Please wait a minute...
Acta Physico-Chimica Sinca
Accepted manuscript     
DNA Interactions and Cytotoxicity of Imidazole-Modified Naphthalimides
GAO Yunyan, CAI Wenjiao, OU Zhize, MA Tuotuo, YI Na, LI Zhiyuan
The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi'an 710072, P. R. China
Download:   PDF(703KB) Export: BibTeX | EndNote (RIS)       Supporting Info


The rational design of naphthalimide derivatives, which can target specific DNA sequences and secondary structural DNA, is important for developing potential anticancer drugs. In this work, the naphthalimide-imidazole conjugate (3) and its alkylated derivatives (4a-c) were synthesized, and characterized by 1H NMR, 13C NMR, and mass spectrometry (MS). The interactions of these compounds with calf thymus DNA (CT DNA) and G-quadruplex DNA were investigated by UV-Vis spectroscopy, fluorescence spectroscopy, circular dichroism, and fluorescence resonance energy transfer (FRET). The studies revealed that the naphthalimides with imidazolium displayed higher affinity towards CT DNA than those with the imidazole moiety, suggesting that the electrostatic interaction plays an important role in the interactions between the naphthalimide and the DNA duplex. All of the obtained naphthalimide derivatives possessed high affinity (Ka > 4×106 L·mol-1) towards the telomeric G-quadruplex, and exhibited more than 30-fold selectivity for the quadruplex versus CT DNA. The viscosity of CT DNA increased upon addition of the naphthalimides, suggesting that the latter could bind to the former via a classical intercalation mode. FRET results indicated that the compounds 3 and 4a-c stabilized the structure of the telomeric G-quadruplex by increasing its melting temperature by 5.8, 10.7, 8.4, and 7.8℃, respectively. CD spectral results suggested that the telomeric G-quadruplex maintained a mixture of antiparallel and parallel conformation in the presence of the naphthalimide derivatives (3 and 4a-c) in a buffer containing K+. The fluorescence intensity of the naphthalimide derivatives 3 and 4a, b with octylimidazolium was significantly enhanced upon interaction with the G-quadruplex, which could be attributed to the immersion of naphthalimide moieties in the hydrophobic region of the G-quadruplex. However, the fluorescence of compound 4c with hexadecylimidazolium increased only slightly upon addition of the G-quadruplex. Molecular docking studies indicated that the naphthalimide derivatives were associated with the loop and groove of the human telomeric G-quadruplex via hydrophobic interactions. A hydrogen bond was formed between the imidazole group in compound 3 and the guanine residue DG16. The phosphate group from the G-quadruplex backbone pointed to the imidazolium moiety of 4a-c, suggesting that the electrostatic interactions also played an important role. Being fluorescent, the cellular localization of 3 and 4a-c could be conveniently tracked by fluorescence imaging. The results showed that compounds 4a-c, which contained the imidazolium moiety, were mainly localized in the nucleus after 4.0 h of incubation, while compound 3 with the imidazole moiety was partially localized in the nucleus. The enhancement of the nuclear localization of 4a-c may be attributed to the positive charge in 4a-c and their higher DNA affinity. Based on the MTT assay results, it was concluded that compounds 4a-c displayed much stronger cytotoxic activity against breast cancer cells than 3. Furthermore, compounds 4a and 4b selectively inhibited the A549 cells over normal human lung fibroblast MRC-5 cells, with high anticancer activity. These results indicated that the G-quadruplex binding affinity and anticancer activity of naphthalimide could be modulated by conjugation with the imidazole moiety.

Key wordsNaphthalimide      G-quadruplex      Anticancer drug      Imidazolium      Cytotoxicity     
Received: 30 October 2017      Published: 28 November 2017
MSC2000:  O642  

The project was supported by the Natural Science Foundation of Shaanxi Province, China (2016JM2013), the National Natural Science Foundation of China (21073143), and the NPU Foundation for Graduate Innovation (Z2017208).

Corresponding Authors: OU Zhize     E-mail:
Cite this article:

GAO Yunyan, CAI Wenjiao, OU Zhize, MA Tuotuo, YI Na, LI Zhiyuan. DNA Interactions and Cytotoxicity of Imidazole-Modified Naphthalimides. Acta Physico-Chimica Sinca, 0, (): 0-0.

URL:     OR

(1) Banerjee, S.; Veale, E. B.; Phelan, C. M.; Murphy, S. A.; Tocci, G. M.; Gillespie, L. J.; Frimannsson, D. O.; Kelly J. M.; Gunnlaugsson, T. Chem. Soc. Rev. 2013, 42, 1601. doi: 10.1039/C2CS35467E
(2) Ratain, M. J.; Rosner, G.; Allen, S. L.; Costanza, M.; Van Echo, D. A.; Henderson, I. C.; Schilsky, R. L. J. Clin. Oncol. 1995, 13, 741. doi:10.1200/JCO.1995.13.3.741
(3) Ratain, M. J.; Mick R.; Berezin, F.; Janisch, L.; Schilsky, R. L.; Williams, S. F.; Smiddy, J. Clin. Pharmacol. Ther. 1991, 50, 573. doi: 10.1038/clpt.1991.183
(4) Kokosza, K.; Andrei, G.; Schols, D.; Snoeck, R.; Piotrowska, D.G. Bioorg. Med. Chem 2015, 23, 3135. doi: 10.1016/j.bmc.2015.04.079
(5) Quintana-Espinoza, P.; Martin-Acosta, P.; Amesty, A.; MartinRodriguez, P.; Lorenzo-Castrillejo, I.; Fernandez-Perez, L.; Machin, F.; Estevez-Braun, A. Bioorg. Med. Chem. 2017, 25, 1976. doi:10.1016/j.bmc.2017.02.024
(6) Verma, M.; Luxami, V.; Paul, K. RSC Adv. 2015, 5, 41803. doi: 10.1039/C5RA00925A
(7) Rong, R.-X.; Sun, Q.; Ma, C.-L.; Chen, B.; Wang, W.-Y.; Wang, Z. A.; Wang, K. R.; Cao, Z. R.; Li, X. L. Med. Chem. Commun. 2016, 7, 679. doi:10.1039/C5MD00543D
(8) Tian, Z.; Huang, Y.; Zhang, Y.; Song, L.; Qiao, Y.; Xu, X.; Wang, C. J. Photochem. Photobiol. B Biol. 2016, 158, 1. doi: 10.1016/j.jphotobiol.2016.01.017
(9) Li, F.; Cui, J.; Guo, L.; Qian, X.; Ren, W.; Wang, K.; Liu, F. Bioorg. Med. Chem. 2007, 15, 5114. doi: 10.1016/j.bmc.2007.05.032
(10) Qian, X.; Li, Y.; Xu, Y.; Liu, Y.; Qu, B. Bioorg. Med. Chem. Lett. 2004, 14, 2665. doi:10.1016/j.bmcl.2004.02.059
(11) Brana, M. F.; Cacho, M.; Garcia, M. A.; de Pascual-Teresa, B.; Ramos, A.; Dominguez, M. T.; Pozuelo, J. M.; Abradelo, C.; Rey-Stolle, M. F.; Yuste, M.; Banez-Coronel, M.; Lacal, J. C. J. Med. Chem. 2004, 47, 1391. doi:10.1021/jm0308850
(12) Hsiang, Y. H.; Liu, L. F. Cancer Res. 1988, 48, 1722.
(13) Hurley, L. H.; Boyd, F. L. Trends Pharmacol. Sci. 1988, 9, 402. doi: 10.1016/0165-6147(88)90067-3
(14) Johnson, C. A.; Hudson, G. A.; Hardebeck, L. K. E.; Jolley, E. A.; Ren, Y.; Lewis, M.; Znosko, B. M. Bioorg. Med. Chem. 2015, 23, 3586. doi:10.1016/j.bmc.2015.04.030
(15) Tan, S.; Sun, D.; Lyu, J.; Sun, X.; Wu, F.; Li, Q.; Yang, Y.; Liu, J.; Wang, X.; Chen, Z.; Li, H.; Qian, X.; Xu, Y. Bioorg. Med. Chem. 2015, 23, 5672. doi:10.1016/j.bmc.2015.07.011
(16) Sun, Y.; Li, J.; Zhao, H.; Tan, L. J. Inorg. Biochem. 2016, 163, 88. doi:10.1016/j.jinorgbio.2016.04.028
(17) Zhao, S. S.; Li L. L.; Liu X. R.; Ding Z. C.; Yang Z. W. Acta Phys. -Chim. Sin. 2017, 33, 356.[赵顺省, 李兰兰, 刘向荣, 丁作成, 杨再文. 物理化学学报, 2017, 33, 363]doi:10.3866/PKU.WHXB201610191
(18) Mijatovic, T.; Mahieu, T.; Bruyere, C.; De Neve, N.; Dewelle, J.; Simon, G.; Dehoux, M. J. M.; van der Aar, E.; Haibe-Kains, B.; Bontempi, G.; Decaestecker, C.; Van Quaquebeke, E.; Darro, F.; Kiss, R. Neoplasia 2008, 10, 573. doi:10.1593/neo.08290
(19) Ji, L.; Yang, S.; Li, S.; Liu, S.; Tang, S.; Liu, Z.; Meng, X.; Yu, S. Oncotarget 2017, 8, 37394. doi:10.18632/oncotarget.16962
(20) Paeschkel, K.; Simonsson, T.; Postberg, J.; Rhodes, D.; Lipps, H.J. Nat. Struct. Mol. Biol. 2005, 12, 847. doi:10.1038/nsmb982
(21) Siddiqui-Jain, A.; Grand, C. L.; Bearss, D. J.; Hurley, L. H. Proc. Nat. Acad. Sci. U. S. A. 2002, 99, 11593. doi: 10.1073/pnas.182256799
(22) Zhang, J.; Yu, Q.; Li, Q.; Yang, L.; Chen, L.; Zhou, Y.; Liu, J. J. Inorg. Biochem. 2014, 134, 1. doi: 10.1016/j.jinorgbio.2013.12.005
(23) Mulholland, K.; Wu, C. J. Chem. Inf. Model. 2016, 56, 2093. doi: 10.1021/acs.jcim.6b00473
(24) Drygin, D.; Siddiqui-Jain, A.; O'Brien, S.; Schwaebe, M.; Lin, A.; Bliesath, J.; Ho, C. B.; Proffitt, C.; Trent, K.; Whitten, J. P.; et al. Cancer Res. 2009, 69 , 7653. doi: 10.1158/0008-5472.CAN-09-1304
(25) Wang, Y.; Zhang, X.; Liu, C.; Zhou, X. Acta Chim. Sin. 2017, 75, 692.[王雅芬, 张雄, 刘朝兴, 周翔. 化学学报, 2017, 75, 692.]doi:10.6023/A17040162
(26) Ou, T.; Lu, Y.; Tan, J.; Huang, Z.; Wong, K.; Gu, L. ChemMedChem 2008, 3, 690. doi:10.1002/cmdc.200700300
(27) Neidle, S. J. Med. Chem. 2016, 59, 5987. doi: 10.1021/acs.jmedchem.5b0183
(28) Zheng, X.; Mu, K.; Tan, C.; Cao, Q.; Mao, Z. Sci. China Chem. 2014, 44, 484.[郑小辉, 穆舸, 谭彩萍, 曹乾, 毛宗万. 中国科学:化学, 2014, 44, 484.] doi:10.1360/032013-340
(29) Sissi, C.; Lucatello, L.; Krapcho, A. P.; Maloney, D. J.; Boxer, M. B.; Camarasa, M. V.; Pezzoni, G.; Menta, E.; Palumbo, M. Bioorg. Med. Chem. 2007, 15, 555. doi: 10.1016/j.bmc.2006.09.029
(30) Peduto, A.; Pagano, B.; Petronzi, C.; Massa, A.; Esposito, V.; Virgilio, A.; Paduano, F.; Trapasso, F.; Fiorito, F.; Florio, S.; et al. Bioorg. Med. Chem. 2011, 19, 6419. doi: 10.1016/j.bmc.2011.08.062
(31) Ou, Z.; Qian, Y.; Gao, Y.; Wang, Y.; Yang, G.; Li, Y.; Jiang, K.; Wang, X. RSC Adv. 2016, 6, 36923. doi:10.1039/c6ra01441k
(32) Ou, Z.; Xu, M.; Gao, Y.; Hu, R.; Li, Q.; Cai, W.; Wang, Z.; Qian, Y.; Yang, G. New J. Chem. 2017, 41, 9397. doi: 10.1039/c7nj02366a
(33) Sur, S.; Tiwari, V.; Sinha, D.; Kamran, M. Z.; Dubey, K. D.; Kumar, G. S.; Tandon, V. ACS Omega 2017, 2, 966. doi: 10.1021/acsomega.6b00523
(34) Mancini, J.; Rousseau, P.; Castor, K. J.; Sleiman, H. F.; Autexier, C. Biochimie 2016, 121, 287. doi:10.1016/j.biochi.2015.12.015
(35) Hu, M. H.; Chen, S. B.; Wang, B.; Ou, T. M.; Gu, L. Q.; Tan J. H.; Huang, Z. S. Nucleic Acids Res. 2017, 45, 1606. doi: 10.1093/nar/gkw1195
(36) Huang, J.; Li, G.; Wu, Z.; Song, Z.; Zhou, Y.; Shuai, L.; Weng, X.; Zhou, X.; Yang, G. Chem. Commun. 2009, No.8, 902. doi: 10.1039/b819789j
(37) Czirok, J. B.; Bojtar, M.; Hessz, D.; Baranyai, P.; Drahos, L.; Kubinyi, M.; Bittera, I. Sensor Actuat B-Chem. 2013, 182, 280. doi: 10.1016/j.snb.2013.02.046
(38) Wang, D.; Zhang, X.; He, C.; Duan, C. Org. Biomol. Chem. 2010, 8, 2923. doi:10.1039/C004148C
(39) Kim, H. N.; Lee, E. H.; Xu, Z.; Kim, H. E.; Lee, H. S.; Lee, J. H.; Yoon, J. Biomaterial 2012, 33, 2282. doi: 10.1016/j.biomaterials.2011.11.073
(40) Street, S.; Chin, D.; Hollingworth, G.; Berry, M.; Morales, J. C.; Galan, M. C. Chem. Eur. J. 2017, 23, 6953. doi: 10.1002/chem.201700140
(41) Chen, J. S.; Zhou, P. W.; Li, G. Y.; Chu, T. S.; He, G. Z. J. Phys. Chem. B, 2013, 117, 5212. doi:10.1021/jp4017757
(42) Romanucci, V.; Marchand, A.; Mendoza, O.; D'Alonzo, D.; Zarrelli, A.; Gabelica, V.; Fabio, G. D. ACS Med. Chem. Lett. 2016, 7, 256. doi:10.1021/acsmedchemlett.5b00408
(43) Fleming, A. M.; Ding, Y.; Alenko, A.; Burrows, C. J. ACS Infect. Dis. 2016, 2, 674. doi:10.1021/acsinfecdis.6b00109
(44) Xu, X. L.; Wang, J.; Yu, C. L.; Chen, W.; Li, Y. C.; Li, Y.; Zhang, H. B.; Yang, X. D. Bioorg. Med. Chem. Lett. 2014, 24, 4926. doi: 10.1016/j.bmcl.2014.09.045
(45) Elshaarawy, R. F. M.; Kheiralla, Z. H.; Rushdy, A. A.; Janiak, C. Inorg. Chim. Acta 2014, 421, 110. doi:10.1016/j.ica.2014.05.029
(46) Ranke, J.; Cox, M.; Muller, A.; Schmidt, C.; Beyersmann, D. Toxicol. Environ. Chem. 2006, 88, 273. doi: 10.1080/02772240600589505
(47) Luo, X.; Qian, Y. Chin. J. Org. Chem. 2013, 33, 2423.[罗晓燕, 钱鹰. 有机化学, 2013, 33, 2423.] doi:10.6023/cjoc201305034
(48) Manojkumar, K.; Charan, K. T. P.; Sivaramakrishna, A.; Jha, P. C.; Khedkar, V. M.; Siva, R.; Jayaraman, G.; Vijayakrishna, K. Biomacromolecules 2015, 16, 894. doi:10.1021/bm5018029
(49) Rao, L.; Dworkin, J. D.; Nell, W. E.; Bierbach, U. J. Phys. Chem. B 2011, 115, 13701. doi:10.1021/jp207265s
(50) Georgiades, S. N.; Karim, N. H. A.; Suntharalingam, K.; Vilar, R. Angew. Chem. Int. Ed. 2010, 49, 4020. doi: 10.1002/anie.200906363
(51) Raju, G.; Vishwanath, S.; Prasad, A.; Patel, B. K.; Prabusankar, G. J. Mol. Struct. 2016, 1107, 291. doi: 10.1016/j.molstruc.2015.11.064
(52) Zhou, J.; Chang, A.; Wang, L.; Liu, Y.; Liu, X.; Shangguan, D. Org. Biomol. Chem. 2014, 12, 9207. doi:10.1039/C4OB01274G
(53) Wang, K. R.; Qian, F.; Sun, Q.; Ma, C. L.; Rong, R. X.; Cao, Z. R., Wang, X. M.; Li, X. L. Chem. Biol. Drug Des. 2016, 87, 664. doi: 10.1111/cbdd.12698
(54) Ou, Z.; Ju, B.; Gao, Y.; Wang, Z.; Huang, G.; Qian, Y. Acta Phys. -Chim. Sin. 2015, 31, 2386.[欧植泽, 句宝龙, 高云燕, 王子超, 黄干, 钱一梦. 物理化学学报, 2015, 31, 2386.]doi:10.3866/PKU.WHXB201510l3
(55) Loganathan, R.; Ramakrishnan, S.; Suresh, E.; Riyasdeen, A.; Akbarsha, M. A.; Palaniandavar, M. Inorg. Chem. 2012, 51, 5512. doi:10.1021/ic2017177
(56) Barton, J. K.; Goldberg, J. M.; Kumar, C. V.; Turro, N. J. J. Am. Chem. Soc. 1986, 108, 2081. doi:10.1021/ja00268a057
(57) Satyanarayana, S.; Dabrowiak, J. C.; Chaires, J. B. Biochemistry 1993, 32, 2573. doi:10.1021/bi00061a015
(58) Ou, Z.; Wang, Y.; Gao, Y.; Wang, X.; Qian, Y.; Li, Y.; Wang, X. J. Inorg. Biochem. 2017, 166, 126. doi: 10.1016/j.jinorgbio.2016.11.012
(59) Sun, D.; Liu, Y.; Yu, Q.; Liu, D.; Zhou, Y.; Liu, J. J. Inorg. Biochem. 2015, 150, 90. doi:10.1016/j.jinorgbio.2015.04.003
(60) Xu, X.; Wang, X.; Li, Y.; Wang, Y.; Yang, L. Nucleic Acids Res. 2012, 40, 7622. doi:10.1093/nar/gks517
(61) Chenoweth, D. M.; Dervan, P. B. Proc. Nat. Acad. Sci. U. S. A. 2009, 106, 13175. doi:10.1073/pnas.0906532106
(62) Ghosh, S.; Mendoza, O.; Cubo, L.; Rosu, F.; Gabelica, V.; White, A. J. P.; Vilar, R. Chem. Eur. J. 2014, 20, 4772. doi: 10.1002/chem.201304905

[1] Shichao ZHOU,Guitao FENG,Dongdong XIA,Cheng LI,Yonggang WU,Weiwei LI. Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 344-347.
[2] WANG Yi, JIA Nan-Fang, QI Sheng-Li, TIAN Guo-Feng, WU De-Zhen. Synthesis, Characterization and Memory Performance of Naphthalimides Containing Various Electron-Withdrawing Moieties[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2227-2236.
[3] ZHANG Bao-Hong, HU Guo-Sheng, ZHU Deng-Sen, WANG Wen-Ji, GONG Ge-Hui, DU Wei-Hong. Inhibition of Prion Amyloid Peptide Fibril Formation by Peroxovanadium Complexes[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1810-1818.
[4] OU Zhi-Ze, JU Bao-Long, GAO Yun-Yan, WANG Zi-Chao, HUANG Gan, QIAN Yi-Meng. Alkynylplatinum(Ⅱ) 2,6-Bis(N-ethylbenzimidazol-2'-yl)pyridine Complexes: Effect of Alkynyl Ligand on G-quadruplex Binding Properties and Anticancer Activity[J]. Acta Physico-Chimica Sinca, 2015, 31(12): 2386-2394.
[5] CUI Li-Li, ZHOU Dan-Hong, LI Miao-Miao. Photophysical Properties of a Red-Shift Cu(II) Ratiometric Fluorescent Chemosensor[J]. Acta Physico-Chimica Sinca, 2013, 29(04): 745-753.
[6] SHEN Jian-Lei, YANG Xin-Guo, HUANG Liao, SHEN Qi-Li, LIU Zhen-Hui, ZHANG Feng-Ju. Synthesis and Photophysical Behavior of Two Novel Bis(1,8-naphthalimides) Containing Triazine Spacers[J]. Acta Physico-Chimica Sinca, 2012, 28(08): 1992-1999.
[7] HE Xiang-Wei, LONG Hai-Tao, YUAN Gu, Xu Xiao-Jie, ZHOU Ya-Wei. Investigation of Interaction of Small Natural Product Molecules and Human Telomeric G-Quadruplex and Thermal Stabilities of the Complexes by Electrospray Ionization Mass Spectrometry[J]. Acta Physico-Chimica Sinca, 2010, 26(04): 1082-1086.
[8] GUO Ci, LIU Cui, YANG Zhong-Zhi. Mobility of Na+ in a G-Quadruplex[J]. Acta Physico-Chimica Sinca, 2010, 26(02): 478-486.
[9] QI Qi, SUN Yue-Ming, HA Yong-Quan. Structures and UV-Vis Absorption Spectra of 1,8-Naphthalimide Derivatives[J]. Acta Physico-Chimica Sinca, 2009, 25(06): 1143-1148.
[10] CHEN Xin-Yuan, LV Yang, LI Shen-Min. Molecular Dynamics Simulations on the Stability of (3+1) Mixed-Type Hybrid G-quadruplex in Human Telomere[J]. Acta Physico-Chimica Sinca, 2009, 25(04): 783-791.
[11] PU Min; CHEN Biao-Hua; LI Hui-Ying; LIU Kun-Hui. DFT Studies on Reaction Mechanism of the Double Bond Isomerization of Butene Catalyzed by 1-ethyl-3-methyl-imidazolium of the Ionic Liquid (II)[J]. Acta Physico-Chimica Sinca, 2005, 21(04): 383-387.
[12] Pu Min;Liu Kun-Hui;Li Hui-Ying;Chen Biao-Hua. DFT Studies on Reaction Mechanism of the Double Bond Isomerization of Butene Catalyzed by 1-ethyl-3-methyl-lmidazolium of the Ionic Liquid[J]. Acta Physico-Chimica Sinca, 2004, 20(08): 826-830.