. C.; Yin, G. C. ACS Catal. 2015, 5 (4), 2035. doi:10.1021/cs501776n
(30) Lachkar, D.; Vilona, D.; Dumont, E.; Lelli, M.; Lacote, E. Angew. Chem. Int. Ed. 2016, 55 (20), 5961. doi:10.1002/anie.201510954
(31) Ma, Q.; Tong, J. H.; Su, L. D.; Wang, W. H.; Ma, W. M.; Bo, L. L. Acta Phys. -Chim. Sin. 2016, 32 (12), 2961.[马青, 童金辉, 宿玲弟, 王文慧, 马文梅, 薄丽丽. 物理化学学报, 2016, 32 (12), 2961.]doi:10.3866/PKU.WHXB201609181
(32) Okuhara, T. Chem. Rev. 2002, 102 (10), 3641. doi: 10.1021/cr0103569
(33) Lu, T.; Niu, M.; Hou, Y.; Wu, W.; Ren, S.; Yang, F. Green Chem.2016, 18 (17), 4725. doi:10.1039/c6gc01271j
(34) George, B.; Tsigdinos, A.; Hallada, C. J. Inorg. Chem. 1968, 7 (3), 437. doi:10.1021/ic50061a009
(35) Zhao, X. S.; Lu, G. Q.; Whittaker, A. K.; Millar, G. J.; Zhu, H. Y. J. Phys. Chem. B. 1997, 101, 6525. doi:10.1021/jp971366
(36) Sheldon, R. A.; Wallau, M.; Arends, I. W. C. E.; Schuchardt, U. Acc. Chem. Res. 1998, 31 (8), 485. doi:10.1021/ar9700163
(37) Jing, L.; Shi, J.; Zhang, F.; Zhong, Y. J.; Zhu, W. D. Ind. Eng. Chem. Res. 2013, 52 (30), 10095. doi:10.1021/ie4007112
(38) Dippong, T.; Leveib, E. A.; Cadarb, O.; Mesarosc, A.; Borodid, G. J. Anal. Appl. Pyrol. 2017, 125, 169. doi: 10.1016/j.jaap.2017.04.005
(39) Capel-Sanchez, M. C.; Barrio, L.; Campos-Martin, J. M.; Fierro, J. L.G. J. Colloid Interface Sci. 2004, 277 (1), 146. doi: 10.1016/j.jcis.2004.04.055
(40) Jing, F.; Katryniok, B.; Dumeignil, F.; Bordes-Richard, E.; Paul, S. Catal. Sci. Technol. 2014, 4 (9), 2938. doi:10.1039/c4cy00518j
(41) Feng, L.; Zhang, Y, N.; Xi, J. M.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L. Langmuir 2008, 24 (8), 4114. doi:10.1021/la703821h
(42) Feng, X. Q.; Gao, X. F.; Wu, Z. N.; Jiang, L.; Zheng, Q. S. Langmuir 2007, 23 (9), 4892. doi:10.1021/la063039b
(43) Viswanadham, B.; Jhansi, P.; Chary, K. V. R.; Friedrich, H. B.; Singh, S. Catal. Lett. 2016, 146 (2), 364. doi:10.1007/s10562-015-1646-9
(44) Zhao, K. Y.; Wang, X. H.; Chen, T.; Wu, H.; Li, J. G.; Yang, B. X.; Li, D. Y.; Wei, J. F. Ind. Eng. Chem. Res. 2017, 56 (9), 2549. doi: 10.1021/acs.iecr.6b03015

[1] LI Xu, LI Qiang-Guo, JIANG Jian-Hong, GU Hui-Wen, LI Chuan-Hua, XIAO Sheng-Xiong, LI Xia. Design and Application of a Precise Isoperibol Combus-tion-Solution-Reaction Microcalorimeter[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1114-1122.
[2] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[3] Lü Yang, SONG Yu-Jiang, LIU Hui-Yuan, LI Huan-Qiao. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294.
[4] CHEN Xin, HU Shao-Zheng, LI Ping, LI Wei, MA Hong-Fei, LU Guang. Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2532-2541.
[5] JIN Cheng-Wei, WANG Ye, XU Su-Ling, ZHANG Jian-Jun. Synthesis, Crystal Structures and Thermochemical Properties of Ternary Rare Earth Complexes Based on 3,4-Diethoxybenzoic Acid and 2,2'-Bipyridine[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2232-2240.
[6] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1758-1764.
[7] MA Hong-Xing, GE Ting-Jie, CAI Qian-Qian, XU Ying-Hua, MA Chun-An. Catalytic Effect of Silver Cathodes on 3,4,5,6-Tetrachloropicolinic Acid Dechlorination in Aqueous Solutions[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1715-1721.
[8] ZOU Jing, FAN Zhi-Lin, JIANG Li-Sha, ZHOU Dan-Hong. Theoretical Study of the Solvent Adsorption on Ti-Peroxo Active Center in Ti-MWW Zeolite[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 935-942.
[9] MA Qing, TONG Jin-Hui, SU Ling-Di, WANG Wen-Hui, MA Wen-Mei, BO Li-Li. Highly Selective Hydroxylation of Benzene Catalyzed by Hybrids of Polyoxometalate/Ionic Liquid[J]. Acta Phys. -Chim. Sin., 2016, 32(12): 2961-2967.
[10] LUO Liu-Xuan, SHEN Shui-Yun, ZHU Feng-Juan, ZHANG Jun-Liang. Formic Acid Oxidation by Pd Monolayers on Pt3Ni Nanocubes[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 337-342.
[11] ZHU Qing-Gong, SUN Xiao-Fu, KANG Xin-Chen, MA Jun, QIAN Qing-Li, HAN Bu-Xing. Cu2S on Cu Foam as Highly Efficient Electrocatalyst for Reduction of CO2 to Formic Acid[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 261-266.
[12] MA Hao, LONG Jin-Xing, WANG Fu-Rong, WANG Le-Fu, LI Xue-Hui. Conversion of Cellulose to Butyl Levulinate in Bio-Butanol Medium Catalyzed by Acidic Ionic Liquids[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 973-979.
[13] HAO Xue-Liang, ZHAO Jin-Ge, GAO Jian-Rong, HAN Liang. Synthesis and Photoelectric Properties of Carbazole Sensitizing Dyes Based on a Benzoic Acid Acceptor[J]. Acta Phys. -Chim. Sin., 2015, 31(10): 1977-1984.
[14] HUANG Zong-Ling, WANG Li-Ping, MOU Cheng-Xu, LI Jing-Ze. Magnesium Terephthalate as an Organic Anode Material for Sodium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1787-1793.
[15] ZHOU Yang, HU Xian-Chao, LI Li-Qing, CHEN Xi-Rong. Palladium Nanoparticles Supported on Hollow Mesoporous Tungsten Trioxide Microsphere as Electrocatalyst for Formic Acid Oxidation[J]. Acta Phys. -Chim. Sin., 2014, 30(1): 83-87.