Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (6): 581-597    DOI: 10.3866/PKU.WHXB201711222
REVIEW     
Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries
Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO*(),Jun CHEN
Download: HTML     PDF(3470KB) Export: BibTeX | EndNote (RIS)      

Abstract  

With solar, wind, and other types of renewable energy incorporated into electrical grids and with the construction of smart grids, energy storage technology has become essential to optimize energy utilization. Due primarily to its abundance and low cost, aqueous rechargeable sodium-ion batteries (ARSBs) have received increasing attention in the field of electrochemical energy storage technology, and represent a promising alternative to energy storage in future power grids. However, because of the limitations of the thermodynamics of electrochemical processes in water, reactions in aqueous solution are more complicated compared to an organic system. Many parameters must be taken into account in an aqueous system, such as electrolyte concentration, dissolved oxygen content, and pH. As a result, it is challenging to select an appropriate electrode material, whose capacity, electrochemical potential, adaptability, and even catalytic effect may seriously affect the battery performance and hamper its application. Therefore, the development of advanced electrode materials, which can suppress side reactions of the battery and have good electrochemical performance, has become the focus of ARSB research. This paper briefly discusses the characteristics of ARSBs and summarizes the latest research progress in the development of electrode materials, including oxides, polyanionic compounds, Prussian blue analogues, and organics. This review also discusses the challenges remaining in the development of ARSBs, and suggests several ways to solve them, such as by using multivalent ions, hybridized electrolytes, etc., and speculates about future research directions. The studies and concepts discussed herein will advance the development of ARSBs and promote the optimization of energy utilization.



Key wordsAqueous sodium ion battery      Cathode material      Anode material      Electrolyte     
Received: 27 October 2017      Published: 22 November 2017
Fund:  the National Key R & D Program of China(2016YFB0901500);the National Key R & D Program of China(2016YFB0101201);the National Natural Science Foundation of China(51771094)
Corresponding Authors: Zhanliang TAO     E-mail: taozhl@nankai.edu.cn
Cite this article:

Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201711222     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I6/581

Fig 1 Schematic illustration of the working mechanism of aqueous sodium ion battery
Na Li
Atomic weight/(g·mol-1) 23 6.94
Eo/V (vs SHE) -2.71 -3.04
Melting point/℃ 97.7 180.5
Abundance/% 2.36 0.002
Distribution Everywhere 70% in South America
Price of carbonates/
(RMB per·kg-1)
~2 ~40
Table 1 The comparison between Na and Li elements9
Fig 2 The potentials of the electrode materials are described vs SHE, Na+/Na13. The red dotted line illustrates H2 and O2 evolution limits in neutral aqueous solution.
Fig 3 Structural illustrations of (a) λ-MnO2, (b) δ-MnO2, (c) γ-MnO2, (d) P2-type NaxMnO2 and (e) P3-type NaxMnO231.
Fig 4 Crystal structures of polyanion-based cathode materials. (a) NASICON Na3V2(PO4)3, (b) Olive NaFePO4, (c) Maricite NaMPO4, (d) Tetragonal Na7V4(P2O7)4(PO4), (e) Tetragonal NaVPO4F, (f) P42/mnm-Tetragonal-Na3V2(PO4)2F3, (g) I4/mmm-Tetragonal-Na3V2O2(PO4)2F, (h) Triclinic Na2FeP2O7.
Fig 5 (a) SEM image of FeFe(CN)6 nanocrystals, (b) CV curves, (c) charge and discharge profiles at a current density of 250 mA∙g-1 and long-term cycling stability 10C rate (1C = 125 mA∙g-1), (d) rate performance 78
Fig 6 SEM or TEM images of different NaTi2(PO4)3 (a) Microwave Synthesized NaTi2(PO4)399, (b) Graphite-coated with additional carbon nanotubes added100, (c) NaTi2(PO4)3-graphene nanocomposite94, (d) NaTi2(PO4)3/MWNTs nanocomposites101, (e) NaTi2(PO4)3/graphene composites 102, (f) NaTi2(PO4)3-carbon array 103, (g) Hydrothermally synthesized NaTi2(PO4)3 104, (h) NaTi2(PO4)3/carbon composites 105
Fig 7 Charge/discharge profiles, CV curves and digital photos of full batteries. (a) Charge/discharge profiles of NaTi2(PO4)3/A-δ-MnO2 (A = K+, Na+) hybrid full cells at a current density of 200 mA∙g-1111, (b) Discharge curves of Na0.44MnO2/NaTi2(PO4)3-C system at different C-rates112, (c) CV curve of cathode and anode of NaTi2(PO4)3/Na3V2(PO4)3 system 113, (d) CV curves of Cu—N≡C—FeⅢ/Ⅱ/Mn—N≡C—MnⅢ/Ⅱ system at a 1C rate and its cycling and coulombic efficiency at a rate of 10C108(e), (f) λ MnO2/activated carbon hybrid ion battery 114, (g) The galvanostatic profiles of the (H) SNDI/CoCuHCF system 74.
Type Cathode Anode Electrolyte (pH) AV. Voltage/V Capacity/
(mAh·g-1)
Retention/%
(No. of cycles)
Ref.
Cathode-based
Mn-based oxides Na0.95MnO2a Zn 0.5 mol·L-1 Zn(CH3COO)2
0.5 mol·L-1 CH3COONa (9.5)
1.4 40 (4C) 92 (1000) 119
K0.27MnO2a NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 0.8 66.5 (200 mA·g-1) ~100 (100) 41
Na0.66[Mn0.66Ti0.34]O2a NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 1.2 76 (2C) 89 (300) 43
A-δ-MnO2 NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 0.8 66.4b (200 mA·g-1) 90 (200) 111
Na0.44MnO2 NaTi2(PO4)3a 1 mol·L-1 Na2SO4 (7) 1.1 120 (0.6C) 60 (700) 112
γ-MnO2a Zn 7 mol·L-1 NaOH + 1 mol·L-1
ZnSO4 (14.7)
1.35 225 (0.25 mA·cm-2) 76 (25) 116
NaMnO2 NaTi2(PO4)3 2 mol·L-1 CH3COONa (9.5) 1.15 37b (5C) 75 (500) 117
NaMnO2 AC 0.5 mol·L-1 Na2SO4(7) 1.9 38.9 F·g-1 b(10C) 97 (10000) 118
Na0.58MnO2•0.48H2O NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 1.4 39 b (10C) 94 (1000) 39
Polyanionic compounds NaFePO4a NaTi2(PO4)3 1 mol·L-1 Na2SO4 (12) 0.6 70 (1C) 76 (20) 51
Na3V2O2x(PO4)2F3-2xa NaTi2(PO4)3 10 mol·L-1 NaClO4 + 2% (φ) VC 1.45 39 b (10C) 75 (400) 62
Na3V2(PO4)3 NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 1.2 58 b (10 A·g-1) 50 (50) 113
Na2VTi(PO4)3 a Na2VTi(PO4)3 1 mol·L-1 Na2SO4 (7) 1.2 50.4 (1C) 70 (1000) 120
Na3MnTi(PO4)3 Na3MnTi(PO4)3 1 mol·L-1 Na2SO4(7) 1.4 56.5 b (1C) 98(100) 121
Prussian blue analogues Na2NiFe(CN)6 NaTi2(PO4)3a 1 mol·L-1 Na2SO4 (7) 1.27 76 (5C) 88 (250) 75
Na2CuFe(CN)6 NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 1.4 85 b (10C) 88 (1000) 76
CuHCF MnHCF 10 mol·L-1 NaClO4 with Mn(ClO4)2 (6.4) 0.95 23 b (10C) 99.8 (1000) 108
Anode-based
Activated carbon
(AC)
Na4Mn9O18 a AC a 1 mol·L-1 Na2SO4 (7) - 61.1 F·g-1
(500 mA·g-1)
84 (4000) 35
Na0.35MnO2 a AC 0.5 mol·L-1 Na2SO4 (7) 0.5 157 F·g-1 (200 mA·g-1) > 90 (5000) 37
Maricite
NaMn1/3Co1/3Ni1/3PO4 a
AC 2 mol·L-1 NaOH (14.3) 1.3 45 F·g-1
(0.5 A·g-1)
> 95 (1000) 58
Na0.44MnO2 a AC 1 mol·L-1 Na2SO4 (7-8) 1.7 45 (C/8) ~100 (1000) 87
λ-MnO2 a AC 1 mol·L-1 Na2SO4 (7) 1.2 -(3C) 100 (5000) 114
NaTi2(PO4)3 Na0.44MnO2 NaTi2(PO4)3 a 1 mol·L-1 Na2SO4 (7) 1.13 68 (15.7 mA·g-1) 97.5 (20) 99
Na0.44MnO2 NaTi2(PO4)3 a 1 mol·L-1 Na2SO4 (7) 1.0 130 (0.1C) 86 (100) 100
Na0.44MnO2 NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 1.1 50 b (2C) 39 (300) 101
Na0.44MnO2 NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 1.1 31 b (0.5C) 84 (500) 103
K0.27MnO2a NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 0.7 83 (200 mA·g-1) 83 (100) 42
FePO4 NaTi2(PO4)3 a 1 mol·L-1 Na2SO4 + NaOH (11) 0.7 100 (0.2 mA) 60 (20) 56
Na3V2O2x(PO4)2F3-2x a NaTi2(PO4)3 10 mol·L-1 NaClO4 + 2% (φ) VC (1.7) 1.5 35 (10C) 90 (200) 63
Na2CoFe(CN)6 a NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 107 100 (5C) 98 (100) 77
Oxides NaFe0.95V0.05PO4 Na1.2V3O8 a 10.73 mol·L-1 NaNO3 (7) 0.5 100 (100 mA·g-1) 90 (1000) 60
Na0.44MnO2 Na2V6O16•nH2O a 1 mol·L-1 Na2SO4 (7) 0.9 30 (40 mA·g-1) 77 (30) 91
Na0.35MnO2 PPy@MoO3 a 0.5 mol·L-1 Na2SO4 (7) 0.8 25 (550 mA·g-1) 79 (1000) 115
Organics NaVPO4F Polymide 5 mol·L-1 NaNO3 (7) 1.0 165 b (50 mA·g-1) 68 (20) 61
KCo0.5Cu0.5Fe(CN)6 a SNDI 1 mol·L-1 Na2SO4 (7) 1.1 34 (10C) 88 (100) 74
Na3V2(PO4)3 a PPTO 5 mol·L-1 NaNO3 (7) 1.0 201 (1C) 79 (80) 110
Table 2 Electrochemical Properties of Representative Full Cell Configurations for ARSB
1 Yang Z. ; Zhang J. ; Kintner-Meyer M. C. W. ; Lu X. ; Choi D. ; Lemmon J. P. ; Liu J. Chem. Rev. 2011, 111, 3577.
2 Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
3 Wen Y. ; He K. ; Zhu Y. J. ; Han F. D. ; Xu Y. H. ; Matsuda I. ; Ishii Y. ; Cumings J. ; Wang C.S. Nat. Commun. 2014, 5, 4033.
4 Slater M. D. ; Kim D. ; Lee E. ; Johnson C. S. Adv. Funct. Mater. 2013, 23, 947.
5 Kundu D. ; Talaie E. ; Duffort V. ; Nazar L. F. Angew. Chem. Int. Ed. 2015, 54, 3431.
6 Fang Y. J. ; Chen Z. X. ; Ai X. P. ; Yang H. X. ; Cao Y. L. Acta Phys. -Chim. Sin. 2017, 33, 211.
6 方永进; 陈重学; 艾新平; 杨汉西; 曹余良. 物理化学学报, 2017, 33, 211.
7 Dong X. L. ; Chen L. ; Liu J. Y. ; Haller S. ; Wang Y. G. ; Xia Y. Y. Sci. Adv. 2016, 2, e1501038.
8 Yang H. X. ; Qian J. F. J. Inorg. Mater. 2013, 28, 1165.
8 杨汉西; 钱江锋. 无机材料学报, 2013, 28, 1165.
9 Zhang N. ; Liu Y. C. ; Chen C. C. ; Tao Z. L. ; Chen J. Chin. J. Inorg. Chem. 2015, 31, 1739.
9 张宁; 刘永畅; 陈程成; 陶占良; 陈军. 无机化学学报, 2015, 31, 1739.
10 Tang W. ; Zhu Y. ; Hou Y. ; Liu L. ; Wu Y. ; Loh K. P. ; Zhang H. ; Zhu K. Energy Enviorn. Sci. 2013, 6, 2093.
11 Li W. ; Dahn J. R. ; Wainwright D. S. Science 1994, 264, 1115.
12 Cao Y. ; Wang Y. G. ; Wang Q. ; Zhang Z. Y. ; Chen Y. ; Xia Y. Y. ; Dai X. Energy Storage Sci. Technol. 2016, 5, 317.
12 蓸翊; 王永刚; 张青; 张兆勇; 车勇; 夏永姚; 戴翔. 储能科学与技术, 2016, 5, 317.
13 Kim H. ; Hong J. ; Park K. Y. ; Kim H. ; Kim S. W. ; Kang K. Chem. Rev. 2014, 114, 11788.
14 Lu Y. ; Goodenough J. B. ; Kim Y. J. Am. Chem. Soc. 2011, 133, 5756.
15 Luo J. Y. ; Cui W. J. ; He P. ; Xia Y. Y. Nat. Chem. 2010, 2, 760.
16 Ghodbane O. ; Pascal J. L. ; Favie F. ACS Appl. Mater. Interfaces 2009, 1, 1130.
17 Hill L. I. ; Verbaere A. ; Guyomard D. J. Power Sources 2003, 119-121, 226.
18 Cao J. ; Mao Q. H. ; Shi L. ; Qian Y. T. J. Mater. Chem. 2011, 21, 16210.
19 Kitchaev D. A. ; Dacek S. T. ; Sun W. H. ; Ceder G. J. Am. Chem. Soc. 2017, 139, 2672.
20 Tarascon J. M. ; Guyomard D. G. ; Wilkens B. ; Mc Kinnon W. R. ; Barboux P. Solid State Ionics 1992, 57, 113.
21 Kanoh H. ; Tang W. ; Makita Y. ; Ooi K. Langmuir 1997, 13, 6845.
22 Athouel L. ; Moser F. ; Dugas R. ; Crosnier O. ; Belanger D. ; Brousse T. J. Phys. Chem. C 2008, 112, 7270.
23 Athouel L. ; Moser F. ; Dugas R. ; Crosnier O. ; Belanger D. ; Brousse T. ECS Trans. 2008, 16, 119.
24 Shao J. ; Li X. Y. ; Qu Q. T. ; Wu Y. P. J. Power Sources 2013, 223, 56.
25 Komaba S. ; Ogata A. ; Tsuchikawa T. Electrochem. Commun. 2008, 10, 1435.
26 Minakshi M. Mater. Sci. Eng. B 2012, 177, 1788.
27 Qu Q. T. ; Liu L. L. ; Wu Y. P. ; Holze R. Electrochim. Acta 2013, 96, 8.
28 Sun X. Structures and Electrochemical Performances of Transition Metal Oxides NaMO2 as Electrode Materials for Sodium-Ion Batteries. Ph. D. Dissertation University of Science and Technology of China, Anhui 2016.
28 孙信. 过渡金属氧化物NaxMO2结构调控和储钠性能的研究 合肥:中国科学技术大学, 2016.
29 Su D. W. ; Wang C. Y. ; Ahn H. J. ; Wang G. X. Chem. Eur. J. 2013, 19, 10884.
30 Liu Y. C. ; Chen C. C. ; Zhang N. ; Wang L. B. ; Xiang X. D. ; Chen J. J. Electrochem. 2016, 22, 437.
30 刘永畅; 陈程成; 张宁; 王刘彬; 向兴德; 陈军. 电化学, 2016, 22, 437.
31 Sauvage F. ; Baudrin E. ; Tarascon J. M. Sens. Actuators, B 2007, 120, 638.
32 Parant J. P. ; Olazcuaga R. ; Devalette M. ; Fouassier C. ; Hagenmuller P. J. Solid State Chem. 1971, 3, 1.
33 Kim H. ; Kim D. J. ; Seo D. H. ; Yeom M. S. ; Kang K. ; Kim D. K. ; Jung Y. Chem. Mater. 2012, 24, 1205.
34 Kim D. J. ; Ponraj R. ; Kannan A. G. ; Lee H. W. ; Fathi R. ; Ruffo R. ; Mari C. M. ; Kim D. K. J. Power Sources 2013, 244, 758.
35 Liu X. ; Zhang N. ; Ni J. ; Gao L. J. Solid State Electrochem. 2013, 17, 1939.
36 Dai K. ; Mao J. ; Song X. ; Battaglia V. ; Liu G. J. Power Sources 2015, 285, 161.
37 Zhang B. H. ; Liu Y. ; Chang Z. ; Yang Y. Q. ; Wen Z. B. ; Wu Y. P. ; Holze R. J. Power Sources 2014, 253, 98.
38 Tevar A. D. ; Whitacre J. F. J. Electrochem. Soc. 2010, 157, A870.
39 Zhang X. Q. ; Hou A. G. ; Li A. N. ; Liang A. W. ; Zhu Y. C. ; Qian Y. T. J. Mater. Chem. A 2016, 4, 856.
40 Yu F. ; Zhang S. M. ; Fang C. ; Liu Y. ; He S. Y. ; Xia J. ; Yang J. H. ; Zhang N. Ceram. Int. 2017, 43, 9960.
41 Liu Y. ; Qiao Y. ; Zhang W. ; Xu H. ; Li Z. ; Shen Y. ; Yuan L. ; Hu X. ; Dai X. ; Huang Y. H. Nano Energy 2014, 5, 97.
42 Liu Y. ; Qiao Y. ; Lou X. F. ; Zhang X. H. ; Huang Y. H. ACS Appl. Mater. Inter. 2016, 8, 14564.
43 Wang Y. S. ; Mu L. Q. ; Liu J. ; Yang Z. Z. ; Yu X. Q. ; Gu L. ; Hu Y. S. ; Li H. ; Yang X. Q. ; Chen L. Q. et al. Adv. Energy Mater. 2015, 5, 1501005.
44 Jung Y. H. ; Hong S. T. ; Kim D. K. J. Electrochem. Soc. 2013, 160, A897.
45 Andersson A. S. ; Kalska B. ; Haggstrom L. ; Thomas J. O. Solid State Ionics 2000, 130, 41.
46 Padhi A. K. ; Nanjundaswamy K. S. ; Masquelier C. ; Goodenough J. B. J. Electrochem. Soc. 1997, 144, 2581.
47 Tarascon J. M. ; Armand M. Nature 2001, 414, 359.
48 Song W. X. ; Hou H. S. ; Ji X. B. Acta Phys. -Chim. Sin. 2017, 33, 103.
48 宋维鑫; 侯红帅; 纪效波. 物理化学学报, 2017, 33, 103.
49 Song W. W. ; Ji X. B. ; Zhu Y. ; Zhu H. J. ; Li F. Q. ; Chen J. ; Lu F. ; Yao Y. P. ; Banks C. E. ChemElectroChem 2014, 1, 871.
50 Mason C. M. ; Lange F. ECS Electrochem. Lett. 2015, 4, A79.
51 Fernandez-Ropero A. J. ; Saurel D. ; Acebedo B. ; Rojo T. ; Casas-Cabanas M. J. Power Sources 2015, 291, 40.
52 Vujkovic M. ; Mentus S. J. Power Sources 2014, 247, 184.
53 Levi M. D. ; Sigalov S. ; Salitra G. ; Elazari R. ; Aurbach D. ; Daikhin L. ; Presser V. J. Phys. Chem. C 2013, 117, 1247.
54 Zhao Z. W. ; Si X. F. ; Liang X. X. ; Liu X. H. ; He L. H. Trans. Nonferrous Met. Soc. China 2013, 23, 1157.
55 Moreau P. ; Guyomard D. ; Gaubicher J. ; Boucher F. Chem. Mater. 2010, 22, 4126.
56 Li Z. ; Ravnsbaek D. B. ; Xiang K. B. ; Chiang Y. M. Electrochem. Commun. 2014, 44, 12.
57 Minakshi M. ; Meyrick D. J. Alloys Compd. 2013, 555, 10.
58 Minakshi M. ; Meyrick D. ; Appadoo D. Energ. Fuel. 2013, 27, 3516.
59 Deng C. ; Zhang S. ; Wu Y. X. Nanoscale 2015, 7, 487.
60 Vujkovic M. ; Mentus S. J. Power Sources 2016, 325, 185.
61 Qin H. ; Song Z. P. ; Zhan H. ; Zhou Y. H. J. Power Sources 2014, 249, 367.
62 Kumar P. R. ; Jung Y. H. ; Lim C. H. ; Kim D. K. J. Mater. Chem. A 2015, 3, 6271.
63 Kumar P. R. ; Jung Y. H. ; Moorthy B. ; Kim D. K. J. Electrochem. Soc. 2016, 163, A1484.
64 Jung Y. H. ; Lim C. H. ; Kim J. H. ; Kim D. K. RSC Adv. 2014, 4, 9799.
65 Bocarsly A. B. ; Sinha S. J. Electroanal. Chem. 1982, 137, 157.
66 Bocarsly A. B. ; Sinha S. J. Electroanal. Chem. 1982, 140, 167.
67 Itaya K. ; Uchida I. ; Neff V. D. Acc. Chem. Res. 1986, 19, 162.
68 Kalwellis-Mohn S. ; Grabner E. W. Electrochim. Acta 1989, 34, 1265.
69 Wessells C. D. ; Peddada S. V. ; Huggins R. A. ; Cui Y. Nano Lett. 2011, 11, 5421.
70 Wessells C. D. ; Peddada S. V. ; McDowell M. T. ; Huggins R. A. ; Cui Y. J. Electrochem. Soc. 2012, 159, A98.
71 Wessells C. D. ; Huggins R. A. ; Cui Y. Nat. Commun. 2011, 2, 550.
72 Pasta M. ; Wessells C. D. ; Huggins R. A. ; Cui Y. Nat. Commun. 2012, 3, 1149.
73 Wessells C. D. ; McDowell M. T. ; Peddada S. V. ; Pasta M. ; Huggins R. A. ; Cui Y. ACS Nano 2012, 6, 1688.
74 Kim D. J. ; Jung Y. H. ; Bharathi K. K. ; Je S. H. ; Kim D. K. ; Coskun A. ; Choi J. K. Energy Mater. 2014, 4, 1400133.
75 Wu X. Y. ; Cao Y. L. ; Ai X. P. ; Qian J. F. ; Yang H. X. Electrochem. Commun. 2013, 31, 145.
76 Wu X. Y. ; Sun M. Y. ; Shen Y. F. ; Qian J. F. ; Cao Y. L. ; Ai X. P. ; Yang H. X. ChemSusChem 2014, 7, 407.
77 Wu X. Y. ; Sun M. Y. ; Guo S. M. ; Qian J. F. ; Liu Y. ; Cao Y. L. ; Ai X. P. ; Yang H. X. ChemNanoMat 2015, 1, 188.
78 Wu X. Y. ; Luo Y. ; Sun M. Y. ; Qian J. F. ; Cao Y. L. ; Ai X. P. ; Yang H. X. Nano Energy 2015, 13, 117.
79 Chen L. ; Shao H. Z. ; Zhou X. F. ; Liu G. Q. ; Jiang J. ; Liu Z. P. Nat. Commun. 2016, 7, 11982.
80 Li W. F. ; Zhang F. ; Xiang X. D. ; Zhang X. C. ChemElectroChem 2017, 4, 2870.
81 Paulitsch B. ; Yun J. ; Bandarenka A. S. ACS Appl. Mater. Interfaces 2017, 9, 8107.
82 Lee J. H. ; Ali G. ; Kim D. H. ; Chung K. Y. Adv. Energy Mater. 2017, 7, 1601491.
83 Zhu Z. Q. ; Li H. ; Liang J. ; Tao Z. L. ; Chen J. Chem. Commun. 2015, 51, 1446.
84 Guo C. Y. ; Zhang K. ; Zhao Q. ; Pei L. K. ; Chen J. Chem. Commun. 2015, 51, 10244.
85 Wang S. W. ; Wang L. J. ; Zhang K. ; Zhu Z. Q. ; Tao Z. L. ; Chen J. Nano Lett. 2013, 13, 4404.
86 Koshika K. ; Sano N. ; Oyaizu K. ; Nishide H. Chem. Commun. 2009, 7, 836.
87 Whitacre J. F. ; Tevar A. ; Sharma S. Electrochem. Commun. 2010, 12, 463.
88 Mai L. Q. ; Hu B. ; Chen W. ; Qi Y. Y. ; Lao C. S. ; Yang R. S. ; Dai Y. ; Wang Z. L. Adv. Mater. 2007, 19, 3712.
89 Xia X. F. ; Hao Q. L. ; Lei W. ; Wang W. J. ; Wang H. L. ; Wang X. J. Mater. Chem. 2012, 22, 8314.
90 Zhou L. ; Yang L. C. ; Yuan P. ; Zou J. ; Wu Y. P. ; Yu C. Z. J. Phys. Chem. C 2010, 114, 21868.
91 Deng C. ; Zhang S. ; Dong Z. ; Shang Y. Nano Energy 2014, 4, 49.
92 Vujkovic M. ; Paunkovic B. S. ; Simatovic I. S. ; Mitric M. ; Sequeira C. A. C. Mentus. S. Electrochim. Acta 2014, 147, 167.
93 Wang Y. S. ; Liu J. ; Lee B. ; Qiao R. ; Yang Z. Z. ; Xu S. Y. ; Yu X. Q. ; Gu L. ; Hu Y. S. ; Yang W. L. ; et al Nat. Commun. 2015, 6, 6401.
94 Pang G. ; Yuan C. A. ; Nie P. ; Ding B. ; Zhu J. J. ; Zhang X. G. Nanoscale 2014, 6, 6328.
95 Delmas C. ; Cherkaoui F. ; Nadiri A. ; Hagenmuller P. Mater. Res. Bull. 1987, 22, 631.
96 Park S. ; II ; Gocheva I. ; Okada S. ; Yamaki J. I. J. Electrochem. Soc. 2011, 158, A1067.
97 Arun N. ; Aravindan V. ; Ling W. C. ; Madhavi S. J. Alloys Compd. 2014, 603, 48.
98 Mohamed A. I. ; Whitacre J. F. Electrochim. Acta 2017, 235, 730.
99 Wu W. ; Mohamed A. ; Whitacre J. F. J. Electrochem. Soc. 2013, 160, A497.
100 Wu W. ; Yan J. ; Wise A. ; Rutt A. ; Whitacre J. F. J. Electrochem. Soc. 2014, 161, A561.
101 Pang G. ; Nie P. ; Yuan C. Z. ; Shen L. F. ; Zhang X. G. ; Zhu J. J. ; Ding B. Energy Technol. 2014, 2, 705.
102 Li X. N. ; Zhu X. B. ; Liang J. W. ; Hou Z. G. ; Wang Y. ; Lin N. ; Zhu Y. C. ; Qian Y. T. J. Electrochem. Soc. 2014, 161, A1181.
103 Zhao B. D. ; Lin B. ; Zhang S. ; Deng C. Nanoscale 2015, 7, 18552.
104 Hung T. F. ; Lan W. H. ; Yeh Y. W. ; Chang W. S. ; Yang C. C. ; Lin J. C. ACS Sustain. Chem. Eng. 2016, 4, 7074.
105 He Y. W. ; Yuan H. ; Wu Y. X. ; Chen C. ; Yang S. ; Ai C. C. Electrochemistry 2016, 84, 705.
106 Ke L. L. ; Dong J. ; Lin B. ; Yu T. T. ; Wang H. F. ; Zhang S. ; Deng C. Nanoscale 2017, 9, 4183.
107 Minakshi M. ; Ralph D. ECS Trans. 2013, 45, 95.
108 Pasta M. ; Wessells C. D. ; Liu N. ; Nelson J. ; McDowell M. T. ; Huggins R. A. ; Toney M. F. ; Cui Y. Nat. Commun. 2014, 5, 3007.
109 Choi W. ; Harada D. ; Oyaizu K. ; Nishide H. J. Am. Chem. Soc. 2011, 133, 19839.
110 Liang Y. L. ; Jing Y. ; Gheytani S. ; Lee K. Y. ; Liu P. ; Facchetti A. ; Yao Y. Nat. Mater. 2017, 16, 841.
111 Liu Y. ; Qiao Y. ; Zhang W. X. ; Wang H. ; Chen H. K. ; Zhu H. P. ; Li Z. ; Huang Y. H. J. Mater. Chem. A 2015, 3, 7780.
112 Li Z. ; Young D. ; Xiang K. ; Carter W. C. ; Chiang Y. M. Adv. Energy Mater. 2013, 3, 290.
113 Zhang Q. ; Liao C. Y. ; Zhai T. Y. ; Li H. Q. Electrochim. Acta 2016, 196, 470.
114 Whitacre J. F. ; Wiley T. ; Shanbhag S. ; Wenzhuo Y. ; Mohamed A. ; Chun S. E. ; Weber E. ; Blackwood D. ; Lynch-Bell E. ; Gulakowski J. ; et al J. Power Sources 2012, 213, 255.
115 Liu Y. ; Zhang B. H. ; Xiao S. Y. ; Liu L. L. ; Wen Z. B. ; Wu Y. P. Electrochim. Acta 2014, 116, 512.
116 Minakshi M. ; Meyrick D. Electrochim. Acta 2013, 101, 66.
117 Hou Z. G. ; Li X. N. ; Liang J. W. ; Zhu Y. C. ; Qian Y. T. J. Mater. Chem. A 2015, 3, 1400.
118 Qu Q. T. ; Shi Y. ; Tian S. ; Chen Y. H. ; Wu Y. P. ; Holze R. J. Power Sources 2009, 194, 1222.
119 Zhang B. H. ; Liu Y. ; Wu X. W. ; Yang Y. Q. ; Chang Z. ; Wen Z. B. ; Wu Y. P. Chem. Commun. 2014, 50, 1209.
120 Wang H. ; Zhang T. ; Chen C. ; Ling M. ; Lin Z. ; Zhang S. Q. ; Pan F. ; Liang C. D. Nano Res. 2017.
121 Gao H. C. ; Goodenough J. B. Angew. Chem. Int. Ed. 2016, 128, 12960.
[1] ZHAO Mingyu, ZHU Lin, FU Bowen, JIANG Suhua, ZHOU Yongning, SONG Yun. Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 193-199.
[2] Qiang MA,Yongsheng HU,Hong LI,Liquan CHEN,Xuejie HUANG,Zhibin ZHOU. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 213-218.
[3] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[4] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[5] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 845-852.
[6] Yan-Gong ZHENG,Li-Na ZHU,Han-Yu LI,Jia-Wen JIAN,Hai-Ying DU. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 573-581.
[7] Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499.
[8] Yong-Min XIE,Xiao-Qiang WANG,Jiang LIU,Chang-Lin YU. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 386-392.
[9] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[10] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2510-2516.
[11] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522.
[12] Bo PENG,Yao-Lin XU,Fokko M. MULDER. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2127-2132.
[13] Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 211-241.
[14] Yan-Ping TANG,Sha YUAN,Yu-Zhong GUO,Rui-An HUANG,Jian-Hua WANG,Bin YANG,Yong-Nian DAI. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2280-2286.
[15] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2287-2292.