Please wait a minute...
Acta Phys. -Chim. Sin.
Special Issue: Green Chemistry
Accepted manuscript     
Ultra-High SO2 Capture by Anion-Functionalized Resins through Multiple-Site Adsorption
HE Xi1, LÜ Xiaoyu1, FAN Xi1, LIN Wenjun1, LI Haoran1,2, WANG Congmin1
1 ZJU-NHU United R & D Center, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China;
2 College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
Download:   PDF(523KB) Export: BibTeX | EndNote (RIS)       Supporting Info


The anion-functionalization strategy has been proposed and applied for the synthesis of macro-porous resins[IRA-900] [An], thus realizinganultra-high SO2 adsorption capacity (>10 mmol·g-1) at 101.3 kPa and 20℃. Compared withthe normal azole-based anion-functionalized resins, the poly(imidazolyl)borate anion-functionalized resin[IRA-900] [B(Im)4] exhibited an outstanding adsorption capacity at low SO2 partial pressures (10.62 mmol·g-1 at 20℃ and 10.13 kPa). From the results of the IR spectrum investigation and DFT calculations, the multiple-site adsorption mechanism was verified. On account of the unique tetrahedral configuration of[B(im)4], the conjugation and electronic communication between the electronegative nitrogen atoms were disrupted, making them behave as local reactive sites. Therefore, at least four electronegative nitrogen atoms could be provided by one[B(im)4] to react with SO2 without evident adsorption enthalpy deterioration(from -50.6 kJ·mol-1 to -37.2 kJ·mol-1) during the continuous SO2 capture;this was responsible for the ultra-high SO2 adsorption capacity achieved by[IRA-900] [B(Im)4] at low partial pressures. Moreover, the thermal stability and reversibility of[IRA-900] [B(Im)4] for SO2 capture and desorption were investigated. Six cycles where the adsorption was carried out at 20℃ and 10.13 kPa and the regeneration was performed at 70℃ demonstrated the adequate reversibility of[IRA-900] [B(Im)4] for SO2 capture, showing the resin's great potential for industrial desulfurization. Thus, the anion-functionalization strategy and multiple-site adsorption behavior provide new perspectives to realize effective SO2 capture from flue gas.

Key wordsAnion functionalized      Macro-porous resins      Poly (imidazolyl)borate anion      Multiple-site      SO2 capture     
Received: 27 October 2017      Published: 27 November 2017
MSC2000:  O641  

The project was supported by the National Key Basic Research Program of China (973) (2015CB251401), National Natural Science Foundation of China (21176205, 21322602), Zhejiang Provincial Natural Science Foundation of China (LZ17B060001), and Fundamental Research Funds of the Central Universities.

Corresponding Authors: WANG Congmin     E-mail:
Cite this article:

HE Xi, LÜ Xiaoyu, FAN Xi, LIN Wenjun, LI Haoran, WANG Congmin. Ultra-High SO2 Capture by Anion-Functionalized Resins through Multiple-Site Adsorption. Acta Phys. -Chim. Sin., 0, (): 0-0.

URL:     OR

(1) Ilutiu-Varvara, D. A.; Radulescu, D. Stud. Univ. Babes-Bol. Chem. 2013, 58 (2), 143.
(2) Wang, X. L.; Deng, J. P. Aer. Adv. Eng. Res. 2015, 39, 1207. doi: 10.2991/icadme-15.2015.222
(3) Lehmann, J.; Solomon, D.; Zhao, F. J.; McGrath, S. P. Environ. Sci. Technol. 2008, 42 (10), 3550. doi:10.1021/es702315g
(4) Saastamoinen, J. J. Ind. Eng. Chem. Res. 2007, 46 (22), 7308. doi: 10.1021/ie070567p
(5) Manovic, V.; Anthony, E. J. Fuel 2008, 87 (8-9), 1564. doi: 10.1016/j.fuel.2007.08.022
(6) Basinas, P.; Grammelis, P.; Grace, J. R.; Lim, C. J.; Skodras, G.; Sakellaropoulos, G. P. Green Energy Technol. 2010, 329. doi: 10.1007/978-1-4419-1017-2_20
(7) Wu, Y.; Chen, X. P.; Radosz, M.; Fan, M. H.; Dong, W.; Zhang, Z. L.; Yang, Z. Fuel 2014, 125, 50. doi:10.1016/j.fuel.2014.02.014
(8) Dong, R. F.; Lu, H. F.; Yu, Y. S.; Zhang, Z. X. Appl. Energ. 2012, 97, 185. doi:10.1016/j.apenergy.2011.12.039
(9) Woodis, T. C.; Cummings, J. M.; Hunter, G. B. Environ. Sci. Technol. 1973, 7 (9), 827. doi:10.1021/es60081a001
(10) Srivastava, R. K.; Jozewicz, W.; Singer, C. Environ. Prog. 2001, 20 (4), 219. doi:10.1002/ep.670200410
(11) Yang, D. Z.; Hou, M. Q.; Ning, H.; Zhang, J. L.; Ma, J.; Han, B. X. Phys. Chem. Chem. Phys. 2013, 15 (41), 18123. doi: 10.1002/cssc.201300224
(12) Heldebrant, D. J.; Koech, P. K.; Yonker, C. R. Energ. Environ. Sci. 2010, 3 (1), 111. doi:10.1039/b916550a
(13) Deng, R. P.; Jia, L. S.; Song, Q. Q.; Su, S.; Tian, Z. B. J. Hazard. Mater. 2012, 229, 398. doi:10.1016/j.jhazmat.2012.06.020
(14) Gurkan, B. E.; de la Fuente, J. C.; Mindrup, E. M.; Ficke, L. E.; Goodrich, B. F.; Price, E. A.; Schneider, W. F.; Brennecke, J. F. J. Am. Chem. Soc. 2010, 132 (7), 2116. doi:10.1021/ja909305t
(15) Srivastava, R. K.; Jozewicz, W. J. Air Waste. Manage. 2001, 51 (12), 1676. doi:10.1080/10473289.2001.10464387
(16) Slater, A. G.; Cooper, A. I. Science 2015, 348, 6238. doi: 10.1126/science.aaa8075
(17) Thomas, A. Angew. Chem. Int. Edit. 2010, 49 (45), 8328. doi: 10.1002/anie.201000167
(18) Drage, T. C.; Snape, C. E.; Stevens, L. A.; Wood, J.; Wang, J. W.; Cooper, A. I.; Dawson, R.; Guo, X.; Satterley, C.; Irons, R. J. Mater. Chem. 2012, 22 (7), 2815. doi:10.1039/c2jm12592g
(19) Dawson, R.; Cooper, A. I.; Adams, D. J. Polym. Int. 2013, 62 (3), 345. doi:10.1002/pi.4407
(20) Liao, P. Q.; Chen, H. Y.; Zhou, D. D.; Liu, S. Y.; He, C. T.; Rui, Z. B.; Ji, H. B.; Zhang, J. P.; Chen, X. M. Energ. Environ. Sci. 2015, 8 (3), 1011. doi:10.1039/c4ee02717e
(21) Cui, X. L.; Yang, Q. W.; Yang, L. F.; Krishna, R.; Zhang, Z. G.; Bao, Z. B.; Wu, H.; Ren, Q. L.; Zhou, W.; Chen, B. L.; et al. Adv. Mater. 2017, 29 (28), 1606929. doi: 10.1002/adma.201606929
(22) Yang, S. H.; Sun, J. L.; Ramirez-Cuesta, A. J.; Callear, S. K.; David, W. I. F.; Anderson, D. P.; Newby, R.; Blake, A. J.; Parker, J. E.; Tang, C. C.; et al. Nat. Chem. 2012, 4 (11), 887. doi: 10.1038/NCHEM.1457
(23) Savage, M.; Cheng, Y. G.; Easun, T. L.; Eyley, J. E.; Argent, S. P.; Warren, M. R.; Lewis, W.; Murray, C.; Tang, C. C.; Frogley, M. D.; et al. Adv. Mater. 2016, 28 (39), 8705. doi: 10.1002/adma.201602338
(24) Wu, W. Z.; Han, B. X.; Gao, H. X.; Liu, Z. M.; Jiang, T.; Huang, J. Angew. Chem. Int. Edit. 2004, 43 (18), 2415. doi: 10.1002/anie.200353437
(25) Zhang, S. J.; Sun, N.; He, X. Z.; Lu, X. M.; Zhang, X. P. J. Phys. Chem. Ref. Data 2006, 35 (4), 1475. doi:10.1063/1.2204959
(26) Lin, H.; Bai, P.; Guo, X. H. Asian J. Chem. 2014, 26 (9), 2501. doi: 10.14233/ajchem.2014.15800
(27) Yang, D. Z.; Hou, M. Q.; Ning, H.; Ma, J.; Kang, X. C.; Zhang, J. L.; Han, B. X. ChemSusChem 2013, 6 (7), 1191. doi: 10.1002/cssc.201300224
(28) Mondal, A.; Balasubramanian, S. J. Phys. Chem. B. 2016, 120 (19), 4457. doi:10.1021/acs.jpcb.6b02553
(29) Zeng, S. J.; Gao, H. S.; Zhang, X. C.; Dong, H. F.; Zhang, X. P.; Zhang, S. J. Chem. Eng. J. 2014, 251, 248. doi: 10.1016/j.cej.2014.04.040
(30) Cui, G. K.; Wang, C. M.; Zheng, J. J.; Guo, Y.; Luo, X. Y.; Li, H. R. Chem. Commun. 2012, 48 (20), 2633. doi:10.1039/c2cc16457d
(31) Chen, K. H.; Lin, W. J.; Yu, X. N.; Luo, X. Y.; Ding, F.; He, X.; Li, H. R.; Wang, C. M. AIChE J. 2015, 61 (6), 2028. doi: 10.1002/aic.14793
(32) Wang, C. M.; Cui, G. K.; Luo, X. Y.; Xu, Y. J.; Li, H. R.; Dai, S. J. Am. Chem. Soc. 2011, 133 (31), 11916. doi:10.1021/ja204808h
(33) Cui, G. K.; Lin, W. J.; Ding, F.; Luo, X. Y.; He, X.; Li, H. R.; Wang, C. M. Green Chem. 2014, 16 (3), 1211. doi: 10.1039/c3gc41458b
(34) Tang, H. R.; Lu, D. M. ChemPhysChem 2015, 16 (13), 2854. doi: 10.1002/cphc.201500369
(35) He, X.; Mei, K.; Dao, R. N.; Cai, J. S.; Lin, W. J.; Kong, X. Q.; Wang, C. M. AIChE J. 2017, 63 (7), 3008. doi: 10.1002/aic.15647
(36) Srinivasan, A.; Grutzeck, M. W. Environ. Sci. Technol. 1999, 33 (9), 1464. doi:10.1021/es9802091
(37) Alesi, W. R.; Kitchin, J. R. Ind. Eng. Chem. Res. 2012, 51 (19), 6907. doi:10.1021/ie300452c
(38) Lee, H. J.; Lee, K. I.; Kim, M.; Suh, Y. W.; Kim, H. S.; Lee, H. ACS Sustain. Chem. Eng. 2016, 4 (4), 2012. doi: 10.1021/acssuschemeng.5b01325
(39) Trofimenko, S. J. Am. Chem. Soc. 1967, 89 (13), 3170. doi: 10.1021/ja00989a017
(40) Becke, A. D. Phys. Rev. A 1988, 38 (6), 3098. doi: 10.1103/PhysRevA.38.3098
(41) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37 (2), 785. doi: 10.1103/PhysRevB.37.785
(42) Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648. doi: 10.1063/1.464913
(43) Firaha, D. S.; Holloczki, O.; Kirchner, B. Angew. Chem. Int. Edit. 2015, 54 (27), 7805. doi:10.1002/anie.201502296
(44) Wang, C. M.; Luo, X. Y.; Luo, H. M.; Jiang, D. E.; Li, H. R.; Dai, S. Angew. Chem. Int. Edit. 2011, 50 (21), 4918. doi: 10.1002/anie.201008151
(45) Goeppert, A.; Meth, S.; Olah, G. A.; Prakash, S. G. K. Energy Environ. Sci. 2010, 3, 1949. doi:10.1039/C0EE00136H
(46) Qi, G. G.; Wang, Y. B.; Estevez, L.; Duan, X. N.; Anako, N.; Park, A. H. A.; Li, W.; Jones, C. W.; Giannelis, E. P. Energy Environ. Sci. 2011, 4 (2), 444. doi:10.1039/c0ee00213e
(47) Xiang, S. C.; Zhang, Z. J.; Zhao, C. G.; Hong, K. L.; Zhao, X. B.; Ding, D. R.; Xie, M. H.; Wu, C. D.; Das, M. C.; Gill, R.; et al. Nat. Commun. 2011, 2 (1), 1. doi:10.1038/ncomms1206
(48) Liao, P. Q.; Zhang, W. X.; Zhang, J. P.; Chen, X. M. Nat. Commun. 2015, 6, 8697. doi:10.1038/ncomms969

[1] PENG Jiawei, XIE Yu, HU Deping, DU Likai, LAN Zhenggang. Treatment of Nonadiabatic Dynamics by On-The-Fly Trajectory Surface Hopping Dynamics[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[2] CHEN Wenqiong, GUAN Yongji, ZHANG Xiaoping, DENG Youquan. Influence of External Electric Field on Vibrational Spectrum of Imidazolium-Based Ionic Liquids Probed by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[3] GUO Xiaohong, ZHOU Ying, SHI Lihong, ZHANG Yan, ZHANG Caihong, DONG Chuan, ZHANG Guomei, SHUANG Shaomin. Luminescence Emission of Copper Nanoclusters by Ethanol-induced Aggregation and Aluminum Ion-induced Aggregation[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[4] OUYANG Yongzhong, HUA Shugui, DENG Jinlian. Rapid Assessment of Atoms-in-Molecules Charges for Polypeptides by the Electronegativity Equalization Method[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[5] SHEN Yanfang, CHENG Longjiu. Electronic Stability of Eight-electron Tetrahedral Pd4 Clusters[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[6] ZHOU Jingyuan, ZHANG Jin, LIU Zhongfan. Advanced Progress in the Synthesis of Graphdiyne[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[7] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[8] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[9] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[10] Xiaoqin DING,Junjie DING,Dayu LI,Li PAN,Chengxin PEI. Toxicity Prediction of Organoph Osphorus Chemical Reactivity Compounds Based on Conceptual DFT[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 314-322.
[11] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[12] ZHOU Yongquan, SOGA Yoshie, YAMAGUCHI Toshio, FANG Yan, FANG Chunhui. Structure of Aqueous RbCl and CsCl Solutions Using X-Ray Scattering and Empirical Potential Structure Refinement Modelling[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 483-491.
[13] HAN Xue, YANG Jin, LIU Yingying, MA Jianfang. Syntheses and Luminescent Properties of Coordination Polymers Based on 1,2,4-Triazole-Substituted Resorcin[4]arene[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 476-482.
[14] YAN Chaoxian, YANG Fan, WU Ruizhi, ZHOU Dagang, YANG Xing, ZHOU Panpan. Application of Natural Orbital Fukui Functions and Bonding Reactivity Descriptor in Understanding Bond Formation Mechanisms Underlying[2 + 4] and[4 + 2] Cycloadditions of o-thioquinones with 1,3-Dienes[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 497-502.
[15] LU Tian, CHEN Qinxue. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.