Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (6): 699-707    DOI: 10.3866/PKU.WHXB201711221
Special Issue: Special issue for Chemical Concepts from Density Functional Theory
ARTICLE     
Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions
Paul GEERLINGS*(),Frank DE PROFT,Stijn FIAS
Download: HTML     PDF(325KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In view of its use as reactivity theory, Conceptual Density Functional Theory (DFT), introduced by Parr et al., has mainly concentrated up to now on the E = E[N, v] functional. However, different ensemble representations can be used involving other variables also, such as ρ and μ. In this study, these different ensemble representations (E, ?, F, and R) are briefly reviewed. Particular attention is then given to the corresponding second-order (functional) derivatives, and their analogies with the second-order derivatives of thermodynamic state functions U, F, H, and G, which are related to each other via Legendre transformations, just as the DFT functionals (Nalewajski and Parr, 1982). Starting from an analysis of the convexity/concavity of the DFT functionals, for which explicit proofs are discussed for some cases, the positive/negative definiteness of the associated kernels is derived and a detailed comparison is made with the thermodynamic derivatives.The stability conditions in thermodynamics are similar in structure to the convexity/concavity conditions for the DFT functionals. Thus, the DFT functionals are scrutinized based on the convexity/concavity of their two variables, to yield the possibility of establishing a relationship between the three second-order reactivity descriptors derived from the considered functional. Considering two ensemble representations, F and ?, F is eliminated as it has two dependent (extensive) variables, N and ρ. For ?, on the other hand, which is concave for both of its intensive variables (μ and υ), an inequality is derived from its three second-order (functional) derivatives: the global softness, the local softness, and the softness kernel. Combined with the negative value of the diagonal element of the linear response function, this inequality is shown to be compatible with the Berkowitz-Parr relationship, which relates the functional derivatives of ρ with υ, at constant N and μ. This was recently at stake upon quantifying Kohn's Nearsightedness of Electronic Matter. The analogy of the resulting inequality and the thermodynamic inequality for the G derivatives is highlighted. Potential research paths for this study are briefly addressed; the analogies between finite-temperature DFT response functions and their thermodynamic counterparts and the quest for analogous relationships, as derived in this paper, for DFT functionals that are analogues of entropy-dimensioned thermodynamic functions such as the Massieu function.



Key wordsConceptual DFT      Response kernels      Analogy with thermodynamics      Stability-concavity/convexity     
Received: 11 September 2017      Published: 22 November 2017
Fund:  S.F. wishes to thank the Research Foundation Flanders (FWO) and the European Union's Horizon 2020 Marie Sklodowska-Curie grant (No. 706415) for financially supporting his post-doctoral research at the ALGC group. F.D.P. and P.G. acknowledge the Research Foundation-Flanders (FWO) and the Vrije Universiteit Brussel (VUB) for continuous support to the ALGC research group, in particular the VUB for a Strategic Research Program awarded to ALGC, started up at January 1, 2013. F.D.P. also acknowledges the Francqui foundation for a position as Francqui Research Professor
Corresponding Authors: Paul GEERLINGS     E-mail: pgeerlin@vub.ac.be
Cite this article:

Paul GEERLINGS,Frank DE PROFT,Stijn FIAS. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions. Acta Phys. -Chim. Sin., 2018, 34(6): 699-707.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201711221     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I6/699

S V T P N ρ μ v
U + + F / +
F + - R + 0
H + - E + - -
G - - ? - -
extensive intensive   extensive intensive
 
1 Parr R. G. ; Yang W. Ann. Rev. Phys. Chem. 1995, 46, 701.
2 Chermette H. J. Comput. Chem. 1999, 20, 129.
3 Geerlings P. ; De Proft F. ; Langenaeker W. Chem. Rev. 2003, 103, 1793.
4 De Proft F. ; Geerlings P. Chem. Rev. 2001, 101, 1451.
5 Ayers P. W. ; Anderson J. S. M. ; Bartolotti L. J. Int. J.Quantum Chem. 2005, 101, 520.
6 Gazquez J. L. J.Mex. Chem. Soc. 2008, 52, 3.
7 Liu S. B. Acta Phys. -Chim. Sin. 2009, 25, 590.
8 Gross E. K. U. ; Kohn W. Phys. Rev. Lett. 1985, 55, 2850.
9 Casida M. E. Recent Advances in Density Functional Methods; Chong, D. P. Ed., World Scientific Pub. Co. Inc.: Singapore 1995, p.155.
10 Parr R. G. ; Yang W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA 1989.
11 Ayers P.W. ; De Proft F. ; Borgoo A. ; Geerlings P. J. Chem. Phys. 2007, 126, 224107.
12 Sablon N. ; De Proft F. ; Geerlings P. J. Phys. Chem. Lett. 2010, 1, 1228.
13 Sablon N. ; De Proft F. ; Ayers P. W. ; Geerlings P. J. Chem. Theory Comput. 2010, 6, 3671.
14 Fias S. ; Boisdenghien Z. ; Stuyver T. ; Audiffred M. ; Merino G. ; Geerlings P. ; De Proft F. J.Phys. Chem. A 3556, 117, 3556.
15 Fias S. ; Geerlings P. ; Ayers P. ; De Proft F. Phys. Chem. Chem. Phys. 2013, 15, 2882.
16 Boisdenghien Z. ; Van Alsenoy C. ; De Proft F. ; Geerlings P. J.Chem. Theory Comp. 2013, 9, 1007.
17 Yang W. ; Cohen A. J. ; De Proft F. ; Geerlings P. J.Chem. Phys. 2012, 136, 144110.
18 Boisenghien Z. ; Fias S. ; Van Alsenoy C. ; De Proft F. ; Geerlings P. Phys. Chem. Chem. Phys. 2014, 16, 14614.
19 Fias S. ; Boisdenghien Z. ; De Proft F. ; Geerlings P. J.Chem. Phys. 2014, 141, 184107.
20 Geerlings P. ; Fias S. ; Boisdenghien Z. ; De Proft F. Chem. Soc. Rev. 2014, 43, 4989.
21 Geerlings P. ; Boisdenghien Z. ; De Proft F. ; Fias S. Theor. Chem. Acc. 2016, 135, 213.
22 Stuyver T. ; Fias S. ; De Proft F. ; Fowler P. ; Geerlings P. J.Chem. Phys. 2015, 142, 094103.
23 Nalewajski R. F. ; Parr R. G. J.Chem. Phys. 1982, 77, 399.
24 Berkowitz M. ; Parr R. G. J.Chem. Phys. 1988, 88, 2554.
25 Senet P. J.Chem. Phys. 1996, 105, 6471.
26 Ayers P. W. ; Parr R. G. J.Am. Chem. Soc. 2001, 123, 2007.
27 Ayers P. W. Theor. Chem. Acc. 2001, 106, 271.
28 Liu S. ; Li T. ; Ayers P. W. J.Chem. Phys. 2009, 131, 114106.
29 Yang W. ; Parr R. Proc. Natl. Acad. Sci. USA 1985, 82, 6723.
30 Mendez F. ; Gazquez J. L. J.Am. Chem. Soc. 1994, 116, 9298.
31 Damoun S. ; Van de Woude G. ; Mendez F. ; Geerlings P. J.Phys. Chem. 1997, 101, 886.
32 Geerlings P. ; De Proft F. Int. J.Quantum Chem. 2000, 80, 227.
33 Heidar-Zadeh F. ; Richer M. ; Fias S. ; Miranda-Quintana R. A. ; Chan M. ; Franco-Perez M. ; Gonzalez-Espinoza C. E. ; Kim T. D. ; Lanssens C. ; Patel A. H.G. ; et al Chem. Phys. Lett. 2016, 660, 307.
34 Kohn W. Phys. Rev. Lett. 1996, 76, 3168.
35 Prodan E. ; Kohn W. Proc. Natl. Acad. Sci. USA 2005, 102, 11635.
36 Fias S. ; Heidar-Zadeh F. ; Geerlings P. ; Ayers P. W. Proc. Natl. Acad. Sci. USA 1163, 3, 114.
37 Berkowitz M. ; Ghosh S. K. ; Parr R. J. Am. Chem. Soc. 1985, 107, 6811.
38 Ghosh S. K. ; Berkowitz M. J. Chem. Phys. 1985, 83, 2976.
39 Ghosh S. K. Chem. Phys. Lett. 1990, 172, 77.
40 Harbola M. K. ; Chattaraj P. K. ; Parr R. G. Isr. J.Chem. 1991, 31, 395.
41 Langenaeker W. ; De Proft F. ; Geerlings P. J.Phys. Chem. 1995, 99, 6424.
42 Chamorro E. ; De Proft F. ; Geerlings P. J.Chem. Phys. 2005, 123, 154104.
43 Torrent-Sucarrat M. ; Salvador P. ; Sola M. ; Geerlings P. J.Comp. Chem. 2007, 28, 574.
44 Chattaraj P. ; Roy D. R. ; Geerlings P. ; Torrent-Sucarrat M. Theor. Chem. Acc. 2007, 118, 923.
45 Polanco-Ramirez C. A. ; Franco-Perez M. ; Carmona-Espindola J. ; Gazquez J. L. ; Ayers P. W. Phys. Chem. Chem. Phys. 2017, 19, 12355.
46 Liu S. ; Parr R. G. J.Chem. Phys. 1997, 106, 5578.
47 Lieb E. H. Int. J.Quantum Chem. 1983, 24, 243.
48 Eschrig H. The Fundamentals of Density Functional Theory; Teubner: Stuttgart-Leipzig, Germany 1996.
49 Kvaal S. ; Ekstrom U. ; Teale A. M. ; Helgaker T. J.Chem. Phys. 2014, 140, 18A.
50 Perdew J. ; Parr R. ; Levy M. ; Balduz J. L. J.Phys. Rev. Lett. 1982, 49, 1691.
51 Fias, S. ; Geerlings, P. ; De Proft, F. ; Ayers, P. W. in preparation.
52 Ghosh S. K. ; Berkowitz M. ; Parr R. G. Proc. Natl. Acad. Sci. USA 1984, 81, 8025.
53 Nagy A. ; Parr R. G. Proc. Indian Acad. Sci. 1994, 106, 217.
54 Nagy A. ; Parr R. G. J.. Mol. Struct. THEOCHEM 2000, 501- 502.
55 Nagy A. Int. J.Quantum Chem. 2017, 117, e25396.
56 Callen H. B. Thermodynamics and an Introduction to Thermostatistics; John Wiley: New York, NY, USA 1985.
57 Prigogine I. ; Defay R. Chemical Thermodynamics; Longman: London, UK 1954.
58 Berry R. S. ; Rice S. A. ; Ross J. Physical Chemistry; Wiley: New York, NY, USA 1980.
59 Cardenas C. ; Echegaray E. ; Chakraborty D. ; Anderson J. S. M. ; Ayers P. W. J.Chem. Phys. 2009, 130, 244105.
60 Ayers P. W. Phys. Rev. A 0125, 13, 012513.
61 Franco-Perez M. ; Ayers P. W. ; Gazquez J. L. ; Vela A. J.Chem. Phys. 2015, 143, 244117.
62 Franco-Perez M. ; Gazquez J. L. ; Ayers P. W. ; Vela A. J.Chem. Phys. 2015, 143, 154103.
[1] Ulises OROZCO-VALENCIA,L. GÁZQUEZ José,Alberto VELA. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 692-698.
[2] ZHONG Ai-Guo, WU Jun-Yong, YAN Hua, JIN Yan-Xian, DAI Guo-Liang, JIANG Hua-Jiang, PAN Fu-You, LIU Shu-Bin. Structure, UV-Vis Spectroscopy and Reactivity Properties of MelamineMetal(II) Complexes[J]. Acta Phys. -Chim. Sin., 2009, 25(07): 1367-1372.
[3] LIU Shu-Bin. Conceptual Density Functional Theory and Some Recent Developments[J]. Acta Phys. -Chim. Sin., 2009, 25(03): 590-600.