Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (6): 598-617    DOI: 10.3866/PKU.WHXB201711231
REVIEW     
How to Synthesize Vitamin E
Zhe WANG,Shanjun MAO,Haoran LI,Yong WANG*()
Download: HTML     PDF(2573KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Vitamin E compounds are biologically active and are frequently used as antioxidants. The demand for Vitamin E compounds has increased significantly in recent years, and at present, more than 80% of the market demand for Vitamin E is fulfilled by its synthetic counterparts. Therefore, it is imperative to increase the production of Vitamin E. Vitamin E compounds contain tocopherol and tocotrienol derivatives, and α-tocopherol, which dominates the sound, is the most biologically active. This review covers the methods of preparation of α-tocopherol, focusing on the synthesis routes, chemical reactions, and corresponding catalysts. The synthesis of Vitamin E, including preparation of 2, 3, 5-trimethylhydroquinone (TMHQ), preparation of isophytol, and condensation of TMHQ and isophytol are discussed in detail. The disadvantages and issues related to the preparation methods are also included. In general, the preparation of TMHQ comprises three steps: (1) methylation of m-cresol to 2, 3, 6-trimethylphenol, (2) oxidation of 2, 3, 6-trimethylphenol to 2, 3, 5-trimethylbenzoquione (TMBQ), and (3) hydrogenation of TMBQ to TMHQ. Recently, a novel and attractive method using isophorone, which can be produced by self-condensation of acetone, as a source for synthesizing TMHQ has been developed. Among these procedures, it is important to attain high selectivity in the oxidative reactions, including oxidation of 2, 3, 6-trimethylphenol and isophorone (α-isophorone or β-isophorone), and to replace H2O2, a common oxidant, by oxygen or air. One of the methods of preparation of isophytol using citral as a source has been abandoned because of shortage of oil of litsea cubeba, which is a natural source of citral. Linalool, produced from 6-methyl-5-hepten-2-one, is a key intermediate in the main process of preparation of isophytol. Both BASF SE and Roche have developed effective methods for the preparation of 6-methyl-5-hepten-2-one, respectively. Semi-hydrogenation of alkynols plays a key role in the whole process. The selectivity, especially at high conversion is directly related to the profit; therefore, it is of great importance for industries. The condensation of TMHQ and isophytol is essentially a Friedel-Crafts alkylation reaction catalyzed by acids. Similar reactions include methylation of m-cresol. Bronsted acids are usually effective for these reactions; however, it is difficult to recover these catalysts from the homogeneous systems. Therefore solid acid has a great potential in this area and it is also a promising topic to reduce the loss of acid sites when using acid-immobilized catalysts. The supply of various sources of the reactants and the local policy need to be considered while choosing an appropriate method for the preparation of Vitamin E.



Key wordsVitamin E      Tocopherol      2, 3, 5-trimethylhydroquinone      Isophytol      Catalyst     
Received: 11 October 2017      Published: 23 November 2017
Fund:  the National Natural Science Foundation of China(21622308);the National Natural Science Foundation of China(91534114);the National Natural Science Foundation of China(21376208)
Corresponding Authors: Yong WANG     E-mail: chemwy@zju.edu.cn
Cite this article:

Zhe WANG,Shanjun MAO,Haoran LI,Yong WANG. How to Synthesize Vitamin E. Acta Phys. -Chim. Sin., 2018, 34(6): 598-617.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201711231     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I6/598

Fig 1 Structure of Vitamin E (1 represents tocopherol and 2 denotes tocotrienol).
Fig 2 The condensation of 2, 3, 5-trimethylhydroquinone (4) and isophytol (5) to produce α-tocopherol (3).
Fig 3 The preparation of TMHQ by using m-cresol as a source.
Fig 4 The mechanism of o-methylation of m-cresol catalyzed by iron oxides 9. Adapted from Springer Nature publisher.
Fig 5 Adsorption models of phenol on defferent sites 10. Adapted from Elsevier publisher.
Fig 6 The structure of [Cu44-O)Cl10]-4 22. Adapted from American Chemical Society publisher.
Fig 7 Proposed mechanism of 2, 3, 6-trimethylphenol oxidation to TMBQ 22. Adapted from American Chemical Society publisher.
Fig 8 Hypothesized mechanism of 2, 3, 6-trimethylphenol oxidation to TMBQ over a "double site" 33. Adapted from Elsevier publisher.
Fig 9 Reusability of Pd-based catalysts in the catalytic hydrogenation of TMBQ 42. Adapted from Elsevier publisher.
Fig 10 (a) The diagram of TMBQ hydrogenation catalyzed by CoOx@CN; (b) Potential energy profiles of TMBQ hydrogenation on the Co(111) 45. Adapted from the Royal Society of Chemistry publisher.
Fig 11 The preparation of TMHQ by using 4-tert-butylphenol as a source.
Fig 12 The preparation of TMHQ by using phenol as a source.
Fig 13 The preparation of TMHQ by using diethyl ketone as a source.
Fig 14 The structure of 1-amino-2-vinyl methyl ketone.
Fig 15 The preparation of TMHQ by using 1, 2, 4-trimethylbenzene as a source.
Fig 16 The preparation of TMHQ by using 5-isopropyl-1, 2, 4-trimethylbenzene as a source.
Fig 17 The preparation of TMHQ by using isophorone, produced by trimerization of acetone, as a source.
Fig 18 Two alternative mechanisms for the radical pathway from β-IP to KIP 80. Adapted from Elsevier publisher.
Fig 19 The structure of isophytol.
Fig 20 Preparation of isophytol via pseudoionone.
Fig 21 Two main synthetic processes for preparing isophytol.
Fig 22 Size effect in hydrogenation of alkynol catalyzed by Pd nanocrystals 112. Adapted from American Chemical Society publisher.
Fig 23 (a, b) HRTEM images of PdZn/CN@ZnO; (c) TOF values of alkynol hydrogenation by Pd-based catalysts; (d) Selectivity of alkynol hydrogenation by Pd-based catalysts 122. Adapted from Elsevier publisher.
Fig 24 Two alternative pathway from linalool to geranylacetone.
Fig 25 One method from isoprene to geranylacetone.
Fig 26 One method from 1-chlorine-3-methyl-2-butene to 6, 10-dimethyl-6, 9-undecadiene-2-one.
Fig 27 One method from 3, 7-dimethyl-2-octene-1-ol to phytone.
Fig 28 One method from α-pinene to linalool.
Fig 29 One method from myrcene to geranylacetone or nerylacetone.
Fig 30 Condensation of TMHQ and isophytol (solid arrow represent main reaction and dashed arrows denote side reactions).
Fig 31 Structure and preparation of perfluorinated imide and perfluorinated methide 167. Adapted from Swiss Chemical Society publisher.
1 Traber M. G. Annu. Rev. Nutr. 2007, 27, 347.
2 Sun J. M. ; Lu H. F. ; Nan J. L. Tianjin Chem. Ind. 2002, 5, 26.
2 孙建梅; 陆洪芳; 南家莲. 天津化工, 2002, 5, 26.
3 Eckstein S. ; Hintermeier P. H. ; Olarte M. V. ; Liu Y. ; Baráth E. ; Lercher J. A. J. Catal. 2017, 352, 329.
4 Leach B. L. Process for direct methylation of phenol in liquid phase. US 399, 4982A 1975.
5 Leach B. E. Process for the synthesis of 2, 6-xylenol and 2, 3, 6-trimethylphenol. US 428, 3574A 1980.
6 Velu S. ; Sivasanker S. Res. Chem. Intermediat 1998, 24, 657.
7 Grabowska H. ; Wrzyszcz J. ; Syper L. Catal. Lett. 1999, 57, 135.
8 Xiao G. M. ; Li Z.S. ; Jiang F. ; Niu L. ; Xiong Z. Catalyst for synthesizing 2, 3, 6-trimethylphenol and preparation method thereof. CN, 10297, 4354A 2013.
9 Niu L. ; Li Z. S. ; Jiang F. ; Zhou M. H. ; Wang Z. H. ; Xiao G. M. React. Kinet. Mech. Cat. 2014, 112, 199.
10 Gandhe A. R. ; Fernandes J. B. Catal. Commun. 2004, 5, 89.
11 Gandhe A. R. ; Naik S. P. ; Kakodkar S. B. ; Fernandes J. B. Catal. Commun. 2006, 7, 285.
12 Santacesaria E. ; Grasso D. ; Gelosa D. ; Carrá S. Appl. Catal. 1990, 64, 83.
13 Sreekumar K. ; Sugunan S. Appl. Catal. A 2002, 230, 245.
14 Bezouhanova C. ; Al-Zihari M. A. Appl. Catal. A 1992, 83, 45.
15 Qian D. ; He H. Q. ; Wang K. Y. Chem. Reagents(Beijing, China) 2002, 4, 231.
15 钱东; 何厚群; 王开毅. 化学试剂, 2002, 4, 231.
16 Bodnar Z. ; Mallat T. ; Baiker A. J. Mol. Catal. A-Chem. 1996, 110, 55.
17 Li X. ; Wang X. Y. ; Shu W. G. ; Qian D. Hunan Chem. Ind. 1998, 5, 24.
17 李雄; 王歆燕; 舒万艮; 钱东. 湖南化工, 1998, 5, 24.
18 Chu Z. H. ; Zang H. C. Guangzhou Chem. Ind. 2011, 9, 104.
18 储振华; 臧恒昌. 广东化工, 2011, 9, 104.
19 Takehira K. ; Shimizu M. ; Watanabe Y. ; Orita H. ; Hayakawa T. J. Chem. Soc., Chem. Commun. 1989, 1705.
20 Takehira K. ; Shimizu M. ; Watanabe Y. ; Orita H. ; Hayakawa T. Tetrahedron Lett. 1989, 30, 6691.
21 Shimizu M. ; Watanabe Y. ; Orita H. ; Hayakawa T. ; Takehira K. B. Chem. Soc. Jpn. 1992, 65, 1522.
22 Sun H. J. ; Harms K. ; Sundermeyer J. J. Am. Chem. Soc. 2004, 126, 9550.
23 Wang X. P. ; Yang R. Y. ; Li W. ; Li X. A. ; Yan J. ; Liu W. T. ; Zhang H. H. Ind. Catal. 2013, 8, 73.
23 王宪沛; 杨瑞云; 李文; 李小安; 阎俊; 刘卫涛; 张辉辉. 工业催化, 2013, 8, 73.
24 Guan W. H. ; Wang C. M. ; Yun X. ; Hu X. B. ; Wang Y. ; Li H. R. Catal. Commun. 2008, 9, 1979.
25 Wang C. ; Guan W. ; Xie P. ; Yun X. ; Li H. ; Hu X. ; Wang Y. Catal. Commun. 2009, 10, 725.
26 Kholdeeva O. A. ; Golovin A. V. ; Kozhevnikov I. V. React. Kinet. Catal. L. 1992, 46, 107.
27 Kholdeeva O. A. ; Golovin A. V. ; Maksimovskaya R. I. ; Kozhevnikov I. V. J. Mol. Catal. 1992, 75, 235.
28 Qian D. ; Zhang M. ; Wang K. Y. Chin. J. Synth. Chem. 1998, 2, 2.
28 钱东; 张敏; 王开毅. 合成化学, 1998, 2, 2.
29 Palacio M. ; Villabrille P. I. ; Romanelli G. P. ; Vázquez P. G. ; Cáceres C. V. Appl. Catal. A 2012, 417, 273.
30 Lin T. H. ; Chen C. C. ; Jang L. Y. ; Lee J. F. ; Cheng S. Micropor. Mesopor. Mater. 2014, 198, 194.
31 Trukhan N. N. ; Romannikov V. N. ; Paukshtis E. A. ; Shmakov A. N. ; Kholdeeva O. A. J. Catal. 2001, 202, 110.
32 Zhou J. ; Hua Z. L. ; Cui X. Z. ; Ye Z. Q. ; Cui F. M. ; Shi J. L. Chem. Commun. 2010, 46, 4994.
33 Kholdeeva O. A. ; Ivanchikova I. D. ; Guidotti M. ; Ravasio N. ; Sgobba M. ; Barmatova M. V. Catal. Today 2009, 141, 330.
34 Wu M. Z. ; Li Y. ; Huang X. Z. ; Liu W. ; Yi Z. Z. Appl. Chem. Ind.(Xi'an, China) 2014, 3, 456.
34 吴明珠; 李应; 黄相中; 刘卫; 易中周. 应用化工, 2014, 3, 456.
35 Li Y. ; Liu W. ; Wu M. Z. ; Yi Z. Z. ; Zhang J. C. Mendeleev. Comm. 2010, 20, 218.
36 Liu Y. C. ; Hsu J. ; Fu Y. P. ; Tsai K. Int. J. Hydrog. Energy 2016, 41, 15696.
37 Zhang T. Y. ; Wang M. Y. ; Li B. ; Liu Q. Chem. Ind. Eng. Prog.(Beijing, China) 2016, 2, 513.
37 张天永; 王梦颖; 李彬; 刘茜. 化工进展, 2016, 2, 513.
38 Zhu Z. Q. ; Yuan Z. F. ; Xu Q. F. Preparation method of 2, 3, 5-trimethylhydroquinone. CN, 10224, 1577A 2011.
39 Zhang T. Y. ; Yin G. ; Li B. ; Wang X. ; Jiang S. ; Yuan Z. F. Res. Chem. Intermediat 2015, 41, 663.
40 Qian D. ; Wang K. Y. ; Yang L. Y. ; Zhang M. K. J. Cent. South Univ.(Sci. Technol.) 2000, 1, 41.
40 钱东; 王开毅; 杨礼义; 张茂昆. 中南工业大学学报(自然科学版), 2000, 1, 41.
41 Qian D. ; Wang K. Y. ; Yang L. Y. ; Zhang M. K. J. Cent. South Univ.(Sci. Technol.) 1998, 5, 97.
41 钱东; 王开毅; 杨礼义; 张茂昆. 中南工业大学学报(自然科学版), 1998, 5, 97.
42 Zhao X. M. ; Jin Y. ; Zhang F. M. ; Zhong Y. J. ; Zhu W. D. Chem. Eng. J. 2014, 239, 33.
43 Zhang T. Y. ; Yin G. ; Li B. ; Deng Y. F. ; Yuan Z. F. Appl. Chem. Ind.(Xi'an, China) 2013, 8, 1363.
43 张天永; 尹观; 李彬; 邓永峰; 袁仲飞. 应用化工, 2013, 8, 1363.
44 Mukhopadhyay S. ; Chandnani K. H. ; Chandalia S. B. Org. Process. Res. Dev. 2000, 4, 254.
45 Su D. F. ; Wei Z. Z. ; Mao S. J. ; Wang J. ; Li Y. ; Li H. R. ; Chen Z. R. ; Wang Y. Catal. Sci. Technol. 2016, 6, 4503.
46 Qiao J. C. ; Chen Q. ; Cai D. W. Process for synthesizing 2, 3, 6-trimethylphenol by 4-tert-butylphenol. CN, 10297, 6902A 2013.
47 Zhao J. C. ; Han Q. Y. ; Liu J. F. ; Liu L. ; Hu L. L. ; Liu Y. H. Method for extraction of 2, 4, 6-trimethylphenol from 2, 6-dimethylphenol waste. CN, 10404, 5522A 2014.
48 Teijin LTD Preparation of 2, 4, 6-trimethylphenol GB 145, 1091A 1973.
49 Bonrath W. ; Schuetz J. ; Cavani F. Manufacture of 2, 4, 6-trimethylphenol. WO, 2015197586A1 2015.
50 Ichikawa Y. ; Yamanaka Y. ; Tsuruta H. Novel process for preparation of 4-hydroxy-2, 4, 6-trimethyl-2, 5-cyclohexadiene-1-one. US 396, 6818A 1973.
51 Toyoda Y. ; Ikeda Y. ; Hase T. ; Kitano N. Preparation of 4-hydroxy-2, 4, 6-trimethyl-2, 5-cyclohexadien-1-one. JPS 584, 1835A 1981.
52 Tomita T. ; Kino M. ; Takada T. Preparation of 4-hydroxy-2, 4, 6-trimethylcyclohexa-2, 5-dien-1-one. JPS, 5811, 6435A 1981.
53 Tomita T. ; Kino M. ; Takada T. Preparation of hydroxy-tri:methyl-cyclo-hexa-dienone—by reacting tri:methyl-phenol with hypohalous acid. JPS, 5916, 3337A 1983.
54 Yoshida D. Production of high-purity 4-hydroxy-2, 4, 6-trimethyl-2, 5-cyclohexadien-1-one. JPS, 6223, 8230A 1986.
55 Gogou T. Preparation of 4-hydroxy-2, 4, 6-trimethyl-2, 5-cyclohexadien-1-one. JPS 595, 3438A 1982.
56 Costantini M. ; Igersheim F. ; Krumenacker L. Process for the preparation of 4-hydroxy-2, 4, 6-trimethyl-2, 5-cyclohexadienone. US 456, 5895A 1984.
57 Costantini M. ; Igersheim F. ; Krumenacker L. 4-Hydroxy 2, 4, 6-tri:methyl cyclohexadienone preparation—by chlorination and hydrolysis of 2, 4, 6-tri:methyl phenol. US 461, 2401A 1986.
58 Teijin LTD Preparation of trimethyl hydroquinone GB 143, 9494A 1973.
59 Qiao J. C. ; Chen Q. ; Cai D. W. Process for synthesizing 2, 3, 6-trimethylphenol by phenol. CN, 10297, 6903A 2013.
60 Arnold L. ; Pasedach H. ; Pommer H. 2, 3, 6-Trimethylphenol production—by reacting diethyl ketone in presence of base with e.g. crotonaldehyde. DE, 1668874B1 1971.
61 Tavs P. ; Laas H. ; Schauer H. ; Arnold L. Increasing the yield of 2.5.6-trimethylcyclohex-2-en-1-one. US 482, 0874A 1989.
62 Rittinger S. ; Rieber N. ; Arnold L. ; Hoercher U. Production of 2, 3, 6-tri:methylphenol—by reacting di:ethyl ketone with 1-amino-vinyl methyl ketone at 50-200 deg.C. DE, 4414877A1 1995.
63 Nissei IND CO LTD Trimethylbenzoquinone production in aq. soln from 3, 6-dinitrotrimethyl benzene sulphonate using ferric salt as oxidising agent. JP 7502, 8426B 1975.
64 Bao J. ; Liu G. F. ; Gao R. ; Zhang Y. 2016, 4, 187.
64 包吉; 刘高赋; 高荣; 张雨. 化工管理, 2016, 4, 187.
65 Chen H. ; Wu Y. ; Xu G. M. Adv. Fine Petrochem. 2002, 4, 25.
65 陈红; 吴缨; 徐国梅. 精细石油化工进展, 2002, 4, 25.
66 Zhao F. ; Yang B. Y. ; Gu J. J. ; Guan P. M. Ind. Catal. 2012, 6, 62.
66 赵峰; 杨蓓玉; 顾剑江; 管盘铭. 工业催化, 2012, 6, 62.
67 Zhang T. Y. ; Liu X. S. ; Li B. ; Wang M. Y. ; Wang Z. C. ; Hai L. Chem. Bull.(Beijing, China) 2017, 6, 573.
67 张天永; 刘晓思; 李彬; 王梦颖; 王智超; 海莉. 化学通报, 2017, 6, 573.
68 Zhang T. Y. ; Duan Y. J. ; Li B. ; Wang X. ; Du J. ; Yin G. ; Yuan Z. F. Chem. Reagents(Beijing, China) 2013, 1, 3.
68 张天永; 段永洁; 李彬; 王晓; 杜晶; 尹观; 袁仲飞. 化学试剂, 2013, 1, 3.
69 Dawson B. ; Pugach J. Method of making ketoisophorone via oxidation of isophorone with tert-butyl hydroperoxide. WO, 9615094A1 1996.
70 Noesberger P. ; Vieth A. Process for manufacture of beta-isophorone. US 527, 6197A 1994.
71 Krill S. ; Giray G. ; Huthmacher K. ; Huebner F. ; Tanner H. Method of producing 3, 5, 5-trimethylcyclohexa-3-ene-1-one(beta -isophorone) by the isomerization of 3, 5, 5-trimethylcyclohexa-2-ene-1-(alpha-isophorone). US 600, 5147A 1999.
72 Takahashi I. ; Shibata H. Oxidation catalyst and oxidation process using the same. US, 6462239B2 2002.
73 Ina T. ; Miura H. ; Takahashi I. Process for the production of ketoisophorone derivatives and equipment therefor. US, 6410797B1 2002.
74 Murphy E. F. ; Baiker A. J. Mol. Catal. A-Chem. 2002, 179, 233.
75 Bellut H. Method of producing 2, 6, 6-trimethyl-2-cyclohexane-1, 4-dione. US 497, 0347A 1990.
76 Hu X. B. ; Mao J. Y. ; Sun Y. ; Chen H. ; Li H. R. Catal. Commun. 2009, 10, 1908.
77 Chen Z. R. ; Fang T. T. ; Yuan S. F. ; Yin H. Int. J. Chem. Kinet. 2016, 48, 295.
78 Beyrhouty M. ; Sorokin A. B. ; Daniele S. ; Hubert-Pfalzgraf L. G. New J. Chem. 2005, 29, 1245.
79 Sorokin A. B. ; Quignard F. ; Valentin R. ; Mangematin S. Appl. Catal. A 2006, 309, 162.
80 Burns E. ; Huang T. ; Weare W. W. ; Bartolotti L. ; Wang X. Y. ; Yao J. ; Li H. R. ; Franzen S. J. Mol. Catal. A-Chem. 2015, 410, 110.
81 Thatte C. S. ; Rathnam M. V. ; Pise A. C. J. Chem. Sci. 2014, 126, 727.
82 Mao J. Y. ; Li N. ; Li H. R. ; Hu X. B. J. Mol. Catal. A-Chem. 2006, 258, 178.
83 Zhang P. F. ; Li H. R. ; Wang Y. Chem. Commun. 2014, 50, 6312.
84 Kishore D. ; Rodrigues A. E. Catal. Commun. 2007, 8, 1156.
85 Kishore D. ; Rodrigues A. E. Appl. Catal. A 2008, 345, 104.
86 Wang C. M. ; Wang G. L. ; Mao J. Y. ; Yao Z. ; Li H. R. Catal. Commun. 2010, 11, 758.
87 Chen K. X. ; Sun Y. ; Wang C. M. ; Yao J. ; Chen Z. R. ; Li H. R. Phys. Chem. Chem. Phys. 2012, 14, 12141.
88 Zhong W. Z. ; Mao L. Q. ; Xu Q. ; Fu Z. H. ; Zou G. Q. ; Li Y. Q. ; Yin D. L. ; Luo H. ; Kirk S. R. Appl. Catal. A 2014, 486, 193.
89 Murphy E. F. ; Mallat T. ; Baiker A. ; Schneider M. Appl. Catal. A 2000, 197, 295.
90 Crier S. ; Huthmacher K. Method for preparation of 2, 3, 5-trimethyl hydrochinone di-ester. CN 126, 5390A 2000.
91 Weigel H. ; Krill S. ; Hasselbach H. ; Huthmacher K. ; Wegel H. ; Kelier S. ; Haserbach H. Process for preparing esterified chroman compounds. US, 6329535B1 2001.
92 Bonrath W. ; Schneider M. ; Werner B. ; Michael S. Manufacture of trimethylhydroquinone diacylates. CN 160, 4888A 2005.
93 Weigel H. ; Krill S. ; Hasselbach H. ; Huthmacher K. ; Wegel H. ; Kelier S. ; Haserbach H. Preparation process of exterified chroman compound. CN 130, 8077A 2001.
94 Wildermann A. ; Foricher Y. ; Netscher T. ; Bonrath W. Pure Appl. Chem. 2007, 79, 1839.
95 Zeng Q. Y. ; Song W. J. ; Zhang Q. ; Pan H. ; Gao J. Y. ; Ni C. Y. Method for synthesizing 2, 3, 5-trimethylhydroquinone diester. CN, 10218, 0793A 2011, 8
96 Schneider M. ; Zimmermann K. ; Aquino F. ; Bonrath W. Appl. Catal. A 2001, 220, 51.
97 Rác B. ; Molnár á. ; Forgo P. ; Mohai M. ; Bertóti I. J. Mol. Catal. A-Chem. 2006, 244, 46.
98 Hinze R. ; Laufer M. C. ; H?lderich W. F. ; Bonrath W. ; Netscher T. Catal. Today 2009, 140, 105.
99 Aec Chim Organ Biolog Improvements in and relating to process of preparing isophytol. GB 108, 7837A 1967.
100 Kuśtrowski P. ; Sułkowska D. ; Chmielarz L. ; Dziembaj R. Appl. Catal. A 2006, 302, 317.
101 Abelló S. ; Vijaya-Shankar D. ; Pérez-Ramírez J. Appl. Catal. A 2008, 342, 119.
102 Díez V. K. ; Di Cosimo J. I. ; Apesteguía C. R. Appl. Catal. A 2008, 345, 143.
103 Abelló S. ; Medina F. ; Tichit D. ; Pérez-Ramírez J. ; Rodríguez X. ; Sueiras J. E. ; Salagre P. ; Cesteros Y. Appl. Catal. A 2005, 281, 191.
104 Díez V. K. ; Apesteguía C. R. ; Di Cosimo J. I. J. Catal. 2006, 240, 235.
105 Hoelderich W. ; Ritzerfeld V. Preparing pseudoionone by aldol condensation of citral and acetone using heterogeneous catalyst, comprises utilizing supported heterogeneous catalysts based on rare earth metals applied on e.g. zirconium dioxide carrier as carrier materials. DE, 102012012785A1 2013.
106 Wang Z. ; Lu G. Z. ; Guo Y. ; Guo Y. L. ; Gong X. Q. ACS Sustain. Chem. Eng. 2016, 4, 1591.
107 Raju V. ; Radhakrishnan R. ; Jaenicke S. ; Chuah G. K. Catal. Today 2011, 164, 139.
108 Horst P. ; Herbert M. ; Hermann O. Preparing alkenones 2-methylheptene-1-on-6 from. DE 126, 8135B 1968.
109 Babler J. H. Process for preparing tertiary alkynols. US 534, 9071A 1994.
110 Vorobyeva E. ; Chen Z. ; Mitchell S. ; Leary R. K. ; Midgley P. ; Thomas J. M. ; Hauert R. ; Fako E. ; Lopez N. ; Perez-Ramirez J. J. Mater. Chem. A 2017, 5, 16393.
111 Crespo-Quesada M. ; Yarulin A. ; Jin M. ; Xia Y. ; Kiwi-Minsker L. J. Am. Chem. Soc. 2011, 133, 12787.
112 Yarulin A. ; Yuranov I. ; Cárdenas-Lizana F. ; Abdulkin P. ; Kiwi-Minsker L. J. Phys. Chem. C 2013, 117, 13424.
113 Semagina N. ; Renken A. ; Kiwi-Minsker L. J. Phys. Chem. C 2007, 111, 13933.
114 Tripathi B. ; Paniwnyk L. ; Cherkasov N. ; Ibhadon A. O. ; Lana-Villarreal T. ; Gómez R. Ultrason. Sonochem. 2015, 26, 445.
115 Tschan R. ; Schubert M. M. ; Baiker A. ; Bonrath W. ; Lansink-Rotgerink H. Catal. Lett. 2001, 75, 31.
116 Tschan R. ; Wandeler R. ; Schneider M. S. ; Burgener M. ; Schubert M. M. ; Baiker A. Appl. Catal. A 2002, 223, 173.
117 Studt F. ; Abild-Pedersen F. ; Bligaard T. ; S∅rensen R. Z. ; Christensen C. H. ; N∅rskov J. K. Science 2008, 320, 1320.
118 Yarulin A. ; Yuranov I. ; Cárdenas-Lizana F. ; Alexander D. T. L. ; Kiwi-Minsker L. Appl. Catal. A 2014, 478, 186.
119 SNAM SPA(SNAM-C) Selective hydrogenation of alkynols to alkenols—in aqs medium using palladium catalyst and soluble zinc cpd. NL 13, 6588B 1972.
120 Okhlopkova L. B. ; Matus E. V. ; Prosvirin I. P. ; Kerzhentsev M. A. ; Ismagilov Z. R. J. Nanopart. Res. 2015, 17, 475.
121 Deng D. S. ; Yang Y. ; Gong Y. T. ; Li Y. ; Xu X. ; Wang Y. Green Chem. 2013, 15, 2525.
122 Shen L. F. ; Mao S. J. ; Li J. Q. ; Li M. M. ; Chen P. ; Li H. R. ; Chen Z. R. ; Wang Y. J. Catal. 2017, 350, 13.
123 Bonrath W. ; Mueller T. ; Kiwi-Minsker L. ; Renken A. ; Iouranov I. ; Kiwi M. Hydrogenation process. CN, 10274, 1206A 2012.
124 Bonrath W. ; Kiwi-Minsker L. ; Iouranov I. ; Kiwi M. New catalytic system. CN, 10390, 6569A 2014.
125 Bonrath W. ; Buss A. Metal powderdous catalyst comprising a Fe-alloy. CN, 10413, 6114A 2014.
126 Grjaznov V. ; Keravanov A. ; Belosljudo N. ; Ermolaev A. ; Maganjuk A. ; Saryceva I. Process for the preparation of ethylene alcohols having 4 to 10 carbon atoms. DE, 3114240A1 1982.
127 Kido Y. ; Kumagai N. ; Iwasaki H. ; Onishi T. ; Ueyama F. ; Kamiyama F. ; Kajiyashiki T. ; Kito Y. ; Iwagasaki S. Process for producing 6-methyl-3-hepten-2-one and 6-methyl-2-heptanone analogues, and process for producing phyton or isophytol. US 595, 5636A 1999.
128 Wilson S. R. ; Price M. F. J. Org. Chem. 1984, 49, 722.
129 Constant S. ; Tortoioli S. ; Müller J. ; Lacour J. Angew. Chem. Int. Ed. 2007, 46, 2082.
130 Linder D. ; Buron F. ; Constant S. ; Lacour J. Eur. J. Org. Chem. 2008, 5778.
131 Linder D. ; Austeri M. ; Lacour J. Org. Biomol. Chem. 2009, 7, 4057.
132 Bizet V. ; Lefebvre V. ; Baudoux J. ; Lasne M.-C. ; Boulangé A. ; Leleu S. ; Franck X. ; Rouden J. Eur. J. Org. Chem. 2011, 4170.
133 De Castro K. A. ; Byun E. Y. ; Rhee H. B. Kor. Chem. Soc. 2009, 30, 2155.
134 Oost C. ; Stroezel M. ; Etzrodt H. ; Weller D. ; Rheude U. ; Kaibel G. ; Krug T. ; Spiske L. ; Jaedicke H. ; Dietmar W. ; et al Preparation of higher unsaturated ketone. CN 127, 1716A 2000.
135 Oost C. ; Stroezel M. ; Etzrodt H. ; Weller D. ; Bockstiegel B. ; Reimer K. ; Kaibel G. ; Jaedicke H. ; Dietmar W. ; Aust C. ; et al Method for continuous preparation of unsaturated ketone. CN 125, 1832A 2000.
136 Takasago Perfumery CO(TAKS-C) Soprene trimer preparation—using a catalyst contg. zero-valent nickel and phosphines. JP 7701, 6084B 1977.
137 Akutagawa S. Geranyl acetone preparation—by reacting myrcene with acetone imine in presence of alkali metal catalyst, and hydrolysing. JP, 5307, 1005A 1978.
138 Kido Y. ; Kitayama M. ; Yoneda K. ; Iwasaki H. ; Onishi T. ; Kitayama K. Process for producing 6-methylheptan-2-one. US 584, 0992A 1998.
139 Fujita Y. ; Wada T. ; Onishi T. ; Nishida T. ; Omura S. ; Mori F. ; Hosogai T. ; Aihara F. 6, 10-Di:methyl-6, 9-undeca:diene-2-one production—by ethynylating substd. ketone obtd. from prenyl halide and mesityl oxide, partially hydrogenating and thermally rearranging. JP, 5505, 5131A 1980.
140 Kuraray Co LTD(KURS-C) Preparation of phytone and isophytol. JPS 5310, 5409A 1978.
141 Onishi T. ; Fujita Y. ; Nishida T. ; Ishiguro M. ; Hosogai T. Phytone or isophytol production—by heating propargyl alcohol cpd. hydrogenating the resulting ketone and opt. vinylation of resulting phytone. JP, 5401, 4906A 1979.
142 De Jong A. J. ; Van H. R. Process for the preparation of 6, 10, 14-trimethylpentadecan-2-one. CH, 623021A5 1981.
143 Kuraray Co LTD(KURS-C) 3, 7-dimethyl-1-octanal preparation—by hydroformylation of 2, 6-dimethyl-2-or -3-heptenes. JP 7402, 0170 1974.
144 Goebbel H. ; Kaibel G. ; Miller C. ; Dobler W. ; Dirnsteiner T. ; Hahn T. ; Breuer K. ; Aquila W. ; Gobbel H. ; Gobbel G. ; et al Production of tetrahydrogeranylacetone, for use in production of Vitamins E and K, involves selective, liquid-phase hydrogenation of pseudo-ionone using a device which inhibits the transport of catalyst particles. CN 166, 8564A 2005.
145 Clamoe A. ; Siegel W. Method for preparing higher ketone by unsaturated aldehyde. CN 133, 0062A 2002.
146 Teles J. ; Hoffmann W. Preparation of hexahydrofarnesylacetone form 6, 7-dihydrogeraniol, and novel intermadiates therefor. CN 117, 2795A 1998.
147 Zhao Z. D. ; Liu X. Z. Biomass Chem. Eng. 2001, 2, 41.
147 赵振东; 刘先章. 林产化工通讯, 2001, 2, 41.
148 Luo J. Y. ; Wang H. Z. ; Peng S. J. Chem. Ind. For. Prod. 2000, 3, 47.
148 罗金岳; 王汉忠; 彭淑静. 林产化学与工业, 2000, 3, 47.
149 Liu X. Z. ; Hu X. E. ; Jiang T. F. ; Li D. M. ; Hu G. X. Chem. Ind. For. Prod. 1997, 3, 25.
149 刘先章; 胡樨萼; 蒋同夫; 李冬梅; 胡贵贤. 林产化学与工业, 1997, 3, 25.
150 Sun M. H. ; Qi X. ; Tang X. Y. ; Zhao W. T. Chem. Ind. Eng.(Tianjin, China) 2016, 1, 51.
150 孙美环; 齐欣; 唐向阳; 赵温涛. 化学工业与工程, 2016, 1, 51- 56.
151 Renninger N. S. ; Newman J. ; Reiling K. K. ; Regentin R. ; Paddon C. J. Production of isoprenoids. WO, 2007140339A2 2007.
152 Renninger N. S. ; Mcphee D. J. Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. US, 2008083158A1 2008.
153 Tsuruta H. ; Lenihan J. R. ; Regentin R. WO, 2009042070A2 2009.
154 Chua P. R. ; Meadows A. Methods for stabilizing production of acetyl-coenzyme a derived compounds. WO, 2015020649A1 2015.
155 Lowack R. ; Meyer J. ; Eggersdorfer M. ; Grafen P. Preparation of alpha-tocopherol and alpha-tocopheryl acetate in liquid or supercritical carbon dioxide. US 552, 3420A 1996.
156 Baldenius K. ; Kaiser W. ; Bockstiegel B. ; Laas H. ; Schulz B. ; Schmitt P. ; Glietenberg H. Preparation of alpha-tocopherol or alpha-tocopheryl acetate by reacting trimethylhydroquinone and phytol or isophytol, with recycling of the zinc halide condensation catalyst. US 600, 5122A 1999.
157 Krill S. ; Kretz S. ; Huthmacher K. Process for the production of alpha-tocopherol acetate by condensation of trimethylhydroquinone with isophytol. EP, 1132384A2 2001.
158 Duan H. Y. ; Wang Z. H. ; Li J. T. ; Li S. H. ; Li L. J. ; Li T. S. Synthetic. Commun. 2003, 33, 1867.
159 Coman S. M. ; Wuttke S. ; Vimont A. ; Daturi M. ; Kemnitz E. Adv. Synth. Catal. 2008, 350, 2517.
160 Wuttke S. ; Coman S. M. ; Scholz G. ; Kirmse H. ; Vimont A. ; Daturi M. ; Schroeder S. L. M. ; Kemnitz E. Chem. -Eur. J. 2008, 14, 11488.
161 Candu N. ; Wuttke S. ; Kemnitz E. ; Coman S. M. ; Parvulescu V. I. Appl. Catal. A 2011, 391, 169.
162 Baak M. ; Bonrath W. ; Pauling H. Process for manufacturing d, 1-alpha-tocopherol. CN 123, 7163A 1999.
163 Bonrath W. ; Gockel S. ; Haas A. ; Netscher T. ; Pauling H. Preparation of(all-rac)-alpha-tocopherol, which is an important member of vitamin E group, involves acid catalysis of trimethylhydroquinone with isophytol or phytol in presence of bis(perfluoroalkylsulfonyl)-methane. WO, 2003070718P1 2003.
164 Bonrath W. ; Wang S. N. Preparation of d, 1-alpha-tocopherol. US, 6423851B2 2002.
165 Bonrath W. ; Dittel C. ; Netscher T. ; Pabst T. ; Giraudi L. Process for the manufacture of alpha-tocopheryl acetate. WO, 2004063182A1 2004.
166 Bonrath W. ; Haas A. ; Hoppmann E. ; Netscher T. ; Pauling H. ; Schager F. ; Wildermann A. Adv. Synth. Catal. 2002, 344, 37.
167 Netscher T. ; Bonrath W. ; Haas A. ; Hoppmann E. ; Pauling H. Chimia Inter. J. Chem. 2004, 58, 153.
168 Bonrath W. ; Dittel C. ; Giraudi L. ; Netscher T. ; Pabst T. Catal. Today 2007, 121, 65.
169 Hasegawa A. ; Ishihara K. ; Yamamoto H. Angew. Chem. Int. Ed. 2003, 42, 5731.
170 Coman S. M. ; Pop G. ; Stere C. ; Parvulescu V. I. ; El Haskouri J. ; Beltrán D. ; Amorós P. J. Catal. 2007, 251, 388.
171 Schager F. ; Bonrath W. J. Catal. 1999, 182, 282.
172 Wang H. ; Xu B. Q. Appl. Catal. A 2004, 275, 247.
173 Kozhevnikov I. V. ; Kulikov S. M. ; Chukaeva N. G. ; Kirsanov A. T. ; Letunova A. B. ; Blinova V. I. React. Kinet. Catal. L. 1992, 47, 59.
174 Xing H. B. ; Wang T. ; Zhou Z. H. ; Dai Y. Y. Synthetic. Commun. 2006, 36, 2433.
175 Laha S. C. ; Venkatesan C. ; Sakthivel A. ; Komura K. ; Kim T. H. ; Cho S. J. ; Huang S. J. ; Wu P. H. ; Liu S. B. ; Sasaki Y. ; et al Micropor. Mesopor. Mater. 2010, 133, 82.
176 Hirose N. ; Inoue H. ; Matsunami T. ; Yoshimura T. ; Morita K. ; Horikawa Y. ; Iwata N. ; Hayashi K. ; Seki C. ; Minami N. ; et al Process for the preparation of alpha-tocopherol. CN 112, 3278A 1996.
177 Kokubo Y. ; Hasegawa A. ; Kuwata S. ; Ishihara K. ; Yamamoto H. ; Ikariya T. Adv. Synth. Catal. 2005, 347, 220.
178 Xing H. B. ; Wang T. ; Dai Y. Y. J. Supercrit. Fluid. 2009, 49, 52.
[1] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[2] Hengwei WANG,Junling LU. Atomic Layer Deposition: A Gas Phase Route to Bottom-up Precise Synthesis of Heterogeneous Catalyst[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1334-1357.
[3] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[4] Pei-Yi LIAO,Chen ZHANG,Li-Jun ZHANG,Yan-Zhang YANG,Liang-Shu ZHONG,Xiao-Ya GUO,Hui WANG,Yu-Han SUN. Influences of Cu Content on the Cu/Co/Mn/Al Catalysts Derived from Hydrotalcite-Like Precursors for Higher Alcohols Synthesis via Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1672-1680.
[5] Ling-Xiao HU,Lian WANG,Fei WANG,Chang-Bin ZHANG,Hong HE. Catalytic Oxidation of o-Xylene over Pd/γ-Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1681-1688.
[6] Yang ZHOU,Qing-Qing CHENG,Qing-Hong HUANG,Zhi-Qing ZOU,Liu-Ming YAN,Hui YANG. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1429-1435.
[7] Xiao ZHAI,Yi DING. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1366-1378.
[8] Yu-Fen HUANG,Hai-Long ZHANG,Zheng-Zheng YANG,Ming ZHAO,Mu-Lan HUANG,Yan-Li LIANG,Jian-Li WANG,Yao-Qiang CHEN. Effects of CeO2 Addition on Improved NO Oxidation Activities of Pt/SiO2-Al2O3 Diesel Oxidation Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1242-1252.
[9] Shuai-Qi SUN,Yan-Hui YI,Li WANG,Jia-Liang ZHANG,Hong-Chen GUO. Preparation and Performance of Supported Bimetallic Catalysts for Hydrogen Production from Ammonia Decomposition by Plasma Catalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1123-1129.
[10] Yi-Hao HU,Tong-Yang SONG,Yue-Juan WANG,Geng-Sheng HU,Guan-Qun XIE,Meng-Fei LUO. Gas Phase Dehydrochlorination of 1, 1, 2-Trichloroethane over Zn/SiO2 Catalysts: Acidity and Deactivation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1017-1026.
[11] Chong-Yi LING,Jin-Lan WANG. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 869-885.
[12] Jun WANG,Zi-Dong WEI. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 886-902.
[13] Xiao-Ping GAO,Zhang-Long GUO,Ya-Nan ZHOU,Fang-Li JING,Wei CHU. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 602-610.
[14] Yang Lü,Yu-Jiang SONG,Hui-Yuan LIU,Huan-Qiao LI. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294.
[15] Shen-Hui LI,Jing LI,An-Min ZHENG,Feng DENG. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 270-282.