Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (8): 896-903    DOI: 10.3866/PKU.WHXB201711271
Special Issue: Green Chemistry
ARTICLE     
Ultra-High SO2 Capture by Anion-Functionalized Resins through Multiple-Site Adsorption
Xi HE1,Xiaoyu LÜ1,Xi FAN1,Wenjun LIN1,Haoran LI1,2,Congmin WANG1,*()
1 ZJU-NHU United R & D Center, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
2 College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
Download: HTML     PDF(931KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

The anion-functionalization strategy has been proposed and applied for the synthesis of macro-porous resins [IRA-900][An], thus realizing anultra-high SO2 adsorption capacity (>10 mmol·g-1) at 101.3 kPa and 20 ℃. Compared with the normal azole-based anion-functionalized resins, the poly(imidazolyl)borate anion-functionalized resin [IRA-900][B(Im)4] exhibited an outstanding adsorption capacity at low SO2 partial pressures (10.62 mmol·g-1 at 20 ℃ and 10.13 kPa). From the results of the IR spectrum investigation and DFT calculations, the multiple-site adsorption mechanism was verified. On account of the unique tetrahedral configuration of [B(im)4], the conjugation and electronic communication between the electronegative nitrogen atoms were disrupted, making them behave as local reactive sites. Therefore, at least four electronegative nitrogen atoms could be provided by one [B(im)4] to react with SO2 without evident adsorption enthalpy deterioration (from -50.6 kJ·mol-1 to -37.2 kJ·mol-1) during the continuous SO2 capture; this was responsible for the ultra-high SO2 adsorption capacity achieved by [IRA-900][B(Im)4] at low partial pressures. Moreover, the thermal stability and reversibility of [IRA-900][B(Im)4] for SO2 capture and desorption were investigated. Six cycles where the adsorption was carried out at 20 ℃ and 10.13 kPa and the regeneration was performed at 70 ℃ demonstrated the adequate reversibility of [IRA-900][B(Im)4] for SO2 capture, showing the resin's great potential for industrial desulfurization. Thus, the anion-functionalization strategy and multiple-site adsorption behavior provide new perspectives to realize effective SO2 capture from flue gas.



Key wordsAnion functionalized      Macro-porous resins      Poly(imidazolyl)borate anion      Multiple-site      SO2 capture     
Received: 27 October 2017      Published: 27 November 2017
MSC2000:  O641  
Fund:  the National Key Basic Research Program of China (973)(2015CB251401);National Natural Science Foundation of China(21176205);National Natural Science Foundation of China(21322602);Zhejiang Provincial Natural Science Foundation of China(LZ17B060001);Fundamental Research Funds of the Central Universities
Corresponding Authors: Congmin WANG     E-mail: chewcm@zju.edu.cn
Cite this article:

Xi HE,Xiaoyu LÜ,Xi FAN,Wenjun LIN,Haoran LI,Congmin WANG. Ultra-High SO2 Capture by Anion-Functionalized Resins through Multiple-Site Adsorption. Acta Phys. -Chim. Sin., 2018, 34(8): 896-903.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201711271     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I8/896

 
 
Material Surface area/(m2·g-1)a Pore size/nmb Pore volume/(cm3·g-1)b N content/%
[1RA-900][C1] 20 43 0.26 5.35
[IRA-900] [B(Im)4] 13 38 0.21 23.43
[IRA-900] [Triz] 19 43 0.22 19.95
[IRA-900] [Tetz] 11 46 0.21 25.89
 
Material Adsorption capacity/(mmol·g?1) a Anion sites/(mmol·g?1) b Molar ratio d
101.3 kPa, 20 ℃ 10.13 kPa, 20 ℃
[IRA-900] [B(Im)4] 11.18 10.62/8.40 c 1.86 5.71
[IRA-900][Triz] 10.97 5.15 3.56 1.45
[IRA-900] [Tetz] 10.13 5.06 3.70 1.37
[IRA-900] [Cl] 10.75 4.35 3.82 1.14
 
 
 
 
 
1 Ilutiu-Varvara D. A. ; Radulescu D. Stud. Univ. Babes-Bol. Chem. 2013, 58 (2), 143.
2 Wang X. L. ; Deng J. P. Aer. Adv. Eng. Res. 2015, 39, 1207.
3 Lehmann J. ; Solomon D. ; Zhao F. J. ; McGrath S. P. Environ. Sci. Technol. 2008, 42 (10), 3550.
4 Saastamoinen J. J. Ind. Eng. Chem. Res. 2007, 46 (22), 7308.
5 Manovic V. ; Anthony E. J. Fuel 2008, 87 (8-9), 1564.
6 Basinas P. ; Grammelis P. ; Grace J. R. ; Lim C. J. ; Skodras G. ; Sakellaropoulos G. P. Green Energy Technol. 2010, 329
7 Wu Y. ; Chen X. P. ; Radosz M. ; Fan M. H. ; Dong W. ; Zhang Z. L. ; Yang Z. Fuel 2014, 125, 50.
8 Dong R. F. ; Lu H. F. ; Yu Y. S. ; Zhang Z. X. Appl. Energ. 2012, 97, 185.
9 Woodis T. C. ; Cummings J. M. ; Hunter G. B. Environ. Sci. Technol. 1973, 7 (9), 827.
10 Srivastava R. K. ; Jozewicz W. ; Singer C. Environ. Prog. 2001, 20 (4), 219.
11 Yang D. Z. ; Hou M. Q. ; Ning H. ; Zhang J. L. ; Ma J. ; Han B. X. Phys. Chem. Chem. Phys. 2013, 15 (41), 18123.
12 Heldebrant D. J. ; Koech P. K. ; Yonker C. R. Energ. Environ. Sci. 2010, 3 (1), 111.
13 Deng R. P. ; Jia L. S. ; Song Q. Q. ; Su S. ; Tian Z. B. J. Hazard. Mater. 2012, 229, 398.
14 Gurkan B. E. ; de la Fuente J. C. ; Mindrup E. M. ; Ficke L. E. ; Goodrich B. F. ; Price E. A. ; Schneider W. F. ; Brennecke J. F. J. Am. Chem. Soc. 2010, 132 (7), 2116.
15 Srivastava R. K. ; Jozewicz W. J. Air Waste. Manage. 2001, 51 (12), 1676.
16 Slater A. G. ; Cooper A. I. Science 2015, 348, 6238.
17 Thomas A. Angew. Chem. Int. Edit. 2010, 49 (45), 8328.
18 Drage T. C. ; Snape C. E. ; Stevens L. A. ; Wood J. ; Wang J. W. ; Cooper A. I. ; Dawson R. ; Guo X. ; Satterley C. ; Irons R. J. Mater. Chem. 2012, 22 (7), 2815.
19 Dawson R. ; Cooper A. I. ; Adams D. J. Polym. Int. 2013, 62 (3), 345.
20 Liao P. Q. ; Chen H. Y. ; Zhou D. D. ; Liu S. Y. ; He C. T. ; Rui Z. B. ; Ji H. B. ; Zhang J. P. ; Chen X. M. Energ. Environ. Sci. 2015, 8 (3), 1011.
21 Cui X. L. ; Yang Q. W. ; Yang L. F. ; Krishna R. ; Zhang Z. G. ; Bao Z. B. ; Wu H. ; Ren Q. L. ; Zhou W. ; Chen B. L. ; et al Adv. Mater. 2017, 29 (28), 1606929.
22 Yang S. H. ; Sun J. L. ; Ramirez-Cuesta A. J. ; Callear S. K. ; David W. I. F. ; Anderson D. P. ; Newby R. ; Blake A. J. ; Parker J. E. ; Tang C. C. ; et al Nat. Chem. 2012, 4 (11), 887.
23 Savage M. ; Cheng Y. G. ; Easun T. L. ; Eyley J. E. ; Argent S. P. ; Warren M. R. ; Lewis W. ; Murray C. ; Tang C. C. ; Frogley M. D. ; et al Adv. Mater. 2016, 28 (39), 8705.
24 Wu W. Z. ; Han B. X. ; Gao H. X. ; Liu Z. M. ; Jiang T. ; Huang J. Angew. Chem. Int. Edit. 2004, 43 (18), 2415.
25 Zhang S. J. ; Sun N. ; He X. Z. ; Lu X. M. ; Zhang X. P. J. Phys. Chem. Ref. Data 2006, 35 (4), 1475.
26 Lin H. ; Bai P. ; Guo X. H. Asian J. Chem. 2014, 26 (9), 2501.
27 Yang D. Z. ; Hou M. Q. ; Ning H. ; Ma J. ; Kang X. C. ; Zhang J. L. ; Han B. X. ChemSusChem 2013, 6 (7), 1191.
28 Mondal A. ; Balasubramanian S. J. Phys. Chem. B. 2016, 120 (19), 4457.
29 Zeng S. J. ; Gao H. S. ; Zhang X. C. ; Dong H. F. ; Zhang X. P. ; Zhang S. J. Chem. Eng. J. 2014, 251, 248.
30 Cui G. K. ; Wang C. M. ; Zheng J. J. ; Guo Y. ; Luo X. Y. ; Li H. R. Chem. Commun. 2012, 48 (20), 2633.
31 Chen K. H. ; Lin W. J. ; Yu X. N. ; Luo X. Y. ; Ding F. ; He X. ; Li H. R. ; Wang C. M. AIChE J. 2015, 61 (6), 2028.
32 Wang C. M. ; Cui G. K. ; Luo X. Y. ; Xu Y. J. ; Li H. R. ; Dai S. J. Am. Chem. Soc. 2011, 133 (31), 11916.
33 Cui G. K. ; Lin W. J. ; Ding F. ; Luo X. Y. ; He X. ; Li H. R. ; Wang C. M. Green Chem. 2014, 16 (3), 1211.
34 Tang H. R. ; Lu D. M. ChemPhysChem 2015, 16 (13), 2854.
35 He X. ; Mei K. ; Dao R. N. ; Cai J. S. ; Lin W. J. ; Kong X. Q. ; Wang C. M. AIChE J. 2017, 63 (7), 3008.
36 Srinivasan A. ; Grutzeck M. W. Environ. Sci. Technol. 1999, 33 (9), 1464.
37 Alesi W. R. ; Kitchin J. R. Ind. Eng. Chem. Res. 2012, 51 (19), 6907.
38 Lee H. J. ; Lee K. I. ; Kim M. ; Suh Y. W. ; Kim H. S. ; Lee H. ACS Sustain. Chem. Eng. 2016, 4 (4), 2012.
39 Trofimenko S. J. Am. Chem. Soc. 1967, 89 (13), 3170.
40 Becke A. D. Phys. Rev. A 1988, 38 (6), 3098.
41 Lee C. T. ; Yang W. T. ; Parr R. G. Phys. Rev. B 1988, 37 (2), 785.
42 Becke A. D. J. Chem. Phys. 1993, 98 (7), 5648.
43 Firaha D. S. ; Holloczki O. ; Kirchner B. Angew. Chem. Int. Edit. 2015, 54 (27), 7805.
44 Wang C. M. ; Luo X. Y. ; Luo H. M. ; Jiang D. E. ; Li H. R. ; Dai S. Angew. Chem. Int. Edit. 2011, 50 (21), 4918.
45 Goeppert A. ; Meth S. ; Olah G. A. ; Prakash S. G. K. Energy Environ. Sci. 2010, 3, 1949.
46 Qi G. G. ; Wang Y. B. ; Estevez L. ; Duan X. N. ; Anako N. ; Park A. H. A. ; Li W. ; Jones C. W. ; Giannelis E. P. Energy Environ. Sci. 2011, 4 (2), 444.
47 Xiang S. C. ; Zhang Z. J. ; Zhao C. G. ; Hong K. L. ; Zhao X. B. ; Ding D. R. ; Xie M. H. ; Wu C. D. ; Das M. C. ; Gill R. ; et al Nat. Commun. 2011, 2 (1), 1.
48 Liao P. Q. ; Zhang W. X. ; Zhang J. P. ; Chen X. M. Nat. Commun. 2015, 6, 8697.
[1] WANG Qin, XUE Minmin, ZHANG Zhuhua. Chemical Synthesis of Borophene: Progress and Prospective[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[2] Ze YU,Xiaohong LI,Yunchao LI,Mingfu YE. K+ Concentration-Dependent Conformational Change of Pb2+-Stabilized G-quadruplex[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1293-1298.
[3] Pingying LIU,Chunyan LIU,Qian LIU,Jing MA. Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1171-1178.
[4] Yasong ZHAO,Lijuan ZHANG,Jian QI,Quan JIN,Kaifeng LIN,Dan WANG. Graphdiyne with Enhanced Ability for Electron Transfer[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1048-1060.
[5] Wenqiong CHEN,Yongji GUAN,Xiaoping ZHANG,Youquan DENG. Influence of External Electric Field on Vibrational Spectrum of Imidazolium-Based Ionic Liquids Probed by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 912-919.
[6] Dongmei JIANG,Le BO,Ting ZHU,Junbin TAO,Xiaoping YANG. Construction and NIR Luminescence Properties of Zn-Ln Rectangular Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 812-817.
[7] Yanfang SHEN,Longjiu CHENG. Electronic Stability of Eight-electron Tetrahedral Pd4 Clusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 830-836.
[8] Youkun ZHENG,Hui JIANG,Xuemei WANG. Multiple Strategies for Controlled Synthesis of Atomically Precise Alloy Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 740-754.
[9] Xiaohong GUO,Ying ZHOU,Lihong SHI,Yan ZHANG,Caihong ZHANG,Chuan DONG,Guomei ZHANG,Shaomin SHUANG. Luminescence Emission of Copper Nanoclusters by Ethanol-induced Aggregation and Aluminum Ion-induced Aggregation[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 818-824.
[10] Xiuqing REN,Xinzhang LIN,Xuemei FU,Chao LIU,Jinghui YAN,Jiahui HUANG. Synthesis of High Yield Au21(SR)15 Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 825-829.
[11] Nagaraju NARAYANAM,Kalpana CHINTAKRINDA,Weihui FANG,Lei ZHANG,Jian ZHANG. Atomically Precise Zr-Oxo and Zr/Ti-Oxo Nanoclusters by Deep Eutectic-Solvothermal Synthesis[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 781-785.
[12] An XIE,Zhi WANG,Qiaoyu WU,Liping CHENG,Genggeng LUO,Di SUN. [Ag25(SC6H4Pri)18(dppp)6](CF3SO3)7·CH3CN (HSC6H4Pri = 4-t-isopropylthiophenol, and dppp = 1, 3-bis(diphenyphosphino)propane) Cluster Containing a Sandwich-like Skeleton: Structural Characterization and Optical Properties[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 776-780.
[13] Wenwu XU,Yi GAO. Thiolate-Protected Hollow Gold Nanospheres[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 770-775.
[14] Guodong SUN,Xi KANG,Shan JIN,Xiaowu LI,Daqiao HU,Shuxin WANG,Manzhou ZHU. Synthesis and Structure Determination of Ag-Ni Alloy Nanocluster Ag4Ni2(SPhMe2)8 (SPhMe2 = 2, 4-dimethylbenzenethiol)[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 799-804.
[15] Yang ZHOU,Zhimin LI,Kai ZHENG,Gao LI. Controlled Synthesis of Au36(SR)24 (SR = SPh, SC6H4CH3, SCH(CH3)Ph, and SC10H7) Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 786-791.