Please wait a minute...
Acta Physico-Chimica Sinca  2018, Vol. 34 Issue (6): 581-597    DOI: 10.3866/PKU.WHXB201711222
Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries
LIU Shuang, SHAO Lianyi, ZHANG Xuejing, TAO Zhanliang, CHEN Jun
Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
Download:   PDF(3470KB) Export: BibTeX | EndNote (RIS)      


With solar, wind, and other types of renewable energy incorporated into electrical grids and with the construction of smart grids, energy storage technology has become essential to optimize energy utilization. Due primarily to its abundance and low cost, aqueous rechargeable sodium-ion batteries (ARSBs) have received increasing attention in the field of electrochemical energy storage technology, and represent a promising alternative to energy storage in future power grids. However, because of the limitations of the thermodynamics of electrochemical processes in water, reactions in aqueous solution are more complicated compared to an organic system. Many parameters must be taken into account in an aqueous system, such as electrolyte concentration, dissolved oxygen content, and pH. As a result, it is challenging to select an appropriate electrode material, whose capacity, electrochemical potential, adaptability, and even catalytic effect may seriously affect the battery performance and hamper its application. Therefore, the development of advanced electrode materials, which can suppress side reactions of the battery and have good electrochemical performance, has become the focus of ARSB research. This paper briefly discusses the characteristics of ARSBs and summarizes the latest research progress in the development of electrode materials, including oxides, polyanionic compounds, Prussian blue analogues, and organics. This review also discusses the challenges remaining in the development of ARSBs, and suggests several ways to solve them, such as by using multivalent ions, hybridized electrolytes, etc., and speculates about future research directions. The studies and concepts discussed herein will advance the development of ARSBs and promote the optimization of energy utilization.

Key wordsAqueous sodium ion battery      Cathode material      Anode material      Electrolyte     
Received: 27 October 2017      Published: 22 November 2017
MSC2000:  O646  

The project was supported by the National Key R&D Program of China (2016YFB0901500, 2016YFB0101201) and the National Natural Science Foundation of China (51771094).

Corresponding Authors: TAO Zhanliang     E-mail:
Cite this article:

LIU Shuang, SHAO Lianyi, ZHANG Xuejing, TAO Zhanliang, CHEN Jun. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries. Acta Physico-Chimica Sinca, 2018, 34(6): 581-597.

URL:     OR

(1) Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Chem. Rev. 2011, 111, 3577. doi: 10.1021/cr100290v
(2) Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741
(3) Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C.S. Nat. Commun. 2014, 5, 4033. doi: 10.1038/ncomms5033
(4) Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi:10.1002/adfm.201200691
(5) Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. Angew. Chem. Int. Ed. 2015, 54, 3431. doi:10.1002/anie.201410376
(6) Fang, Y. J.; Chen, Z. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Acta Phys. -Chim. Sin. 2017, 33, 211.[方永进, 陈重学, 艾新平, 杨汉西, 曹余良. 物理化学学报, 2017, 33, 211.]doi:10.3866/PKU.WHXB201610111
(7) Dong, X. L.; Chen, L.; Liu, J. Y.; Haller, S.; Wang, Y. G.; Xia, Y. Y. Sci. Adv. 2016, 2, e1501038. doi:10.1126/sciadv.1501038
(8) Yang, H. X.; Qian, J. F. J. Inorg. Mater. 2013, 28, 1165.[杨汉西, 钱江锋. 无机材料学报, 2013, 28, 1165.]doi:10.3724/SP.J.1077.2013.13388
(9) Zhang, N.; Liu, Y. C.; Chen, C. C.; Tao, Z. L.; Chen, J.; Chin. J. Inorg. Chem. 2015, 31, 1739.[张宁, 刘永畅, 陈程成, 陶占良, 陈军. 无机化学学报, 2015, 31, 1739.] doi:10.11862/cjic.2015.258
(10) Tang, W.; Zhu, Y.; Hou, Y.; Liu, L.; Wu, Y.; Loh, K. P.; Zhang, H.; Zhu, K. Energy Enviorn. Sci. 2013, 6, 2093.doi:10.1039/C3EE24249H
(11) Li, W.; Dahn, J. R.; Wainwright, D. S. Science 1994, 264, 1115. doi: 10. 1126/science.264.5162.1115
(12) Cao, Y.; Wang, Y. G.; Wang, Q.; Zhang, Z. Y.; Chen, Y.; Xia, Y. Y.; Dai, X. Energy Storage Science and Technology 2016, 5, 317.[蓸翊, 王永刚, 张青, 张兆勇, 车勇, 夏永姚, 戴翔. 储能科学与技术, 2016, 5, 317.] doi:10.3969/j.issn.2095-4239.2016.03.008
(13) Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Chem. Rev. 2014, 114, 11788. doi:10.1021/cr500232y
(14) Lu, Y.; Goodenough, J. B.; Kim, Y. J. Am. Chem. Soc. 2011, 133, 5756. doi:10.1021/ja201118f
(15) Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Nat. Chem. 2010, 2, 760.doi:10.1038/nchem.763
(16) Ghodbane, O.; Pascal J. L.; Favie, F. ACS Appl. Mater. Interfaces 2009, 1, 1130. doi:10.1021/am900094e
(17) Hill, L. I.; Verbaere, A.; Guyomard, D. J. Power Sources 2003, 119-121, 226. doi:10.1016/S0378-7753(03)00238-6
(18) Cao, J.; Mao, Q. H.; Shi, L.; Qian, Y. T. J. Mater. Chem., 2011, 21, 16210. doi:10.1039/C1JM10862J
(19) Kitchaev, D. A.; Dacek, S. T.; Sun, W. H.; Ceder, G. J. Am. Chem. Soc. 2017, 139, 2672. doi:10.1021/jacs.6b11301
(20) Tarascon, J. M.; Guyomard, D. G.; Wilkens, B.; Mc Kinnon, W. R.; Barboux, P. Solid State Ionics 1992, 57, 113. doi: 10.1016/0167-2738(92) 90072-W
(21) Kanoh, H.; Tang, W.; Makita, Y.; Ooi, K. Langmuir 1997, 13, 6845. doi: 10.1021/la970767d
(22) Athouel, L.; Moser, F.; Dugas, R.; Crosnier, O.; Be langer, D.; Brousse, T. J. Phys. Chem. C 2008, 112, 7270. doi: 10.1021/jp0773029
(23) Athouel, L.; Moser, F.; Dugas, R.; Crosnier, O.; Be langer, D.; Brousse, T. ECS Trans. 2008, 16, 119. doi:10.1149/1.2985634
(24) Shao, J.; Li, X. Y.; Qu, Q. T.; Wu, Y. P. J. Power Sources 2013, 223, 56. doi:10.1016/j.jpowsour.2012.09.046
(25) Komaba, S.; Ogata, A.; Tsuchikawa, T. Electrochem. Commun. 2008, 10, 1435. doi:10.1016/j.elecom.2008.07.025
(26) Minakshi, M. Mater. Sci. Eng. B 2012, 177, 1788. doi: 10.1016/j.mseb.2012.09.003
(27) Qu, Q. T.; Liu, L. L.; Wu, Y. P. ; Holze, R. Electrochim. Acta 2013, 96, 8. doi:10.1016/j.electacta.2013.02.078
(28) Sun, X. Structures and Electrochemical Performances of TransitionMetal Oxides NaMO2 as Electrode Materials for Sodium-Ion Batteries. Ph. D. Dissertation, University of Science and Technology of China, Anhui, 2016.[孙信. 过渡金属氧化物 NaxMO2 结构调控和储钠性能的研究[D]. 合肥:中国科学技术大学, 2016.]
(29) Su, D. W.; Wang, C. Y.; Ahn, H. J.; Wang, G. X. Chem. Eur. J. 2013. 19, 10884. doi:10.1002/chem.201301563
(30) Liu Y. C.; Chen, C. C.; Zhang, N.; Wang, L. B.; Xiang, X. D.; Chen, J. J. Electrochem. 2016, 22, 437.[刘永畅, 陈程成, 张宁, 王刘彬, 向兴德, 陈军. 电化学, 2016, 22, 437.]doi:10.13208/j.electrochem.160548
(31) Sauvage, F.; Baudrin, E.; Tarascon, J. M. Sens. Actuators, B 2007, 120, 638. doi:10.1016/j.snb.2006.03.024
(32) Parant, J. P.; Olazcuaga, R.; Devalette, M.; Fouassier, C.; Hagenmuller, P. J. Solid State Chem. 1971, 3, 1. doi: 10.1016/0022-4596(71)90001-6
(33) Kim, H.; Kim, D. J.; Seo, D. H.; Yeom, M. S.; Kang, K.; Kim, D. K.; Jung, Y. Chem. Mater. 2012, 24, 1205. doi:10.1021/cm300065y
(34) Kim, D. J.; Ponraj, R.; Kannan, A. G.; Lee, H. W.; Fathi, R.; Ruffo, R.; Mari, C. M.; Kim, D. K. J. Power Sources 2013, 244, 758. doi: 10.1016/j.jpowsour.2013.02.090
(35) Liu, X.; Zhang, N.; Ni, J.; Gao, L. J. Solid State Electa. 2013, 17, 1939. doi:10.1007/s10008-013-2044-0
(36) Dai, K.; Mao, J.; Song, X.; Battaglia, V.; Liu, G. J. Power Sources 2015, 285, 161. doi:10.1016/j.jpowsour.2015.03.087
(37) Zhang, B. H.; Liu, Y.; Chang, Z.; Yang, Y. Q.; Wen, Z. B.; Wu, Y. P.; Holze, R. J. Power Sources 2014, 253, 98. doi: 10.1016/j.jpowsour.2013.12.011
(38) Tevar, A. D.; Whitacre, J. F. J. Electrochem. Soc. 2010, 157, A870. doi: 10.1149/1.3428667
(39) Zhang, X. Q.; Hou, A. G.; Li, A. N.; Liang, A. W.; Zhu Y. C.; Qian, Y.T. J. Mater. Chem. A 2016, 4, 856. doi:10.1039/C5TA08857G
(40) Yu, F.; Zhang, S. M.; Fang, C.; Liu, Y.; He, S. Y.; Xia, J.; Yang, J. H.; Zhang, N. Ceram. Int. 2017, 43, 9960. doi: 10.1016/j.ceramint.2017.05.007
(41) Liu, Y.; Qiao, Y.; Zhang, W.; Xu, H.; Li, Z.; Shen, Y.; Yuan, L.; Hu, X.; Dai, X.; Huang, Y. H. Nano Energy 2014, 5, 97. doi: 10.1016/j.nanoen.2014.02.010
(42) Liu, Y.; Qiao, Y.; Lou, X. F.; Zhang, X. H.; Huang, Y. H. ACS Appl. Mater. Inter. 2016, 8, 14564. doi:10.1021/acsami.6b03089
(43) Wang, Y. S.; Mu, L. Q.; Liu, J.; Yang, Z. Z.; Yu, X. Q.; Gu, L.; Hu, Y.S.; Li, H.; Yang, X. Q.; Chen, L. Q.; Huang, X. J. Adv. Energy Mater. 2015, 5, 1501005. doi:10.1002/aenm.201501005
(44) Jung, Y. H.; Hong, S. T.; Kim, D. K. J. Electrochem. Soc. 2013, 160, A897. doi:10.1149/2.113306jes
(45) Andersson, A. S.; Kalska, B.; Haggstrom, L.; Thomas, J. O. Solid State Ionics 2000, 130, 41. doi:10.1016/S0167-2738(00)00311-8
(46) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Goodenough, J.B. J. Electrochem. Soc. 1997, 144, 2581. doi:10.1149/1.1837868
(47) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644
(48) Song, W. X.; Hou, H. S.; Ji, X. B. Acta Phys. -Chim. Sin. 2017, 33, 103.[宋维鑫, 侯红帅, 纪效波. 物理化学学报, 2017, 33, 103.] doi:10.3866/PKU.WHXB201608303
(49) Song, W. W.; Ji, X. B.; Zhu, Y.; Zhu, H. J.; Li, F. Q.; Chen, J.; Lu, F.; Yao, Y. P.; Banks, C. E. ChemElectroChem 2014, 1, 871. doi: 10.1002/celc.201300248
(50) Mason, C. M.; Lange, F. ECS Electrochem. Lett. 2015, 4, A79. doi: 10.1149/2.0011508eel
(51) Fernandez-Ropero, A. J.; Saurel, D.; Acebedo, B.; Rojo, T.; Casas-Cabanas, M. J. Power Sources 2015, 291, 40. doi: 10.1016/j.jpowsour.2015.05.006
(52) Vujkovic, M.; Mentus, S. J. Power Sources 2014, 247, 184. doi: 10.1016/j.jpowsour.2013.08.062
(53) Levi, M. D.; Sigalov, S.; Salitra, G.; Elazari, R.; Aurbach, D.; Daikhin, L.; Presser, V. J. Phys. Chem. C 2013, 117, 1247. doi: 10.1021/jp3117819
(54) Zhao, Z. W.; Si, X. F.; Liang, X. X.; Liu, X. H; He, L. H. Trans. Nonferrous Met. Soc. China 2013, 23, 1157. doi: 10.1016/S1003-6326(13)62578-9
(55) Moreau, P.; Guyomard, D.; Gaubicher, J.; Boucher, F. Chem. Mater. 2010, 22, 4126. doi:10.1021/cm101377h
(56) Li, Z.; Ravnsbaek, D. B.; Xiang, K. B.; Chiang, Y. M. Electrochem. Commun. 2014, 44, 12. doi:10.1016/j.elecom.2014.04.003
(57) Minakshi, M.; Meyrick, D. J. Alloys Compd. 2013, 555, 10. doi: 10.1016/j.jallcom.2012.11.203
(58) Minakshi, M.; Meyrick, D.; Appadoo, D. Energ. Fuel. 2013, 27, 3516. doi:10.1021/ef400333s
(59) Deng, C.; Zhang, S.; Wu, Y. X.; Nanoscale 2015, 7, 487. doi: 10.1039/C4NR05175K
(60) Vujkovic, M.; Mentus, S. J. Power Sources 2016, 325, 185.doi:10.1016/j.jpowsour.2016.06.031
(61) Qin, H.; Song, Z. P.; Zhan, H.; Zhou, Y. H. J. Power Sources 2014, 249, 367. doi:10.1016/j.jpowsour.2013.10.091
(62) Kumar, P. R.; Jung, Y. H.; Lim, C. H.; Kim, D. K. J. Mater. Chem. A 2015, 3, 6271. doi:10.1039/C5TA00980D
(63) Kumar, P. R.; Jung, Y. H.; Moorthy, B.; Kim, D. K. J. Electrochem. Soc. 2016, 163, A1484. doi:10.1149/2.0031608jes
(64) Jung, Y. H.; Lim, C. H.; Kim, J. H.; Kim, D. K. RSC Adv. 2014, 4, 9799. doi:10.1039/C3RA47560C
(65) Bocarsly, A. B.; Sinha, S. J. Electroanal. Chem. Interfacial Electrochem. 1982, 137, 157. doi:10.1016/0022-0728(82)85075-4
(66) Bocarsly, A. B.; Sinha, S. J. Electroanal. Chem. Interfacial. Electrochem. 1982, 140, 167. doi:10.1016/0368-1874(82)85310-0
(67) Itaya, K.; Uchida, I.; Neff, V. D. Acc. Chem. Res. 1986, 19, 162. doi: 10.1021/ar00126a001.
(68) Kalwellis-Mohn, S.; Grabner, E. W. Electrochim. Acta 1989, 34, 1265. doi:10.1016/0013-4686(89)87169-5
(69) Wessells, C. D.; Peddada, S. V.; Huggins, R. A.; Cui, Y. Nano Lett. 2011, 11, 5421. doi:10.1021/nl203193q
(70) Wessells, C. D.; Peddada, S. V.; McDowell, M. T.; Huggins, R. A.; Cui, Y. J. Electrochem. Soc. 2012, 159, A98. doi: 10.1149/2.060202jes
(71) Wessells, C. D.; Huggins, R. A.; Cui, Y. Nat. Commun. 2011, 2, 550. doi: 10.1038/ncomms1563
(72) Pasta, M.; Wessells, C. D.; Huggins, R. A.; Cui, Y. Nat. Commun. 2012, 3, 1149. doi:10.1038/ncomms2139
(73) Wessells, C. D.; McDowell, M. T.; Peddada, S. V.; Pasta, M.; Huggins, R. A.; Cui, Y. ACS Nano 2012, 6, 1688. doi: 10.1021/nn204666v
(74) Kim, D. J.; Jung, Y. H.; Bharathi, K. K.; Je, S. H.; Kim, D. K.; Coskun, A.; Choi, J. K. Energy Mater. 2014, 4, 1400133. doi: 10.1002/aenm.201400133
(75) Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Qian, J. F.; Yang, H. X. Electrochem. Commun. 2013, 31, 145. doi:10.1016/j.elecom.2013.03.013
(76) Wu, X. Y.; Sun, M. Y.; Shen, Y. F.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. ChemSusChem 2014, 7, 407. doi: 10.1002/cssc.201301036
(77) Wu, X. Y.; Sun, M. Y.; Guo, S. M.; Qian, J. F.; Liu, Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. ChemNanoMat 2015, 1, 188. doi: 10.1002/cnma.201500021
(78) Wu, X. Y.; Luo, Y.; Sun, M. Y.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Nano Energy 2015, 13, 117. doi: 10.1016/j.nanoen.2015.02.006
(79) Chen, L.; Shao, H. Z.; Zhou, X. F.; Liu, G. Q.; Jiang, J.; Liu, Z. P. Nat. Commun. 2016, 7, 11982. doi: 10.1038/ncomms11982
(80) Li, W. F.; Zhang, F.; Xiang, X. D.; Zhang, X. C. ChemElectroChem 2017, 4, 2870. doi:10.1002/celc.201700776
(81) Paulitsch, B.; Yun, J.; Bandarenka, A. S. ACS Appl. Mater. Interfaces 2017, 9, 8107. doi:10.1021/acsami.6b15666
(82) Lee, J. H.; Ali, G.; Kim, D. H.; Chung, K. Y. Adv. Energy Mater. 2017, 7, 1601491. doi:10.1002/aenm.201601491
(83) Zhu, Z. Q.; Li, H.; Liang, J.; Tao Z. L.; Chen J. Chem. Commun. 2015, 51, 1446. doi:10.1039/C4CC08220F
(84) Guo C. Y.; Zhang, K.; Zhao, Q.; Pei, L. K.; Chen, J. Chem. Commun. 2015, 51, 10244. doi:10.1039/C5CC02251G
(85) Wang, S. W.; Wang, L. J.; Zhang, K.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. Nano Lett. 2013, 13, 4404. doi:10.1021/nl402239p
(86) Koshika, K.; Sano, N.; Oyaizu, K.; Nishide, H. Chem. Commun. 2009, 7, 836. doi:10.1039/b818087c
(87) Whitacre, J. F.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12, 463. doi:10.1016/j.elecom.2010.01.020
(88) Mai, L. Q.; Hu, B.; Chen, W.; Qi, Y. Y.; Lao, C. S.; Yang, R. S.; Dai, Y.; Wang, Z. L. Adv. Mater. 2007, 19, 3712. doi: 10.1002/adma.200700883
(89) Xia, X. F.; Hao, Q. L.; Lei, W.; Wang, W. J.; Wang, H. L.; Wang, X. J. Mater. Chem. 2012, 22, 8314. doi:10.1039/C2JM16216D
(90) Zhou, L.; Yang, L. C.; Yuan, P.; Zou, J.; Wu, Y. P.; Yu, C. Z. J. Phys. Chem. C 2010, 114, 21868. doi:10.1021/jp108778v
(91) Deng, C.; Zhang, S.; Dong, Z.; Shang, Y. Nano Energy 2014, 4, 49. doi: 10.1016/j.nanoen.2013.12.014
(92) Vujkovic, M.; Paunkovic, B. S.; Simatovic, I. S.; Mitric, M.; Sequeira, C. A. C.; Mentus. S. Electrochim. Acta 2014, 147, 167. doi: 10.1016/j.electacta.2014.08.137
(93) Wang, Y. S.; Liu, J.; Lee, B.; Qiao, R., Yang, Z. Z.; Xu, S. Y.; Yu, X.Q.; Gu, L.; Hu, Y. S.; Yang, W. L.; Kang, K.; Li, H.; Yang, X. Q.; Chen, L. Q.; Huang, X. J. Nat. Commun. 2015, 6, 6401. doi: 10.1038/ncomms7401
(94) Pang, G.; Yuan, C. A.; Nie, P.; Ding, B.; Zhu, J. J.; Zhang, X. G. Nanoscale 2014, 6, 6328. doi:10.1039/C3NR06730K
(95) Delmas, C.; Cherkaoui, F.; Nadiri, A.; Hagenmuller, P. Mater. Res. Bull. 1987, 22, 631. doi:10.1016/0025-5408(87)90112-7
(96) Park, S., Ⅱ; Gocheva, I.; Okada, S.; Yamaki, J. I. J. Electrochem. Soc. 2011, 158, A1067. doi:10.1149/1.3611434
(97) Arun, N.; Aravindan, V.; Ling, W. C.; Madhavi, S. J. Alloys Compd. 2014, 603, 48. doi:10.1016/j.jallcom.2014.03.059
(98) Mohamed, A. I.; Whitacre. J. F. Electrochim. Acta 2017, 235, 730. doi: 10.1016/j.electacta.2017.03.106
(99) Wu, W.; Mohamed, A.; Whitacre, J. F. J. Electrochem. Soc. 2013, 160, A497. doi:10.1149/2.054303jes
(100) Wu, W.; Yan, J.; Wise, A.; Rutt, A.; Whitacre, J. F. J. Electrochem. Soc. 2014, 161, A561. doi:10.1149/2.059404jes
(101) Pang, G.; Nie, P.; Yuan, C. Z.; Shen, L. F.; Zhang, X. G.; Zhu, J. J.; Ding, B. Energy Technol. 2014, 2, 705. doi: 10.1002/ente.201402045
(102) Li, X. N.; Zhu, X. B.; Liang, J. W.; Hou, Z. G.; Wang, Y.; Lin, N.; Zhu, Y. C.; Qian, Y. T. J. Electrochem. Soc. 2014, 161, A1181. doi: 10.1149/2.0081409jes
(103) Zhao, B. D.; Lin, B.; Zhang, S.; Deng, C. Nanoscale 2015, 7, 18552. doi: 10.1039/C5NR06505d
(104) Hung, T. F.; Lan, W. H.; Yeh, Y. W.; Chang, W. S.; Yang, C. C.; Lin, J. C. ACS Sustainable Chem. Eng. 2016, 4, 7074. doi: 10.1021/acssuschemeng.6b01962
(105) He, Y. W.; Yuan H.; Wu Y. X.; Chen C.; Yang S.; Ai, C. C. Electrochemistry 2016, 84, 705. doi: 10.5796/electrochemistry.84.705
(106) Ke, L. L.; Dong, J.; Lin, B.; Yu, T. T.; Wang, H. F.; Zhang, S.; Deng, C. Nanoscale 2017, 9, 4183. doi:10.1039/C7NR00793K
(107) Minakshi, M.; Ralph, D. ECS Trans. 2013, 45, 95. doi: 10.1149/04529.0095ecst
(108) Pasta, M.; Wessells, C. D.; Liu, N.; Nelson, J.; McDowell, M. T.; Huggins, R. A.; Toney, M. F.; Cui, Y. Nat. Commun. 2014, 5, 3007. doi: 10.1038/ncomms4007
(109) Choi, W.; Harada, D.; Oyaizu, K.; Nishide, H. J. Am. Chem. Soc., 2011, 133, 19839. doi:10.1021/ja206961t
(110) Liang, Y. L.; Jing, Y.; Gheytani, S.; Lee, K. Y.; Liu, P.; Facchetti, A.; Yao, Y. Nat. Mater. 2017, 16, 841. doi:10.1038/nmat4919
(111) Liu, Y.; Qiao, Y.; Zhang, W. X.; Wang, H.; Chen, H. K.; Zhu, H. P.; Li, Z.; Huang, Y. H. J. Mater. Chem. A 2015, 3, 7780. doi: 10.1039/C5TA00396B
(112) Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2013, 3, 290. doi:10.1002/aenm.201200598
(113) Zhang, Q.; Liao, C. Y.; Zhai, T. Y.; Li, H. Q. Electrochim. Acta 2016, 196, 470. doi:10.1016/j.electacta.2016.03.007
(114) Whitacre, J. F.; Wiley, T.; Shanbhag, S.; Wenzhuo, Y.; Mohamed, A.; Chun, S. E.; Weber, E.; Blackwood, D.; Lynch-Bell, E.; Gulakowski, J.; Smith, C.; Humphreys, D. J. Power Sources 2012, 213, 255. doi:10.1016/j.jpowsour.2012.04.018
(115) Liu, Y.; Zhang, B. H.; Xiao, S. Y.; Liu, L. L.; Wen, Z. B.; Wu, Y. P. Electrochim. Acta 2014, 116, 512. doi: 10.1016/j.electacta.2013.11.077
(116) Minakshi, M.; Meyrick, D. Electrochim. Acta 2013, 101, 66. doi: 10.1016/j.electacta.2013.02.075
(117) Hou, Z. G.; Li, X. N.; Liang, J. W.; Zhu, Y. C.; Qian, Y. T. J. Mater. Chem. A 2015, 3, 1400. doi:10.1039/C4TA06018K
(118) Qu, Q. T.; Shi, Y.; Tian, S.; Chen, Y. H.; Wu, Y. P.; Holze, R.; J. Power Sources 2009, 194, 1222. doi: 10.1016/j.jpowsour.2009.06.068
(119) Zhang, B. H.; Liu, Y.; Wu, X. W.; Yang, Y. Q.; Chang, Z.; Wen, Z.B.; Wu, Y. P. Chem. Commun. 2014, 50, 1209. doi: 10.1039/c3cc48382g
(120) Wang, H., Zhang, T., Chen, C.; Ling, M.; Lin, Z.; Zhang, S. Q.; Pan, F.; Liang, C. D. Nano Res. 2017, doi:10.1007/s12274-017-1657-5
(121) Gao, H. C.; Goodenough, J. B. Angew. Chem. Int. Ed. 2016, 128, 12960. doi:10.1002/ange.201606508

[1] Qiang MA,Yongsheng HU,Hong LI,Liquan CHEN,Xuejie HUANG,Zhibin ZHOU. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 213-218.
[2] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1605-1613.
[3] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1189-1196.
[4] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 845-852.
[5] Yan-Gong ZHENG,Li-Na ZHU,Han-Yu LI,Jia-Wen JIAN,Hai-Ying DU. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 573-581.
[6] Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 486-499.
[7] Yong-Min XIE,Xiao-Qiang WANG,Jiang LIU,Chang-Lin YU. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 386-392.
[8] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 305-313.
[9] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2510-2516.
[10] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2517-2522.
[11] Bo PENG,Yao-Lin XU,Fokko M. MULDER. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2127-2132.
[12] Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 211-241.
[13] Yan-Ping TANG,Sha YUAN,Yu-Zhong GUO,Rui-An HUANG,Jian-Hua WANG,Bin YANG,Yong-Nian DAI. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2280-2286.
[14] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2287-2292.
[15] Jing-Lun WANG,Xiao-Dan YAN,Tian-Qiao YONG,Ling-Zhi ZHANG. Nitrile-Modified 2, 5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2293-2300.